
ELMO

December 21, 2004

Stephen Lee
sl2285

Jeffrey Cua
jmc2108

Erik Peterson
edp2002

John Waugh
jrw2005

ELMO Loves Manipulating Objects

Language Goals

Accessibility

• Comprehensible for non-programmer
– Avoid direct matrix manipulation
– Main commands (move, scale, etc) should be

‘human readable’
– Still make it similar to popular programming

languages (Java/C) so the wheel doesn’t have to be
re-invented.

Funky Functions

• In C++, one can have defaults, but only in
limited way
void foo(int i=0, int j=0);

• When calling foo, can’t give j a value without giving one to i
as well

• In ELMO, any input can have a default, and you
specify which are overridden.
– Call foo like so: foo(j=99);
– More verbose syntax, but defaults are more useful,

and encourages good naming of function inputs.

∫ ex = f(un)

References

• Any variable can use referencing via the “=&”
operator
int a =& b;

a+=5; //changes b

foo(j=&a); //pass a to foo by reference

a =& 22; //a no longer refers to b

• The “=&” operator can be used anywhere ‘=’
would be

Scene Graphs

• Scene graphs allow
organization of 3D
transforms through
hierarchical grouping.

• Easy to build up
composite transforms
using groups-within-
groups

Sugary Syntax

• Vector syntax:
vector vec = <1,2,3>;

• Random number syntax:
float r = [a..b/2];

• Typical transform commands:
rotate g around <1,0,0> by 15 deg;

move obj along obj.X by 5;

Not Quite C

• No switch statements
• for and foreach are the only

iteration constructs
• Functions must be declared

before they’re used
• No custom data types

(struct/union)
• No external definitions

– all code must be in one .elmo file

Language Implementation

Top-Level

Walker

Group Statements

Class Structure

Expressions

Grouper

Hierarchy & Tree Structure

ing

ELMOGroup nodes compose trees in the scene forest

// each group has a single parent
ELMOGroup _parent;

// born to parent
ELMOGroup(ELMOGroup parent) {

...
_parent = parent;

}

// adoption by parent
setParent(ELMOGroup parent) {

_parent = parent;
}

// default to orphan
ELMOGroup() {

 ...
_parent = null;

}

attach(ELMOGroup a) {
if (a._parent==null && !isAncestor(a)) {

...
a.setParent(this);

}
}

isAncestor(ELMOGroup a) {
if (this == a) {

return true;
} else if (_parent == null) {

return false;
} else {

return _parent.isAncestor(a);
}

}

// parent disowns you
remove(ELMOGroup a) {

...
a.setParent(null);

}

getInheritedTM() {
ELMOMatrix t = ELMOMatrix.ID();
ELMOGroup g = _parent;

while(g != null) {
t = ELMOMatrix.mult(t, g.getTransformationMatrix());
g = g.getParent();

}
return t;

}

// you get a car
removeWithInheritance(ELMOGroup a) {

...
a.setParent(null);
ELMOMatrix t = this.getInheritedTM();
a.multiply(t);

}

Making ELMO Sing:
A Quick Tutorial

Perl
Sucks

Importing OBJ files

//imports and assigns sphere.obj to object
//sphere

object sphere = "tests/sphere.obj";
//prints filename
print sphere;

//copies sphere to sphere2
object sphere2 = sphere;

Transforming an Object

// moves sphere along x-axis by 3 units
move sphere along <1,0,0> by 3;
// rotates sphere around axis by PI/6 radians
rotate sphere around axis by PI/6;
// scales sphere around origin by 90%
scale sphere around <0,0,0> by 0.9;

Creating/Calling a function

// creates function named curl
void curl (int counter, object sphere, vector axis) {
//<insert body here>
}

// calls function curl setting the following args
curl(counter=10, sphere=sphere, axis=<0,1,0>);

Exporting

stamp sphere;

stamp sends sphere to
an object buffer that
will hold it until the
program finishes and
flushes the contents to
a file.

Recursion
void curl (int counter, object sphere, vector axis) {
 stamp sphere;
 if (counter != 0) {
 counter --;
 rotate sphere around axis by PI/6;
 move sphere along axis by 4;
 scale sphere around <0,0,0> by 0.9;
 curl(counter=counter, sphere=&sphere, axis=axis);
 }
}

Putting it all together

object sphere = "tests/sphere.obj";
print sphere;

object sphere2 = sphere;

move sphere along <1,0,0> by 3;
move sphere2 along <1,0,0> by -3;
int counter = 20;

Creating a quick compound Object

curl(counter=counter, sphere=sphere, axis= <0,1,0>);
curl(counter=counter, sphere=sphere2, axis= <0,1,0>);
curl(counter=counter, sphere=sphere, axis= <0,0,1>);
curl(counter=counter, sphere=sphere2, axis= <0,0,1>);
curl(counter=counter, sphere=sphere, axis= <0,-1,0>);
curl(counter=counter, sphere=sphere2, axis= <0,-1,0>);
curl(counter=counter, sphere=sphere, axis= <0,0,-1>);
curl(counter=counter, sphere=sphere2, axis= <0,0,-1>);

Output

Damn
Straight!

