

 Source Code Vulnerabilities

 Angelos Keromytis
 Columbia University

 Code vulnerabilities

 Protocols and algorithms may be perfect

 Implementations is another story!

 Majority of vulnerabilities are result of bad code

 Buffer overflows
 Race conditions
 Insufficient/wrong argument validation

 SQL injection

 Backdoors, trojan horses

 Applicability

 Applications

 Usually privileged ones

 Extensible (operating) systems

 Mobile agents

 Malicious code, viruses

 Buffer overflows

 Overwrite return pointer in caller’s stack frame

 Arguments on the stack

 Missing bounds checking

 BSS and heap overflows

 Virtual functions, object methods

 Jump-into-libc

 The goal is to transfer the control flow to injected code

 Or to existing code, with arguments of attacker’s choice

 Example stack overflow
 int main(int argc, char **argv) {
 char fname[]= "/tmp/testfile";
 char buffer[16];
 u_long distance;

 distance= (u_long)fname - (u_long)buffer;
 printf("fname = %p\nbuffer = %p\n
 distance = 0x%x bytes\n",
 fname, buffer, distance);
 printf("fname = %s\n",fname);
 strcpy(buffer, argv[1]);
 printf(fname = %s\n",fname);
 return 0;
 }

 Example heap overflow
 int main() {
 u_long distance;
 char *buf1= (char *)malloc(16);
 char *buf2= (char *)malloc(16);

 distance= (u_long)buf2 - (u_long)buf1;
 printf("buf1 = %p\nbuf2 = %p\n
 distance = 0x%x bytes\n", buf1, buf2, distance);
 memset(buf2, ’A’, 15); buf2[15]=’\0’;
 printf("buf2 = %s\n", buf2);
 memset(buf1, ’B’, (8+distance));
 printf("buf2 = %s\n", buf2);
 return 0;
 }

 Example SQL injection

 Dynamically generated queries

 "select * from mysql.user

 where username=’ " . $uid . " ’ and
 password=password(’ ". $pwd . " ’);"

 Feed bad input

 "select * from mysql.user

 where username=’’ or 1=1; -’’ and
 password=password(’_any_text_’);"

 Race conditions

 Time Of Check To Time Of Use (TOCTTOU) bugs

 Example of updating /etc/passwd

 Pick "random" filename
 Check that it does not exist in /tmp

 If it does, loop

 If not, open file

 Copy contents of /etc/passwd

 Add new entry

 Copy temp file to /etc/passwd

 Other example: changing symbolic link pointer between
check and use

 Bad argument validation

 Example: sendmail debug flag

 Given as number in command line
 Used as index in table to set appropriate debug flag

 But: no bounds checking

 And: sendmail running "setuid"

 Result: able to add code (and execute it)

 Example: sprintf format string

 Parameters of proposed solutions

 Performance
 Coverage

 Resistance to new attacks
 Ease-of-use
 Intrusiveness in programming style

 Code signing

 Code producer (or trusted compiler) digitally signs code

 User checks signature, verifies code comes from "trusted"
entity

 In general, insufficient:

 Implies "binary" trust model

 Malevolent/subverted "trusted" party can cause damage

 Lack of a PKI -> non-scalable approach

 Reasonable as first line of defense

 Unix chroot()

 In unix, (almost) everything is part of the filesystem

 Limit what code/process can do by restricting their view of
the filesystem

 Typically, daemon processes ran in their own
mini-filesystem

 Possible to escape, or cause damage even from inside a
chroot’ed environment

 FreeBSD jail()

 Different virtual machine based on IP address

 Capabilities

 Introduce fine-grained access control for all resources

 Allow users to specify exactly what resources processes
have access to

 Increased administrative complexity

 Must modify existing applications

 System Call Monitoring

 Sandbox untrusted applications by monitoring system calls

 Enforce particular policy

 Policy may be uploaded to kernel

 Similar to virus checker
 Have to hand-tune policy for individual applications

 Fine for widely-used daemons, tricky for downloaded
code (e.g., plug-ins)

 Java security manager approach fundamentally similar

 Static analysis

 Look at piece of code, determine faults

 Manual inspection

 Model checkers
 Inherently difficult problem

 Dynamic analysis

 Augment static buffers with size information

 Propagate throughout program calls

 Inject checks prior to use

 Very invasive, difficult to get right

 Different approach: Perl Taint model

 Software Fault Isolation (SFI)

 Software encapsulation of code

 Partition code into data and code segments

 Prevent self-modifying code

 Code is inserted before each load, store, and jump
instruction

 Verify that the target address is safe

 Done at compiler, link, or run time

 Increases program size, slow down

 "Tricky" for CISC architectures

 Compiler tricks

 First approach: instrument all pointer accesses

 Expensive!

 StackGuard: inject runtime checks for buffer overflows

 Use "canaries" to detect overflows
 StackShield: save return address to write-protected

memory

 Restore before return
 StackGhost: use processor (SPARC) register windows

 Compiler tricks (cont.)

 ProPolice: similar to StackGuard, re-orders variables
 FormatGuard: wrappers for printf function family

 Binary Rewrite: redundant copy of return address

 Inject checks directly into legacy programs

 Not fool-proof

 Heap-based overflows, SQL-injection

 Performance penalty (sometimes significant)

 Better APIs

 Engineering solution

 strcpy/strcat -> strncpy/strncat

 sprintf -> snprintf

 tmpnam -> mkstemp
 ...
 Not always possible (thanks to standards)

 Sometimes, new API confusing

 strlcpy/strlcat

 Better APIs (cont.)

 Libsafe: substitute suspicious functions with "safe"
instances

 sprintf, fgets, strcpy, strcat

 Does not catch other types of faults

 Proof-carrying code

 Input: piece of code, safety policy

 Output: safety proof

 Proof generation is computationally expensive

 Verification simpler and less expensive

 Compiler need not be trusted

 Only the verifier

 Proof-carrying code (2)

 Burden is on the code producer

 Prove once, use everywhere (with same policy)

 Reliance only on the verifier (which is small)

 Tamperproof programs: modifying a program will

 Invalidate the proof

 Make the proof non-applicable to the program

 Proof and program still valid -> good

 Simple programs (packet filters) / policies

 Promising

 Safe languages

 Use a language where "bad thoughts" are impossible

 Examples: Java, ML/Caml, Erlang, etc.

 Type safety

 Memory management

 VM may still be unsafe (Java bytecode, JIT, ...)

 User reluctance to learn a new language

 "Too different from C"
 Cyclone

 CCured
 Static analysis + runtime inspection

 Code Randomization Techniques

 Apply Kerckhoff’s principle on programs

 Key-driven randomization of certain aspects of binary

 Reveal key to OS

 Attacker must mount exhaustive-search attack

 Randomize location/size of stack/activation records
 Randomize location of linked libraries
 Randomize instruction set!

