
Grimm: Language Reference Manual

1. Lexical Conventions

1.1. ALPHA
An ALPHA is a Roman alphabet character that can be either uppercase or lowercase.
ALPHA’s are a protected type, and therefore they are not a valid identifier in the Grimm
language. Instead they are used to define other identifiers.

1.2. DIGIT

A DIGIT consists of any numerical digit from 0 to 9. DIGIT is a protected type, and
therefore they are not a valid identifier in the Grimm language. Instead they are used to
define other identifiers.

1.3. Tokens

There are 6 classes of tokens: NOUN, STRCONST, NEWLINE, Whitespace,
Comments, and keywords.

1.3.1. NOUN

An identifier can be any alpha numeric combination beginning with an alphabet
character. Upper and lowercase letters are considered to be different. A noun
may not have the same spelling as a key word.

1.3.2. STRCONST

A series of charcters surrounded by double quotes.

1.3.3. NEWLINE
A line terminator signals the end of a line. Empty lines are ignored, therefore one
NEWLINE is treated the same as multiple NEWLINE characters in a row.

1.3.4. Whitespace

Grimm is a partially white space sensitive language. NEWLINE characters
indicate the end of a line are used to organize the text within a script. No
statements can extend for more than one line. All other whitespace listed below is
ignored.

1.3.5. Comments

Comments are used by the programmer to leave notes for himself and others who
may use the code. Therefore, comments are appropriately indicated by the
character sequence :note: and end when a NEWLINE is reached, therefore
comments may only be one line long.

1.3.6. Keywords

The following words are keywords in the Grimm language and may not be used
as NOUN’s.

and gameover item read

character goto name say
contains has not says
description hidden or scene
drops holds otherwise then
endif if otherwiseif user
endwhile input pickup while

1.3.7. User keyword

The user keyword is a variable that containes the state of the user throughout the
life of the program. For example, the last input given by the user, the item the
user holds, and the scene the user is currently in. The user keyword is combined
with keywords has, says, pickup, and drops which are described below. The user
keyword can also be used in the expression read user input to extract input
from the terminal.

2. Statements

Statements are the elements of the program, which executed during runtime. The statements
are executed sequentially unless otherwise indicated by the flow-control statements. The end
of a statement is indicated by a NEWLINE, and therefore no statement can be longer than
one line. There are three basic types of statements: action statements, if statements, and
while statements.

2.1. Action statements

An action statement indicates that some action should be executed. The jump, say, and
pickup actions are user actions. They can be typed into the console by the user, and then
executed if they are valid commands. The user input, char says, and gameover actions
are strictly used by the programmer and only used explicitly in the code.

2.1.1. Jump

A jump statement allows the user to move from one scene to another. This is
indicated by using the goto keyword and then followed by a NOUN, which is the
name of the scene that the user will move to.

goto hallway

2.1.2. Say

A say statement allows the user to speak to a character in the scene. The user may
say anything, although only certain questions or sentences may produce a
meaningful response. The action is indicated by the keyword say followed by a
STRCONST.

say “hello”

2.1.3. Pick up
The user may pick up items in the scene. This is indicated by the pickup keyword
followed by a NOUN, which is the item to be picked up. There is an optional
NOUN before the pickup key word so that the programmer can indicate if a
character or a user will pickup the item. If no beginning NOUN is specified the
pickup action is associated with the user by default.

pickup key

2.1.4. Drop

The programmer may allow for a user or a character to drop an item, therefore no
longer possessing it. An optional NOUN preceding the drop command specifies
whether the user of the character is executing the drop actions. If this NOUN is
not included, the drop command defaults to the user.

2.1.5. User input
The programmer may read the user input and act accordingly using the user input
action. This input will be stored in memory and can be used in the flow-control
statements described is section 2.2 and 2.3. This is indicated by the sequence of
key words read user input.

read user input

2.1.6. gameover

The game over action is used when the user finishes the story. It is indicated by
using the keyword gameover.

gameover

2.2. Conditional Structures

2.2.1. Boolean Expressions

There are 3 conditional statements using the keywords says, inside, and holds.

2.2.1.1. user says STRCONST
The user says expression is used to evaluate whether the last input by the user
is equal to a specific STRCONST.

user says “hello”

2.2.1.2. user inside scene
This expression is used to evaluate which scene the user is currently in. It
returns true if the user is currently in scene.

user inside kitchen

2.2.1.3. (user | char) has item
This expression evaluates to true if the user (or char) has the item.

steven has key
user has key

2.2.2. If Statements

If statements are part of the flow-control of the language. The first line must
always be indicated by the if followed by a boolean statement, followed by the
then. On successive lines there can be a series of statements. Next there may be
an otherwiseif, followed by a boolean statement or a series of statements.
There can be as many otherwiseif’s as needed. The end of an if statement
must be indicated on a new line using the keyword endif.

Using boolean expressions we can create complicated if statements. Here is an
example of code:

if user says "pickup key" then
pickup key

otherwiseif user has key and user says "goto
bathroom" then

goto bathroom
endif

2.2.3. While Statements

While statements are the second part of the flow-control of the GRIMM language.
The evaluate a boolean expression and then execute a sequence of statements.
The boolean expression will then be evaluated. If it is still true the sequence will
be executed again. Otherwise it will not. The while statements are indicated by
the keyword while followed by a boolean expression followed by a newline
character. On succeeding lines there can be any number of statements. The end
of a while loop is indicated by the keyword endwhile on a newline.

while user says “hello”
read user input

endwhile

3. Structure of a GRIMM script
A GRIMM script has three main parts: the declarations, the assignments, and the action
loop. A program must contain the action loop section(although it does not necessarily have
to be a loop) but does not have to contain the declarations or assignments section. An empty
file is not a valid GRIMM script.

3.1. Declarations

The declarations section is where the programmer declares all of it scenes, characters,
and items. There does not have to be declarations of all three different types.

3.1.1. Scenes

A scene is declared using the keyword scene followed by the variable name of the
scene. These are all declared at the very beginning of the file, and indicate all
different scenes available to the storybook. For example, if a story contained the
possibility of movement from the bathroom, bedroom, and backyard the scenes
would be declared as follows:

scene bathroom
scene bedroom
scene hallway

3.1.2. Characters

The programmer may choose to put characters in all or some of their scenes.
Characters can appear in multiple scenes. These characters are declared using the
keyword character and then the variable name.

character steven

3.1.3. Items

The programmer may also choose to put items in all or some of their scenes.
Again, items can appear in multiple scenes. These items are declared using the
keyword item and then the variable name.

item key

3.2. Assignments
Following the declarations section each scene, character, and item is assigned certain
attributes.

3.2.1. Scenes

Each scene is defined by specifying its name, a description, its associated image,
its exits, and what items it contains. The name and description will be displayed
as text at the top of the console. Beneath this text the image will be displayed.
There are a number of defined exits which will be displayed at the bottom of the
console. Additonally, any items contained in the room will be displayed. The
user can either type in an action to be executed in the scene, or choose to move on
to another scene by choosing one of the exits. The option to leave the game will
always be an exit. As a user may need an item to use a exit, for example they
may need a key to open a door, and therefore some exits can be hidden. These
will not immediately be displayed at the bottom of the console. An example
scene definition is shown below.

hallway name "Hallway"
hallway description "You're in the hallway now."
hallway picture "hallway.jpg"
hallway hidden exit bathroom
hallway exit bedroom
hallway contains item knife

3.2.2. Characters

Each character is defined by specifying its name and the items that character
possesses. For example:

steven name “Stevie”
steven holds item knife

3.3. Action Loop

The action loop is where all actions specified either by the programmer or the user are
executed. All scenes, character, and items used here must be declared in the declarations
section. This section can be any sequence of valid statements. For example:

while user inside hallway
read user input
if user says "pickup key" then

pickup key
otherwiseif user has key and user says "goto

bathroom" then
goto bathroom

otherwiseif user says "talk mariya" then
mariya says "hello, do you want a key?”

otherwiseif user says "how old are you mariya?"
then

mariya says "24"
otherwise

say "I don't know what that means"
endif

endwhile

