
DEVice Interface Language (DEVIL)

Boklyn Wong (bw2007@cs.columbia.edu)
Pranay Wilson Tigga/Team Leader (pt2116@cs.columbia.edu)

Vishal Kumar Singh (vs2140@columbia.edu)
Hye Seon Yi (hsy2105@cs.columbia.edu)

“A language that doesn't affect the way you think about
programming is not worth knowing.”….. Anonymous

mailto:bw2007@cs.columbia.edu
mailto:pt2116@cs.columbia.edu
mailto:vs2140@columbia.edu
mailto:hsy2105@cs.columbia.edu

Chapter 2: Lexical Conventions

2.1 Comments
The character # introduces a comment. Everything on that line will be considered

as a comment

2.2 Identifiers
Identifier is a sequence of letter and digit with first character must be letter.

2.3 Keywords
The following identifiers are reserved for the language use and may not be used

otherwise:

Object
Break
Continue
until
else
volatile
static
auto
if
options
while
default
tag
entry

repeat
int
if
char
repeat
extern
options
register
extern
done
return
template
done

2.4 Separators
() [] { } ;

Separators which are Ignored
Newline \n
Tab \t
Carriage \r
White Space

2.5 Types and Variables
Strong type controlled language. Mismatched types will not be automatically

resolved or allowed by the compiler.
1. Data Types

 Integer: It is a sequence of digits.
 Character: 1 character.
 String: It is a sequence of characters separated by “ ”. However, It is also

equivalent to array of characters.
 Boolean: The Boolean type has two values, represented by the strings “true” and

“false”.
 Array: The Array contains any of the supported data types.
 Object: This data type comprises of other data types and is used to

abstractly represent real world entities like devices.
2. Variables

Each variable is of type of one of the supported data type.
A variable has a name (Identifier) and a Scope.
The scope can be

I. Global.
II. Local.

3. Initialization
Integer to 0, character to ‘ ‘, String to NULL, Array to NULL.

4. Conversions
No conversion takes place from one type to another. Since the domain is Device
configuration the control is in programmers/network administrators’ hand.

e.g.
Object FirewallDevice
a=FirewallDevice,
b = FirewallDevice.

E.g. int a;
e.g. string IPAddress;
IPAddress = a.b.c.d;

2.6 Operators, Declarations, Expressions, Statements and
Blocks

2.6.1 Operators
The following is the list of Operators in our language.
< > <= >= == NOT
+ - * / %
++ -- AND OR
:=
@
->
>>

1. Operator + : Addition
2. Operator - : Subtraction
3. Operator * : Multiplication
4. Operator / : Division
5. Operator % : remainder of division
6. AND : Logical AND operation
7. OR : Logical OR
8. NOT : Not operation
9. ++ : Increment
10. -- : Decrement
11. = : Assignment
12. < : Less then
13. > : Greater then
14. <= : Less then equal to.
15. >= : Greater then equal to.
 16. == : equal to

 This is for inheritance kind of relationship among object.
>> This is for composition kind of relationship among objects.

The assignment operator can be used for object assignments which would result
in creating a new object in memory and assignments of all values except the
values which are volatile.

The NOT operation is applicable only to Boolean type.

Multiplication, Subtraction, Addition, Division, and Remainder is applicable only
to integer types.

The increment and decrement work on integer types only.

Unary Operator: Logical negation: NOT
 NOT expression;

Postfix increment: (x ++)
Prefix increment: (++x)
Postfix decrement: (x--)
Prefix decrement: (--x)

Relational Operators
 > Greater then
 < Lesser then
 >= greater then equal to
 <= lesser then equal to

 expression * expression
 expression + expression
 expression - expression
 expression / expression
 expression % expression

 expression++
 expression--
 ++expression
 --expression

expression < expression
expression > expression
expression <= expression
expression >= expression
expression == expression

 NOT expression
Identifier =expression
-> is for inheritance of object
>> is for composition of object.

E.g.
Object Router;
Object Firewall;
Object Port;
Object LinuxRouter;
Port p;
Firewall a;
Router r1;
LinuxRouter r2;
r2 -> r1 ;

means router r2 inherits non –volatile characteristics of r1.
r2 >> a;
by doing this we make firewall a part of router r2 so configuration on this
#device will automatically configure firewall too.

Operator Precedence:

NOT
OR , AND
*, /, % ,
++ , --, + , -
 < , > , <= , >= , ==

 =

2.6.2 Declarations

1. Object Type Declaration
Declaration:

Object Type_obj;

Creates a copy of the type of object in memory. The object type must
either be defined or should be available in library (if supported).

2. Object Instance Creation
Declaration:

Type_obj instancename;

Creates an instance by copying from original object which is used for type
definition.

3. Array Creation
Declaration

Type Identifier[expr];

4. Array Indexing
Read
Identifier[expr];
Store
Identifier[expr] = expr;

Assignment

Indexing is used for storing and reading from Array position. If accessed
position is null and error can be raised in runtime.

2.6.3 Statements
1. Expression Statements

Most statements are expressions.
Statements are executed in sequence.
Successful evaluation of expression completes the statements.

2. Conditional Statement
There are 2 conditional statements
1. if (condition) { statement }
2. if (condition) {statement1 } else {statement2}

The condition in above 2 statements is an evaluation of expression.
The statement in 1 is executed if condition is “true”.
The statement1 in 2 is executed if condition is “true” and statement2 is
executed if condition is “false”.

The else is connected to innermost if.

3. Loop Statement

while statement
while (condition) statement
Condition is evaluation of an expression. When the expression
becomes “false” the loop exits.

Repeat Until Statement
repeat statement until(condition);
The statement is executed until condition becomes false.

The difference between repeat-until and while statement is that in
repeat-until the condition check occurs after the execution of statement
whereas in while it happens before execution of statement.

4. Break Statement
The statement
break ;
causes termination of the smallest enclosing loop statement.

5. Return statement
A function returns to the invoker by means of the return statement, which
has following forms

return ;
return (expression) ;

In the first case no value is returned. In the second case, the value of the
expression is returned to the caller of the function.

2.7 Functions
The form of function definition is described below.

function_definition:
return_type function_declaration function_body

function_declaration:
return_type function_name (parameter_list)

function_body:
local_declarations function_statements

function_statements:
statement_list

local_declarations:
var_type identifier

parameter_list:
identifier, parameter_list

statement_list:
statement statement_list

statement:
expression

return_type, var_type:
 int,
 char,
 Object,
 Array,
 Boolean,
 String

return_type is the data type which will be returned by the function.
var_type is the local variable type for the function.
local_declarations is the list of local variables.
function_statements consist of statement list which consist of expressions.
Every function has a return statement which returns one of the supported data types or
void.

An example of function is

Declaration
Boolean do_setHostname(string hostname)

Definition
do_setHostname(string hostname)
{

string temp_hostname;

generate(“sethostname”,hostname);

return true;
}

In our language functions are like logical components of a big task which are mapped in
order to achieve the completion of a task.

All the functions are global.

2.8 Future work: Ontology
The team is working to devise a way to represent the knowledge which a device

has and other devices can reuse using language constructs which are intuitive to network
admins. This may include representing things like relationship between different kind of
devices and there interactions. E.g. a Linux based router can inherit knowledge from a
generic router. But the same router can have ports and can also act as firewall device. The
relationship between Linux Router and Firewall is of Association, relationship between
port and Linux router is composition and relationship between Linux Router and Generic
Router is of Inheritance. Establishing these relationships will enable information sharing
between devices.

2.8.1 Sample Code
Prg1.dv

This program sets the hostname of a linux machine

Object LinuxMachine {

static string platform = “Linux”;
volatile string hostname;

}

boolean set_hostname(string hostname)
{

string command = “sethostname”;
genshell(command , hostname);
return true;

}

Main()
{

LinuxMachine lm ;
set_hostname (“PLT_LAB”);

}

O/p is a file with following entry :
sethostname PLT_LAB

Prg2.dv : Enable firewall on Linux

Object LinuxMachine {

static string platform = “Linux”;
volatile string hostname;

}
Object LinuxFirewall;
LinuxFirewall -> LinuxMachine;

LinuxFirewall {
 boolean enabled = false;
}

boolean set_hostname(string hostname)
{

string command = “sethostname”;
genshell(command , hostname);
return true;

}
boolean enable_firewall()
{
 string command = “ipchain enable firewall”;
 genshell(command);

}

Main()
{

LinuxFirewall lm;
set_hostname (“PLT_LAB”);

 enable_firewall ();
}

O/P
Sethostname PLT_LAB
Ipchain enable firewall

