
Languages for Embedded Systems
Lab assignments

Prof. Stephen A. Edwards
Columbia University, USA
sedwards@cs.columbia.edu

http://www.cs.columbia.edu/˜sedwards

I have installed lcc, Java, Icarus Verilog, and SystemC 2.0.1 in my account on the
class machines. A number of environment variables (e.g., PATH, CFILES, etc.) need
to be set to access them. The easiest way to do this is to source the “setup” script that
sets the appropriate variables, i.e.,

-bash-$. /home/edwards/setup
-bash-$ which lcc
/home/edwards/bin/lcc

1. There are often many different ways to implement the same functionality in as-
sembly language. We will illustrate this using two C compilers installed on the
class machines: lcc by C. W. Fraser and D. R. Hanson, and gcc from the GNU
project. While both produce code for the x86, they can produce different, al-
though equally correct, results.

Create a file containing the following C program. (You can type it manually or
copy it from ˜edwards/examples/euclid.c.)

int euclid(int m, int n)
{

int r;
while ((r = m % n) != 0) {

m = n;
n = r;

}
return n;

}

Ask the C compiler to produce assembly code with and without optimization:

lcc -S euclid.c
mv euclid.s euclid.lcc.s
gcc -S euclid.c
mv euclid.s euclid.gcc.s
gcc -O -S euclid.c
mv euclid.s euclid.gcc-O.s

Compare the four versions of the program. How does the output differ? What
instructions have the two compilers chosen? Have the two compilers ordered
instructions differently? What effect does the -O flag have on the output? Does
it seem that one compiler does a better job optimizing than the other?

Add the following main function in a file called euclid-main.c

1

#include <stdio.h>

int main(int argc, char *argv[])
{

int count;
int i, j;
if (argc != 2) {

fprintf(stderr,"Usage: %s max\n", argv[0]);
return 1;

}

count = atoi(argv[1]);

for (i = 2 ; i < count ; i++)
for (j = 2 ; j < count ; j++)
euclid(i,j);

return 0;
}

Compile the two together and time the result

lcc -o euclid.lcc euclid.c euclid-main.c
time ./euclid.lcc 500

Adjust the number of iterations (500 in this example) so it takes between 1 and
2 seconds. The goal here is to run the program run long enough to be easily
measured, but no longer.

Compare the time it takes for that same number of iterations under all three
combinations of compilers and optimizations. Run each a few times and average
the result to get more accurate numbers. Report the times you measure.

Which compiler/optimization flag produced the fastest code? Can you see from
the assembly source why this is?

Annotate (write comments on) the assembly language listings to really under-
stand what is happening.

2

2. Concurrent Java programs

The Java compiler “javac” and the Java interpreter “java” both reside in
/home/edwards/j2sdk1.4.2/bin, which should be part of your $PATH environ-
ment variable. The “setup” script mentioned at the top should take care of this.

The most basic Java program is “Hello World,” a copy of which is in
/home/edwards/examples/hello.java.

class hello {
public static void main(String[] args) {

System.out.println("Hello World!");
}

}

Compile this with “javac hello.java,” which should produce a file “hello.class.”
Make sure “.” is part of your $CLASSPATH environment variable (again, “setup”
should have done this) and then execute the program with “java hello,” which
should print “Hello World!”

(a) Write a threaded FIFO buffer for integers in Java.

(b) Use it in a simple program with two threads. One thread should put suc-
cessive integers (i.e., 1, 2, 3, etc.) in a buffer. The other should repeatedly
remove an integer from the buffer and print it.

(c) Modify your program to create two copies of the sequence generator, each
feeding into the same buffer. Does your program print 1 1 2 2 3 3 or some-
thing else? Modify it so it does.

The point of this exercise is not to write a program that happens to work, but one
that will always work regardless of the Java implementation.

Do not use sleep().

In all cases, show me see your source code as well as program output.

3

3. Verilog programming.

I’ve installed Icarus Verilog, which is a free, fairly complete (but not that fast)
Verilog simulator available on the web.

As an example, running “iverilog -o testxor testxor.v” on the following program
(in ˜edwards/examples/testxor.v) produces an executable called “testxor.”

module testxor;
reg a, b;
wire c;

xor (c, a, b);

initial begin
$monitor($time,,,"a b c: %b%b%b", a, b, c);
#10 a = 0;
#10 b = 0;
#10 a = 1;
#10 b = 1;
#10 a = 0;

end
endmodule

Running “testxor” produces

0 a b c: xxx
10 a b c: 0xx
20 a b c: 000
30 a b c: 101
40 a b c: 110
50 a b c: 011

(a) A seven-segment decoder converts the first ten four-bit binary numbers into
seven on/off signals controlling the seven segments of a numeric display as
shown below. a

b
cde

f g

Write a structural Verilog module for a circuit built from NAND gates that
generates the output for the “a” (topmost) segment of a seven-segment dis-
play. Include a testbench like the one shown above and show me both the
Verilog source file and the output from the testbench.

(b) Write the smallest behavioral Verilog module you can that decodes every
segment. Again, show me the source and the output from the testbench
showing every number is decoded properly.

(c) Hook two copies of your decoder module to a behavioral module that
counts synchronously (i.e., every “posedge clk”) from 00 to 99 in BCD
and show me the source and output from your testbench for the numbers
00 to 12.

4

4. SystemC programming.

Repeat part 3. but use SystemC.

To get you started, examine the SystemC version of testxor.v in
/home/edwards/examples/testxor.cpp. Normally, a SystemC model would con-
sist of many header files (e.g., .h files) and C++ source files (e.g., .cpp files), but
this example comprises only a single file.

Compile and run this example as follows:

$ c++ -o testxor testxor.cpp -lsystemc -lm
$./testxor
time: 30 a b y: 1 0 0
time: 30 a b y: 1 0 1
time: 40 a b y: 1 1 1
time: 40 a b y: 1 1 0
time: 50 a b y: 0 1 0
time: 50 a b y: 0 1 1

(I have omitted some warnings and credits: you will see more junk.)

Notice that the “display” module prints things every time something has changed,
not just at the end of a simulation cycle, so we see three spurious outputs, i.e.,

time: 30 a b y: 1 0 0

time: 40 a b y: 1 1 1

time: 50 a b y: 0 1 0

that don’t correspond to the proper behavior of the XOR gate. In fact, they are
there because the inputs to the XOR just changed but the XOR gate has not had
a chance to observe them yet.

There are more SystemC examples in /home/edwards/systemc/examples/systemc.

5

