

M.R. Roboto:

Macro Record Robot Language
Language Reference Manual

Authors:

Adam Marczyk (alm2126@columbia.edu)
Hema Krishnan (hk2230@columbia.edu)
Jason Kopylec (jkk2106@columbia.edu)
Sanjit Tewari (sot5@columbia.edu)

1.0 Introduction

The Macro Record Robot Language (M.R. Roboto) places in the hands of the
programmer a powerful tool for controlling GUI-based operating systems. By simulating
the actions of a user, one can test interactive applications, automate repetitive tasks with
ease, and set one's computer to perform tasks at scheduled times when no user can be at
the keyboard. M.R. Roboto provides a simple script-style API to mimic keyboard and
mouse input, and utilizes Java's rich language libraries without requiring specific skill in
programming Java syntax.

This manual outlines the language syntax and semantics for creating M.R. Roboto
programs and compilers. Wherever possible, context-free grammars have been included
to precisely define the syntactic constructs. The overall flavor of the language is similar
to scripting languages such as Unix shell scripts, with additional power and flexibility
added through the use of Java-like control constructs.

2.0 The Basics

The following section defines and describes the basic components and fundamental
syntactic rules of a program written in the M.R. Roboto language.

2.1 Character Set

M.R. Roboto program source files can be composed of any characters from the standard
ASCII character set, i.e., characters from '\3' (CTRL+C) to '\377' (DEL).

2.2 File Name Conventions

M.R. Roboto programs should be named with the extension .mmr. The file name will
become the name of the Java class that is created, so it should take the form of an
identifier (see section 2.3). For example, the file TestProgram.mmr compiles into a Java
class file named TestProgram.class.

File Name Grammar
filename
 : identifier ".mmr"

2.3 Identifiers

Identifiers are defined as the names of functions, variables, or class files. In this language,
an identifier must start with an alphabetic character followed by any number (up to Java's
maximum) of letters, digits or the underscore character, '_'. Reserved words are illegal as
identifiers (see section 2.3.1).

Examples of Legal Identifiers: abc123, x, i_count, tmp
Examples of Illegal Identifiers: abc&c, _ac2, 1stP, end

Identifier Grammar
identifier
 : letter (alphanumeric | "_")*

alphanumeric
 : letter | digit

letter
 : [A-Za-z]

digit
 : [0-9]

2.3.1 Reserved Words

The following are reserved as keywords in the language. They may not be used as
identifiers. Keywords in Java are also illegal identifiers, but they are not listed here.

moveMouse click
rightClick doubleClick
length substring
getX getY
type press
hold release
releaseAll wait
return for
to while
step end
if then
else function
int string
color and
or

These reserved words represent either built- in library functions, data types or control
flow keywords; their exact functions will be discussed in detail below.

2.4 Variables

Variables are mutable, dynamically valued blocks of memory that store values used by
the program during its execution. All variables must be declared and assigned a value
before being used; variable names are identifiers and must be distinct. M.R. Roboto
supports three built- in data types for variables: string, integer, and color. Each of these is
described in detail below.

2.4.1 String Literals

A string is a sequence of printing and non-printing characters. Strings in the M.R. Roboto
language are the same as those in Java, with the addition of escape codes for keys that do
not produce printing characters. Escape sequences are indicated by the key name (see
below chart), surrounded by backslashes. Strings are delimited with double quotes. To
include literal double quotes or backslashes, pair them, as in Java.

Example Strings: "abc", "How are you today?", "\TAB\", "\\"

Key Escape Codes

\F1\ - \F12\ F1 – F12 keys
\ALT\ [ALT]
\CTRL\ [CTRL]
\CAPS_LOCK\ [CAPS LOCK]
\DELETE\ [DELETE]
\BACKSPACE\ [BACKSPACE]
\TAB\ [TAB]
\ENTER\ [RETURN]/[ENTER]
\DOWN\ Down Arrow Key
\UP\ Up Arrow Key
\LEFT\ Left Arrow Key
\RIGHT\ Right Arrow Key
\ESCAPE\ [ESC]
\HOME\ [HOME]
\END\ [END]
\INSERT\ [INSERT]
\PRINTSCREEN\ [PRINTSCREEN]

\SHIFT\ [SHIFT]
\PGDOWN\ [PAGE DOWN]
\PGUP\ [PAGE UP]
\NUM_LOCK\ [NUM LOCK]

String Grammar
string
 : """ (.)* """

2.4.2 Integers

An integer is either 0 or a positive whole number composed of a sequence of digits. The
minimum and maximum values are machine-specific. M.R. Roboto does not distinguish
between signed and unsigned integers and does not allow for negative values.

Example Integers : 0, 1, 2, 13, 725

Integer Grammar
integer
 : [0-9]+

2.4.3 Pixel Color

A pixel color variable stores the RGB color value of a given pixel, typically the one
directly beneath the tip of the mouse pointer. Valid values are BLACK, BLUE,
DARK_GRAY, GRAY, GREEN, LIGHT_GRAY, MAGENTA, ORANGE, PINK, RED,
WHITE and YELLOW (reflecting the Java color constants).

Pixel Color Grammar
pixelcolor
 : ("BLACK"|"BLUE"|"DARK_GRAY"|"GRAY"|"GREEN"|
"LIGHT_GRAY"|"MAGENTA"|"ORANGE"|"PINK"|"RED"|
"WHITE"|"YELLOW")

2.5 Declaration

Variables must be declared before use in order to determine their type. A declaration
statement consists of the type being declared, followed by the variable name identifier.
Variables are declared one per line.

Declaration Grammar
declaration
 : var_type identifier

var_type
 : ("int" | "string" | "color")

2.6 Assignment

Once a variable has been declared, it must be assigned a value before it can be used. An
assignment statement consists of the name of the variable, followed by an equals-sign
character, followed by the value the programmer wishes to assign to it (which must be of
the same type as the variable was initially declared to have). The value can be either an
atomic value (e.g., 1, "a"), or an expression that evaluates to a value of the correct type
(e.g., (5-3), ("a"++"b")). (See section 3.2 for grammar for assignment statements.)

2.7 Operators

There are five types of operators in the M.R. Roboto language: string, mathematical,
equality, logical, and parenthetical. All operators in this language are infix.

There is only one string operator, the binary concatenation operator "++", which takes
two strings as operands and combines them into one.

There are four mathematical operators: addition ("+"), multiplication ("*"), division
("/"),and subtraction ("-"), each of which takes two integers as operands. If the result of
an integer operation would otherwise be a decimal number, the decimal part is ignored
and a whole number is returned as if the result had been processed by the "floor"
operation (e.g., 5/2 = 2, which is the same as floor(2.5)).

There are seven equality operators, "=", "==", "<", ">", "<>", "<=" and ">=". All of them
take two operands, which can be of any type but must both be of the same type. The first
operator assigns the value of the right operand (which may be either a variable or literal
value) to the left operand (which must be a variable). The other equality operators return
either 0 for true or 1 for false, depending on whether the first operand is exactly equal to,

less than, greater than, not equal to, less than or equal to, or greater than or equal to the
second operand, respectively.

There are two logical operators, "and" and "or", which take two operands of integer type.
The "and" operator returns 1 if both its operands are non-zero; otherwise it returns 0. The
"or" operator returns 1 if either of its operands are non-zero; otherwise it returns 0.

The parenthetical operators are "(" and ")", which must always be matched. These
operators do nothing by themselves, but any statement inside them is "promoted" to the
highest level of precedence and evaluated as an atomic unit.

2.7.1 Precedence

Precedence for the operators follows roughly the same rules as in the C and Java
programming languages. The operators are listed below in order of increasing precedence
(operators on the same line have equal precedence):

=
or
and
== < > <> <= >=
+ - ++
* /
()

Expression and Precedence Grammar
expr
 : expr1 ("=" expr1)*

expr1
 : expr2 ("or" expr2)*

expr2
 : expr3 ("and" expr3)*

expr3
 : expr4 (equalityop expr4)*

expr4
 : expr5 (plusop expr5)*

expr5
 : expr6 (multop expr6)*

expr6
 : "(" expr ")" | value | string

value
 : integer | identifier

equalityop
 : "==" | "<" | ">" | "<>" | "<=" | ">="

plusop
 : "+" | "-" | "++"

multop
 : "*" | "/"

3.0 Program Structure

The following section builds on the previous section to define in detail the overall
structure of a program in the M.R. Roboto language.

3.1 The Main Block

A program in the M.R. Roboto language has one main block of code, consisting of
multiple statements (section 3.2) each on its own line, that is run each time that program
runs and that is the first thing to be executed each time that program runs (analogous to
the main() function in a program in C or Java). The main block is followed by one blank
line and then one or more function definitions (section 3.5) that may be invoked by the
main block during its execution.

Main Block Grammar
program
 : block newline (function)*

newline
 : "\n"

block
 : (stmt)+

3.2 Statements

A block of code in the M.R. Roboto language is made up of one or more statements, each
followed by a newline character. A statement may be any of the following: a comment
(section 3.3), a declaration (section 2.5), a conditional statement (section 3.4.1), a loop
(section 3.4.2), or an expression incorporating one or more operators (section 2.7.1).

Expression Grammar
stmt
 : (comment | declaration | conditional | loop |
function_call | expr) newline

3.3 Comments

Comments are statements inserted by the programmer to more clearly explain the
operation of the program. They are not considered part of the program source code and
are discarded before the program is compiled. Comments are marked by a double asterisk
("**") at the beginning of a line and extend through the end of that line. Multiple- line
comments may be created by starting multiple successive lines with this delimiter.

Comment Grammar
comment
 : "**" (.)*

3.4 Flow Control

M.R. Roboto allows the programmer to control the flow of program execution through
two types of constructs: conditional statements, which allow a block of code to be
skipped, and loop statements, which allow a block of code to be executed multiple times.

3.4.1 Conditional Statements

M.R. Roboto supports one type of conditional statement, namely the standard if-else type
conditional common to many programming languages.

3.4.1.1 If-Else Statements

An if-else conditional statement consists of the keyword "if" followed by a boolean
expression (i.e., one that evaluates either to 0 or to non-zero), followed by a block of
code, followed by an optional "else" keyword followed by a block of code, followed by
an "end" keyword. If the boolean expression evaluates to non-zero, the block of code
following the "if" will be executed; otherwise, if there is an "else" statement, the block of
code following it will be executed. In either case, program execution then continues
starting at the next statement following the "end". Conditional statements can be nested;
in such a case, the "end" aligns with the most recent "if".

Conditional Statement Grammar
conditional
 : "if " expr newline block ("else" newline block)?
"end"

3.4.2 Loop Statements

M.R. Roboto supports two types of loop statements, the for loop (section 3.4.2.1) which
allows a block of code to be executed a certain number of times, and the while loop
(section 3.4.2.2), which allows a block of code to be executed repeatedly until a certain
condition is met.

Loop Statement Grammar
loop
 : while_loop | for_loop

3.4.2.1 For Loops

Similar to the "for" statement in common languages such as C++ and Java, the M.R.
Roboto "for" loop sets an initial variable and repeatedly executes a block of code, altering
the initial variable's value in a predetermined way at each execution until it reaches some
predefined termination condition. Specifically, the M.R. Roboto "for" loop takes a
variable (which must be of integer format), sets its value to the first va lue given, and by
default, at each iteration increments its value by 1 until it reaches the second value given,
which is the termination condition. If the optional "step" keyword is supplied, the
variable's value will be incremented by the supplied value rather than by 1.

For Loop Statement Grammar
for_loop
 : "for " identifier "," value " to " value ("step"
value)? newline block "end"

3.4.2.2 While Loops

The M.R. Roboto "while" loop takes a boolean expression and repeatedly executes a
block of code until that expression evaluates to 0. (Obviously, the code should alter the
value of that expression in some way at each iteration, to prevent the loop from running
indefinitely.) Like the for loop, a while loop is closed by the keyword "end" to indicate
that the following code is no longer considered part of the loop.

While Loop Statement Grammar
while_loop
 : "while " expr newline block "end"

3.5 User-Defined Functions

In addition to the main block of code (section 3.1), the M.R. Roboto language allows
programmers to avoid needless repetition by encapsulating code that may be called
multiple times during the execution of a program into one or more user-defined functions,
which when invoked will run the code they contain.

Functions are defined separately from the main block of code, separated from it and by
each other by blank lines. They begin with the keyword "function" and end with the
keyword "end". Each function has a name, which must be a valid identifier; a function
may have the same name as a variable, but not the same name as another function. After
its name, a function must have a set of parentheses which may contain one or more
arguments (section 3.5.1). In the body of a function is a block of code ending with one
"return" statement (section 3.5.2).

Function Grammar
function
 : "function " identifier "(" (var_type identifier (",
" var_type identifier)*)? ")" newline block "return" value
newline "end" newline newline

3.5.1 Arguments

A function is defined with one or more arguments, which are variables associated with
that function whose value is set when the function is invoked (section 3.5.3). Arguments
passed to a function must be of the same number and types as the function defines them.
All arguments are passed by value, meaning that any change made to a variable passed as
an argument to a function within that function does not affect the value of that variable in
the invoking block of code.

3.5.2 Return Values

Each user-defined function must end with a line containing the keyword "return" and a
value, which can be either a numeric literal or an integer variable. When a function
executes, its value as a statement in the invoking block of code is considered to be the
same as its return value.

3.5.3 Invocation

Functions can be called either from the main block of code or from within another
function via a statement that consists of the function's name, an opening parenthesis, an
optional list of arguments of the correct number and types, and a closing parenthesis.

Function Call Grammar
function_call
 : identifier "(" (value (", " value)*)?")"

3.6 Scope

M.R. Roboto incorporates a series of scope rules to determine the "visibility" of variables
and user-defined functions. All scoping in this language is static, meaning that the scope
of a variable or function can be completely determined at compile time.

3.6.1 Variable Scope

M.R. Roboto has no global variables. Each variable can be "seen" only by other
statements in the same block of code; a variable declared in the main block of code can
be affected only by other statements in that main block, while a variable declared in the
body of a function can be affected only by other statements in that function. The one
exception to this rule is function arguments (section 3.5.1), which allow the value of
variables declared in one block of code to be visible to another block of code.

3.6.2 Function Scope

All functions in this language have global scope, meaning they can be invoked from
anywhere: within the main block, within another function, or even within their own body
(i.e., recursive function calls are allowed).

4.0 The M.R. Roboto Library

The M.R. Roboto language has a variety of built- in library functions which the
programmer can always invoke from any point in a program to perform certain
specialized tasks.

4.1 Library Functions

mouseMove(int x, int y) – Move the mouse pointer to the given screen coordinates [x,y],

expressed in pixels. 0,0 is considered to be the lower left corner. The mouse
pointer may not move beyond the dimensions of the actual screen.

click() – Click the left mouse button once.
doubleClick() – Click the left mouse button twice.
rightClick() – Click the right mouse button once.

length(string) – Return the number of characters in the given string.
substring(string, int x, int y) – Return a substring of the given string from position x to

position y-1, inclusive. Strings are zero- indexed.

getX() – Return the width of the current screen resolution, in pixels.
getY() – Return the height of the current screen resolution, in pixels.

getColor() – Return the color of the pixel currently beneath the mouse pointer.

type(string) – Mimic a sequence of key presses. Capitalized letters, or other characters

normally produced by holding the Shift key, will be automatically handled by the
program. Non-printing characters can be typed by including key escape codes
(section 2.4.1).

press(string) – Press and release one key. The string supplied as an argument must consist
of a string of characters equating to only one key press (i.e., a non-capital letter, a
digit, a punctuation mark that can be produced without pressing Shift, or a key
escape code).

hold(string) – Press and hold one key.
release(string) – Release a single key that is currently being held.
releaseAll() – Release all keys currently being held.

wait(int) – Pause execution for the specified number of seconds.

5.0 Code Examples

** Assume a text file is currently open in Notepad
** Type Hello World and then CTRL-S to save, then exit
** the program by selecting Exit from the File menu.

string x
string y
string s
int i
x = "Hello Sir"
y = "World"
s = substring(x,0,5) + " " + y
type(s)
hold("\CTRL\")
press("s")
releaseAll()
hold("\ALT\")
press("f")
releaseAll()
for i, 0 to 6

press("\DOWN")
end
press("\ENTER\")

** Move the mouse to the lower left corner of the screen.
** Click on the Windows Start button, move up and select
** an item from the menu.

int x
x = 10
moveMouse(x,10)
click()
x = x + 90
moveMouse(x,10)
click()

** Move the mouse until it's no longer over a red pixel,
** wait a bit, then inform the user of that fact.

int x
x = 10
while(getColor() == RED)
 x = x + 1
 moveMouse(x, 50)
end
if(getColor() == WHITE)
 displayWhite()
end

function displayWhite()
 wait(10)
 type("The mouse is over a white pixel.")
 return 1
end

6.0 Appendix A: The Complete M.R. Roboto Grammar

digit -> [0-9]
letter -> [A-za-z]
alphanumeric -> letter | digit
string -> """ (.)* """
integer -> (digit)+
pixelcolor -> ("BLACK"|"BLUE"|"DARK_GRAY"|"GRAY"|"GREEN"|
"LIGHT_GRAY"|"MAGENTA"| "ORANGE"|"PINK"|"RED"|"WHITE"|"YELLOW")
newline -> "\n"

identifier -> letter (alphanumeric | "_")*
filename -> identifier ".mmr"
var_type -> "int" | "string" | "color"
value -> integer | identifier

program -> block newline (function)*
block -> (stmt)+
stmt -> (comment | declaration | conditional | loop | function_call |
expr) newline

comment -> "**" (printing)*
declaration -> var_type identifier
conditional -> "if(" expr ")" newline block

("else" newline block)? "end"
loop -> while_loop | for_loop
function_call -> identifier "(" (identifier ("," identifier)*)? ")"
expr -> expr1 ("=" expr1)*
expr1 -> expr2 ("or" expr2)*
expr2 -> expr3 ("and" expr3)*
expr3 -> expr4 (equalityop expr4)*
expr4 -> expr5 (plusop expr5)*
expr5 -> expr6 (multop expr6)*
expr6 -> "(" expr ")" | value | string

equalityop -> "==" | "<" | ">" | "<>" | "<=" | ">="
plusop -> "+" | "-" | "++"
multop -> "*" | "/"

for_loop -> "for" identifier "," value "to" value ("step" value)?
newline block "end"
while_loop -> "while" expr newline block "end"

function -> "function" identifier "(" (var_type identifier

("," var_type identifier)*)? ")" newline block "end" newline
newline

