
SML

Language Reference Manual

1. Introduction

SML has been proposed as a means of simplifying SPICE coding. By developing a wrapper
language that generates SPICE code, the developers of SML have given the typical engineer the
power to easily manipulate cumbersome circuit configurations, while harnessing the full power of
the latest SPICE engine technologies. SML can be done without the hassle of being distracted by
the nuances of any one particular SPICE implementation.

2. Lexical Conventions

2.1 Comments

Multiple line comments begin with "${" and end with "$}". Single line comments begin with a
single "$" and are terminated by an end of line character.

2.2 Identifiers

An identifier is a letter followed by any combination of letters (a...z or A...Z), numbers and
underscores ("_"). Identifiers are case-sensitive, and cannot be identical to any keyword. Identifiers
are the valid names that can be given to variables.

2.3 Numbers

A number is a sequence of digits followed by an optional decimal point which may itself be
followed by more digits.

2.4 Strings

A string is a sequence of ASCII characters surrounded in double quotes (" "). Just as in C, the
character '\' acts as an escape character. '\t' represents a tab, '\n' a line feed, '\r' a carriage return and
'\\' is used to represent a single '\'.

2.5 Objects

An object is any variable of type int, float, list, string etc. All variables are implemented as generic
objects that internally store information about their type and where their data is stored.

2.6 Numerical Objects

Numerical values are stored in int and float objects. In practice, int values store the equivalent data
of c++ long values and floats store the equivalent data of c++ double values.

2.7 Tokens

Let n denote a positive integer.
Let exprn be any expression that evaluates to an object.
Let listn be an expression that evaluates to a list object.
Let numn be an expression that evaluates to an int or float object.
Let stringn be an expression that evaluates to a string object.
Let varn be a valid identifier (variable name).
Let vartypen be a valid data type, such as "int", "float", "list" or "string".

() (expr1)

Guarantees that expr1 will be evaluated before it is combined with surrounding expressions.

{ } {expr1, expr2, expr3}

Constructs a list containing the objects returned by expr1, expr2 and expr3. Any number of
expressions can be enclosed in this manner to construct a list on the fly.

[] list1[num1]

As long as num1 evaluates to a positive integer N, the Nth element of list1 is returned.

[] list1[num1, num2]

As long as num1 and num2 evaluate to positive integers, this expression returns a list containing
elements num1 to num2 of list1. Modifying the elements of the returned list will, in fact, affect the
elements of list1.

[] string1[num1]
As long as num1 evaluates to a positive integer N, this returns a string object containing the Nth
character of string1. Modifying this new string will affect the corresponding character in string1.

[] string1[num1, num2]
As long as num1 and num2 evaluate to positive integers, this returns a string object containing
characters num1 to num2 of string1. Modifying this new string will affect those characters of
string1.

[] datatype1[num1]

 As long as num1 evaluates to a positive integer N, this returns a new list containing N objects of
type datatype1.

,

The comma token separates items in lists that are constructed on the fly and separates input
parameters to functions

+ num1 + num2
- num1 - num2
* num1 * num2
/ num1 / num2
% num1 % num2

These return the sum, difference, product, quotient and remainder (respectively) of num1 and num2
(as a numerical object). Neither num1 nor num2 is effected by these operations.

= expr1 = expr2

This sets the value of the object returned by expr1 to the value of the object returned by expr2. If
expr1 and expr2 evaluate to lists then the list object returned by expr1 is left containing elements
that have data identically matching those in the result of expr2. Note that after using the '='
operator, modifying the value (or elements) of what is returned by expr1 will have no effect on the
value (or elements) of what is returned by expr2. In particular, if expr1 is a list and expr2 is a list
containing SPICE objects then any connections between these objects will be preserved, so that in
the left hand list the nth SPICE object will connect to the kth SPICE object in exactly the manner
that they were connected in the right hand list for all positive integers n and k.

&= var1 &= expr1

The name var1 can now be used to refer to the object that is returned by expr1. If the object
returned by expr1 has been explicitly named before then the old name for the object becomes
invalid.

== expr1 == expr2

Returns an integer of value 1 if expr1 and expr2 contain data that is identical. Otherwise returns an
integer of value 0. If expr1 and expr2 evaluate to lists then each element of the lists must contain
identical data for this expression to return 1.

&== var1 &== expr1

Returns an integer of value1 if var1 is a name for the object returned by expr1. Otherwise returns a
zero valued integer.

&== expr1 &== expr2

Returns an integer of value 1 if the object returned by expr1 is referenced by the same named as the
object returned by expr2. Otherwise returns a zero valued integer.

> num1 > num2
< num1 < num2
>= num1 >= num2
<= num1 <= num2

Returns an integer of value one if num1 has (respectively) a greater, smaller, greater or equal, or
smaller or equal value than num2. Otherwise, returns a zero valued integer.

@ string1 @ string2

Returns a string object that is the result of appending string2 to the end of string1. Neither string1
nor string2 is affected by this operation.

@ list1 @ list2

Returns a list object that is the result of appending elements storing identical data to those in list2 to
the end of list1. Neither list1 nor list2 are affected, and modifying the elements of the resulting list
will not affect either of these lists.

#list1

Returns the number of elements in list1 as an integer value.

#string1

Returns the number of characters in string1 as an integer value.

OR num1 OR num2

Returns an integer with value 1 if either num1 or num2 evaluates to a non-zero integer. Otherwise
returns an integer with value zero.

AND num1 AND num2

Returns an integer with value 1 if num1 and num2 both evaluate to non-zero integers. Otherwise
returns an integer with value zero.

. expr1.property

Here the dot (.) operator returns an object representing some property of the object returned by
expr1. Modifying this property object modifies the corresponding property of expr1. Depending on
the type that expr1 evaluates to, property could be of any valid data type.

-> expr1 -> expr2

If expr1 and expr2 evaluate to node objects, this creates a SPICE connection or circuit wire
between them. In particular, this can be used to bind one terminal of a device to a terminal of a
different device. For example, resistor1.pos -> capacitor1.neg creates a wire (connection) between
the positive terminal of resistor1 and the negative terminal of capacitor1 in our generated SPICE
circuit.

2.8 Keywords

Below is a list of the keywords in SML:

if list true
while string false
else res AND
break cap OR
continue ind return
int cs
float vs

3. Data Types

3.1 Basic Object Types

float

Stores a c++ double floating point value.
int
 Stores a c++ long integer value.
list
 Stores a list of objects.
string
 Stores a sequence of characters.

3.2 SPICE Object types

node

A SPICE node. These objects are stored within resistors, capacitors, etc. to represent the
various terminals of a SPICE object.

For all of the following object types, obj.pos returns a node object representing the positive
terminal of the object obj, and obj.neg returns a node representing its negative terminal.

res
 A SPICE resistor object.
 obj.resistance returns a float objecting representing the resistance of a resistor object obj.
cap
 A SPICE capacitor object.

obj.capacitance returns a float objecting representing the capacitance of a capacitor object
obj.

ind
 A SPICE inductor object.

obj.inductance returns a float objecting representing the inductance of an inductor object
obj.

cs
 A SPICE current source object.

obj.current returns a float objecting representing the current of a current source object obj.

vs
 A SPICE voltage source object.

obj.voltage returns a float objecting representing the voltage of a voltage source object obj.

4. Expressions and Statements

An expression is a syntactically permissible sequence of tokens, keywords and identifiers. Some
expressions evaluate to objects and others do not. A statement is an expression terminated by one
or more end of line character.

4.1 Primary Expressions

4.1.1 Identifiers
An identifier is a left or right value expression.

4.1.2 Constants
A constant is either a number or a string that is a right-value expression.

4.2 Arithmetic Expressions

Use of operators such as +,-,*, / to modify primary expressions. Multiplication and division take
precedence over addition and subtraction.

4.3 Relational Expressions

Comparison using the < (less than), <= (less than or equal to), > (greater than), >= (greater than or
equal to), == (equal), != (not equal) operators on two primary expressions.

5. Statements

5.1 Assignment

An assignment assigns a constant or expression to a specified identifier.
< left_expression > = < right_expression >

5.2 Conditional Statement

Let exprn denote an expression where n is a positive integer

if if expr1 { expr2}

Evaluates expr2 if and only if expr1 evaluates to a non-zero integer. An error is thrown if expr1
does not evaluate to an integer.

else if expr1 {expr2}
 else if expr3 { expr 4}
 else {expr5}

Evaluates expression2 if expression1 evaluates to a non-zero integer. Otherwise, evaluates expr4 if
expr3 evaluates to a non-zero integer. If neither expr2 nor expr4 was evaluated, then expr5 is
evaluated. An error is thrown if expr1 or expr3 does not evaluate to an integer.

5.3 Iterative Statement

Let exprn denote an expression where n is a positive integer

while while expr1 { expr2 }

Repeatedly evaluates expr2 until expr1 evaluates to an integer that has the value zero or the break
keyword is reached in expr2. An error is thrown if expr1 does not evaluate to an integer.

break while expr1
 {

 expr2
 if(expr3) break
 expr4
 }

Evaluates the interior of the while loop until expr3 evaluates to a non-zero integer or expr1
evaluates to a non zero integer.

continue while expr1
 {
 expr2
 if(expr3) continue
 expr4
 }

During each iteration of the while loop, expr4 is evaluated only if expr3 evaluates to an integer that
has value zero.

return type1 func()
 {
 expr2
 return expr3
 }

Returns the value that expr3 evaluates to as long it is of data type type1.

6. Operator precedence

SML operators follow the following precedence ordering (from weakest to strongest):

,
= &= ->
AND
OR
== &==
< > <= >=
@
+ -
* /

()
{}
. []

7. Functions

Functions are defined as follows:

output_type func(input_type1 name1, input_type2 name2)
{
 function_body
}

Where output_type, input_type1 and input_type2 are valid data types. Functions can have any
number of input arguments and can only be called below where they have been defined.

8. SPICE insertion

Lines of SPICE can be included directly in SML programs. These lines will be inserted into the
final generated SPICE file in the order that they are executed in the SML program and will appear
higher in the file than all SML related SPICE circuit elements and nodes that are generated. The
syntax is as follows:

$[SPICE_commands]$

In particular, we can refer to SML variables in our SPICE insertions. To do this we essentially
inject an SML expression into our injected lines of SPICE. This SML expression will be evaluated
and as long as it evaluates to a float, int, node or valid circuit element such as res or cap the
expression will be replaced with corresponding SPICE code that references that object or takes on
that value. These SML injections within SPICE injections must be preceded by the # token, and
they must be followed by a blank space. This final blank space will be removed when the SPICE
code is generated. Thus, if in our SML we have a resistor object called R we might inject the
following SPICE:

$[SPICE_commands#R more_SPICE_commands#R.resistance even_more_SPICE_commands]$

The interpreter will then replace #R by the appropriate SPICE referring to the circuit element R and
#R.resistance will be replaced by the resistance value of resistor R. This power to inject allows
SML to harness the power of any SPICE commands that are not directly implemented, such as
those used to measure currents and voltages.

9. Sample SPICE insertions

$[.op]$
 This statement instructs SPICE to compute the DC steady state operating point for the

circuit: voltage at the nodes, current in each voltage source, and the operating point for each
element.

$[.dc #obj.param start stop incr]$

 The .dc analysis allows you to sweep a variable var and perform a DC steady state solution

of each value of that variable. The variable can be the name of an independent source or
any element parameter. Start and stop are the starting and final values of obj.param. And,
incr is the incremental value of the parameter being swept. Additionally, the sweep is done
independently of the value of obj.param at simulation time.

$[.tran tincr stop START=tini UIC]$

 This statement allows for a transient analysis to be conducted in the time domain for basic

circuit elements where tincr is the time increment for calculating the variables, tstop and tini
are the times at which the transient analysis stops and starts, respectively. The statement
UIC (Use Initial conditions) causes SPICE to ttake the specified the initial values of
dynamical components such as capacitors and inductors into account. Omitting the START
statement is equivalent to setting START=0.

$[.ac TYPE np fstart fstop]$

 This statement allows for time-invariant dynamical circuit analysis to be done in the

frequency domain where fstart denotes the starting frequency, fstop denotes the final
frequency, and TYPE defines how the np points on the frequency axis are taken (DEC for
decade variation) and (LOG for logarithmic variation). For AC analysis to be conducted, a
voltage or current source must be identified as an AC source with a particular phase and
magnitude.

$[.print <analysis type> v(#obj1), i(#obj2), v(#obj2.pos, #gnd)]

This statement represents the simplest way of reporting simulation results in the output log
where v(#obj) denotes the voltage across the positive and negative terminals of the object
and v(#obj.pos, #gnd) denotes the voltage of the positive terminal with respect to ground.
I(obj) denotes the current through the object.

