Source Code Vulnerabilities

Angelos Keromytis
Columbia University

Code vulnerabillities

* Protocols and algorithms may be perfect
* Implementations is another story!
* Majority of vulnerabilities are result of bad code

e Buffer overflows
e Race conditions
* Insufficient/wrong argument validation

* SQL Injection
* Backdoors, trojan horses

Applicability

* Applications

* Usually privileged ones
* Extensible (operating) systems
* Mobile agents

* Malicious code, viruses

Buffer overflows

* Overwrite return pointer in caller’s stack frame
* Arguments on the stack
* Missing bounds checking
* BSS and heap overflows
* Virtual functions, object methods
e Jump-into-libc
* The goal is to transfer the control flow to injected code
* Or to existing code, with arguments of attacker’s choice

Example stack overflow

int main(int argc, char **argv) {
char fname[]= "/tmp/testfile";
char buffer[16];
u_long distance;

distance= (u_long)fname - (u_long)buffer;
printf("fname = %p\nbuffer = %p\n
distance = 0x%x bytes\n",
fname, buffer, distance);
printf("fname = %s\n",fname);
strcpy(buffer, argv[1]);
printf(fname = %s\n",fname);
return O;

Example heap overflow

int main() {
u_long distance;
char *bufl= (char *)malloc(16);
char *buf2= (char *)malloc(16);

distance= (u_long)buf2 - (u_long)bufl;
printf("bufl = %p\nbuf2 = %p\n

distance = 0x%x bytes\n", bufl, buf2, distance);
memset(buf2, 'A’, 15); buf2[15]="\0’;

printf("buf2 = %s\n", buf2);

memset(bufl, 'B’, (8+distance));

printf("buf2 = %s\n", buf2);

return O;

Example SQL injection

* Dynamically generated queries
"select * from mysqgl.user

where username="". $uid . " " and
password=password(’ ". $pwd . " ");"

* Feed bad input
"select * from mysqgl.user

where username="or 1=1; -” and
password=password(’_any text ’);"

Race conditions

* Time Of Check To Time Of Use (TOCTTOU) bugs
* Example of updating /etc/passwd

* Pick "random" filename
* Check that it does not exist in /tmp

* |If it does, loop
* If not, open file
* Copy contents of /etc/passwd
* Add new entry
* Copy temp file to /etc/passwd

* Other example: changing symbolic link pointer between
check and use

Bad argument validation

* Example: sendmail debug flag

e Glven as number in command line
* Used as index in table to set appropriate debug flag

* But: no bounds checking

* And: sendmail running "setuid"
* Result: able to add code (and execute It)
* Example: sprintf format string

Parameters of proposed solutions

* Performance
* Coverage

* Resistance to new attacks
e Ease-of-use
* [ntrusiveness in programming style

Code signing

* Code producer (or trusted compiler) digitally signs code
* User checks signature, verifies code comes from "trusted"
entity

* In general, insufficient:
* Implies "binary" trust model
* Malevolent/subverted "trusted" party can cause damage
e Lack of a PKI -> non-scalable approach

* Reasonable as first line of defense

Unix chroot()

* In unix, (almost) everything is part of the filesystem

* Limit what code/process can do by restricting their view of
the filesystem

* Typically, daemon processes ran in their own
mini-filesystem

* Possible to escape, or cause damage even from inside a
chroot’ed environment

* FreeBSD jalil()
e Different virtual machine based on IP address

Capabillities

* Introduce fine-grained access control for all resources
* Allow users to specify exactly what resources processes
have access to
* Increased administrative complexity
* Must modify existing applications

System Call Monitoring

e Sandbox untrusted a
* Enforce particular

P
oJ¢

* Policy may be uploac

el

* Similar to virus checker
* Have to hand-tune policy for individual applications

* Fine for widely-used daemons, tricky for downloaded
code (e.d., plug-ins)

ications by monitoring system call:
icy
to kernel

e Java security manager approach fundamentally similar

Static analysis

* Look at piece of code, determine faults
* Manual inspection

* Model checkers
* Inherently difficult problem

Dynamic analysis

* Augment static buffers with size information
* Propagate throughout program calls

* Inject checks prior to use
* Very invasive, difficult to get right

* Different approach: Perl Taint model

Software Fault Isolation (SFI)

* Software encapsulation of code
* Partition code into data and code segments
* Prevent self-modifying code
* Code is inserted before each load, store, and jump
Instruction
* Verify that the target address Is safe
* Done at compiller, link, or run time
* Increases program size, slow down
* "Tricky" for CISC architectures

Compiler tricks

* First approach: instrument all pointer accesses
* Expensive!
e StackGuard: inject runtime checks for buffer overflows

* Use "canaries" to detect overflows
* StackShield: save return address to write-protected

memory

* Restore before return
* StackGhost: use processor (SPARC) register windows

Compiler tricks (cont.)

* ProPolice: similar to StackGuard, re-orders variables
* FormatGuard: wrappers for printf function family

* Binary Rewrite: redundant copy of return address
* Inject checks directly into legacy programs

* Not fool-proof
* Heap-based overflows, SQL-Injection

* Performance penalty (sometimes significant)

Better APIs

* Engineering solution
* strcpy/strcat -> strncpy/strncat
e sprintf -> snprintf
e tmpnam -> mkstemp

* Not always possible (thanks to standards)
* Sometimes, new API confusing
* strlcpy/stricat

Better APIs (cont.)

* Libsafe: substitute suspicious functions with "safe"
Instances

* sprintf, fgets, strcpy, strcat
* Does not catch other types of faults

Proof-carrying code

* [nput: piece of code, safety policy

* Output: safety proof

* Proof generation is computationally expensive
* Verification simpler and less expensive

* Compiler need not be trusted
* Only the verifier

Proof-carrying code (2)

* Burden Is on the code producer
* Prove once, use everywhere (with same policy)
* Reliance only on the verifier (which is small)
* Tamperproof programs: modifying a program will
* Invalidate the proof
* Make the proof non-applicable to the program
* Proof and program still valid -> good
* Simple programs (packet filters) / policies
* Promising

Safe languages

* Use a language where "bad thoughts" are impossible
* Examples: Java, ML/Caml, Erlang, etc.
* Type safety
* Memory management
* VM may still be unsafe (Java bytecode, JIT, ...)
* User reluctance to learn a new language

e "Too different from C"
* Cyclone

* CCured
e Static analysis + runtime inspection

Code Randomization Technigues

* Apply Kerckhoff’s principle on programs
* Key-driven randomization of certain aspects of binary

* Reveal key to OS
e Attacker must mount exhaustive-search attack

e Randomize location/size of stack/activation records
e Randomize location of linked libraries
e Randomize instruction set!

