
PSL: Portfolio Simulation Language

White Paper

Alexander Besidski Wei-Chen Lee
ab2012@columbia.edu wl2135@columbia.edu

Xin Li Jian Huang
xl74@columbia.edu jh2353@columbia.edu

September 27, 2004

1



1 Introduction

Over the last few decades, the average person’s interest in the stock market
has grown exponentially. What was once a toy of the rich has now turned into
the vehicle of choice for growing wealth. This demand coupled with advances in
trading technology has opened up the markets so that nowadays nearly anybody
can own stocks. While there exist various tools designed for creating complex
financial models based on market data, these tools are all geared towards so-
phisticated business users. Portfolio simulation language is designed specifically
for the purpose of simulating and modeling behaviors of financial assets in a way
accessible to inexperienced users having knowledge of only a few fundamental
concepts. In addition to being easily accessible the language is also designed to
be flexible for the more advanced investors. As a simple programming language,
it is particularly suitable as a flexible and convenient teaching tool for demon-
strating and practicing basic financial market operations for students majoring
in finance.

2 Fundamentals

Two concepts will lie at the heart of our language — portfolio and asset. Port-
folios are essentially collections of assets with a few additional attributes. PSL
will define constructs to manipulate portfolio content and define functions to
operate on them. Two examples of assets are stocks and bonds. At the very
minimum all assets share two common characteristics — rate of return and
variance. Having these two attributes at the core of every asset will allow us
to create portfolios comprised of different types of assets and to run meaningful
analysis on their content, which is the goal of this project. By making financial
instruments into first class citizens of our language we will obtain the ability to
define portfolios with ease and run various types of operations with a few lines
of code.

3 Features

3.1 Simplicity

Since we would like to create a language that is easy enough for a user who is
inexperienced in both programming and finance the language will have only a
few basic types in addition to assets and portfolios primarily added in order to
manipulate assets and create custom functions.

3.2 Hierarchical

Being an intrinsically object-oriented programming language, PSL adopts a hi-
erarchy of data types. Each of these data is customized by different properties
(data members) and behaviors (member functions), while all of them sharing
certain set of common characteristics. Basically, three hierarchical levels of
abstraction exists:

2



a. primitive data types
These basically include numbers, logicals, strings, and constants, tosup-
port basic arithmetic and logical operations, which is indispensable for
implementing any full-fledged programming languages.

b. financial instruments (assets)
These include [stock], [bond] and [cash]. Here [cash] is modeled as a risk-
less financial instrument having a fixed rate of return. [bond] is similar to
[cash] except that rather than simply compounded, it has a certain matu-
rity date and a fixed coupon yield. At maturation [bond] is automatically
converted to [cash]. [stock] has a property named volatility to measure
its risk, as well as an expected rate of return. The stochastic behavior of
[stock] can be modeled by lognormal distribution which is implemented in
the member functions of the [stock] data type.

c. financial derivatives
These are basically more complicated financial instruments derived from
the basic financial instruments in (b), including [option] and [future],
which must have an underlying asset (financial instrument) in order to
be fairly priced. Due to the intrinsic stochastic nature of the underlying
assets (stocks), simulation and modeling operations are also supported for
financial derivatives.

d. portfolio
This is the highest level data type in PSL, and lies at the core of the
language. Basically [portfolio] is a composite data type, consisting of ar-
bitrary combinations of (b) and (c) (satisfying certain constraints). A
[portfolio] data type supports many operations include risk/return opti-
mization and VaR analysis, as well as Monte Carlo simulation.

In addition, the array type, which consisting of fixed number of homogeneous
data types, is supported for all the basic data types in (a)-(d).

3.3 Flexibility

PSL aims to cater to make the language accessible and useful for users with var-
ious levels of expertise in programming experience and financial knowledge. It
is designed such that users with the minimum knowledge of computer program-
ming would quickly master the basic language elements and be able to write
practical programs in PSL. Although internally designed as totally objected-
oriented, PSL provides users with a more traditional procedure based pro-
gramming interface. One could simply write a script-like program, using all
the normal features supported by most other languages such as loops, condi-
tional branches, etc, without any need to know anything about objected-oriented
programming concepts. Users will be able to construct complicated portfolios
and perform highly professional analysis, using the built-in financial instrument
types such as [stock], [bond], [future], etc. For most common practices in finance
these should be enough. For more advanced users, e.g., traders and financial
analysts who may want to manipulate more complicated financial instruments
in the portfolio, PSL provides them with the options to build up their own
financial derivatives by expanding the basic financial instrument types. This

3



would require the users to know more about the advanced features of PSL,
particularly the objected oriented concepts, since the user have to define their
new object types and specify their properties (data members) and behaviors
(member functions). However, this is by no way a requisite to master the basic
programming in PSL.

3.4 Finance-oriented

PSL is mainly designed to perform financial analysis and portfolio manage-
ment/simulation. So manipulation of finance instruments and their compo-
sitions lies at the heart of the language. PSL provides many built-in finan-
cial analysis tool, imbedded in the basic financial instrument types as built-in
functions. For example, PSL provides tools for portfolio risk/return optimiza-
tions, VaR analysis, historical data extraction, stock movement modeling, op-
tion/future pricing, and Monte Carlo simulation of stocks/portfolio paths, to
name a few. All these powerful operations provides simple and user-friendly
interfaces to the users and all the mathematical details are hidden. Users with
little or no mathematical/financial background would still be able to write com-
plicated financial analysis software using our PSL language.

4 Summary

The PSL language provides a simple yet powerful programming tool for the
simulation and analysis of financial instruments and portfolios. Everything
is internally designed as objected-oriented, while PSL provides users with a
procedure-based interface that is sufficient to achieve most common tasks in fi-
nancial analysis. It is both easy to learn and use, yet flexible enough to achieve
very powerful goals. PSL is suitable for a diverse group of users such as finance
majoring students/instructors, traders, mutual fund/hedge fund managers, etc.

4


