CSEE W4840 — Embedded Systems & Design
Final Project Report
[TAMF]

Date: 5/11/2004

Project Team Members:

Essa S. Farhat (esf2012@columbia.edu)
Eveliza Herrera (eh486@columbia.edu)
Rhonda L. Jordan (rlj33@columbia.edu)
Amon R. Wilkes (arw2017@columbia.edu)

CSEE W4840 — Embedded Systems & Design, Final Project Report — TAMF

E. Farhat, E. Herrera, R. Jordan, A. Wilkes

Table of Contents

2.1
2.2

3.1
3.2
3.3
3.4

4.1
4.2
4.3
4.4

7.1
7.2
7.3
7.4
7.5
7.6
7.7

TNEFOAUCTION 1.ttt ettt ettt e et e e it e e st e e sabe e e st e e snaeeas 2
PrOJECE DESIGI .ttt ettt e e e e as 2
PrOJECE LAYOUL «eeiiiiiiiee ittt ettt e et e et e e e sareeeees 2
Project TIMEINE ...eoiuiiiiiiiieiiieee e e 4
Image Capture and DISPLAYccciciiiiiiiiiiieeeiiee et e e 4
C-Program AESINcceeuuiiieeiiiiieeeeieeeeeeie e e e ettt e e e sttt e e e esabeeeeesnabeeeeesnsseeesennsseeaeanns 4
(O o Te LT PP P PP OP PP PPROP 5
COMPILATION ...ttt ettt e e et e e e ettt e e e e sebbeeeeenasbeeeeennnseeaeanns 6
IMAZE RESOIULION «..viiiiieiiiiie ettt e e e et e e e ettt e e e ennaaee s 6
IMage MaNIPUIATION.......iiiiiiiiieeiiiiie ettt e e et e e e ettt e e e et eeeeebbaeeeennsaeeens 7
Compression: AMEMPT #1 cooiiiiiiiiiiiiiii 7
COMPIESSION: AMEINPT #2 1eiiiiiiiiiiiiiiiiiee e 7
CoMPIression: ACIMPE #3 ...uuiiiiiieeiiiiiiiiteeeeeeeeesiiiireeeeeeeeeesiiateeeeeeeessssanraaeeeeeeeens 11
FINAL ATLCIMNPL.ettiieiiiiiie ettt ettt e e ettt e e e ettt eeeestbaeeeessbaeeeeenssaeeeesnnnees 12
CONCIUSION 1ttt et ettt et e ettt e sttt e st e e st e e st e e saaeeas 12
LeSSONS LEATNEU. . ..uiiiiiiiiiiiiiiiie et et 13
COAE MOAUICS ...ttt et 14
MAKEEIIC .o 14
COMVETT.Crenitieee ettt e e ettt e e ettt e e ettt e e ettt e e ettt e e sabb e et e e s abbteeeesasbeeeeeaabbeeeeesannneeeas 17
00T b 1o Y O P U P PSP UP PP UPPPPRPPN 18
VA VI et e e e e e e 23
VEA_HMING. VI ..ttt et 26
SYSERITLITINIS ¢..tteeeeiiiie e ettt e ettt e ettt e e e ettt e e e ettt e e e ettt e e e esbaeeeeennbbeeeeenssaeeeeennsaeeeas 29
OPD_XSD300.VIA.....eiiiiiiiiie e e 31

CSEE W4840 — Embedded Systems & Design, Final Project Report — TAMF
E. Farhat, E. Herrera, R. Jordan, A. Wilkes

1. Introduction

The Spartan™-IIE Field-Programmable Gate Array (FPGA) is the main repository of
programmable logic on the XSB board. The board is provided to students in the Embedded
Systems CSEE W4840 course, which includes many features such as a 4 Mbit Flash RAM, a
256K x 16 SRAM, 16M x 16 SDRAM, Video DAC, Compact flash interface, a video decoder and
many other features. The video decoder is a Philips SAA7114H chip that can accept up to six
signals through dual RCA jacks and dual S-Video connectors. Applications of this include
capturing and scaling video images to be provided as digital video stream through the image
port of a VGA controller, for display via the frame buffer, or for capture to system memory'.
The Flash RAM, SRAM, and SDRAM are used to store general-purpose data. The Video DAC
generates the analog red, green, and blue signals for the VGA display while the FPGA
generates the horizontal and vertical sync pulses directly. In our project we will use some of

the features on the XSB board to create a video effects generator.

We will use the SRAM chip to store an image from the computer and we will use the Texas
Instrument video DAC (THS8133B) to generate the video signals for a VGA display. We will
have user input to control different shapes of the image. Our goal is to display an image onto
the screen, horizontally compress the image about the center of the screen to different
compression rates, and be able to create desired shapes: a triangle where our heads will be
compressed and our feet of normal shape, an hourglass shape where we would compress
inwards as we get to the middle of the screen and then decompress outwards as we get to the
bottom of the screen, and be able to invert our image. Our project is entitled 7AMF, an

acronym for “Thing-a-Ma-Flipper.”

2. Project Design

After several approaches to our project we finally arrived at an effective schematic. We have
included below a sketch of our project layout and a timeline documenting the progress made

during the course of project design.

2.1Project Layout

Below is a schematic of our project design.

1 Philips Semiconductor SAA7114H. Data Sheet. March 14, 2000 (pg. 4)

CSEE W4840 — Embedded Systems & Design, Final Project Report — TAMF

E. Farhat, E. Herrera, R. Jordan, A. Wilkes

T 2anbiy

WYdSs

3409

Suhs Y00

-lm FURS TS DTA fQ»\fCﬂu
ﬂ.vgg

ﬂﬂ..ﬂ..t._—\u
Oa-
W,

sy,

o

SiMy A3 O\

sng dido

o I

vmc—h_ 9.0__)_

CSEE W4840 — Embedded Systems & Design, Final Project Report — TAMF
E. Farhat, E. Herrera, R. Jordan, A. Wilkes

2.2Project Timeline

The following is our list of completion dates for project milestones.

Task 1: Project Proposal (due 2/24)

Task 2: Begin system implementation & Program coding design

Task 3: Detailed Project Design (due 4/1)

Task 4: Continue system implementation, system testing and debugging, and Project Demo
(due 4/15)

Task 5: Project report and demo preparations

3. Image Capture and Display

The first major task of this project was to capture and display an image. The following
describes in detail the steps that were taken to perform these tasks.

3.1C-Program design

Our original hypothesis of image capture included reading the stored image information from
RAM and using a C program to convert each pixel into ASCII values which will then be used
to write to the screen. Our original implementation would read 1-byte images and output
them as ASCII text one byte at a time. The data was then stored in 2500 byte blocks, NOT
512 byte blocks. Since the binary imagery is character data, it cannot be browsed. However,
the character data can easily be converted into integer values.

Here is our original synopsis of the standard format for an image W pixels wide by H pixels
high.

Example: 6 bytes of data. Three two-byte integers (high order byte first - "big endian"):

Bytes 1 -> 2: The number of Columns in the image, W. Valid values are 1-65535.
Bytes 3 -> 4: The number of Rows in the image (H). Valid values are 1-65535.
Bytes 5 -> 6: The number of colors. Valid values are 1 or 3.

The number of colors is 1 if the image is monochrome (gray scale) or 3 if the image is color.
In that case there are three color planes stored in this order: Red (first), Green, Blue (last).

Bytes 7 -> (WxH + 6): Monochrome color data if the number of colors is 1.
Bytes 7 -> (WxH + 0): Red color data if the number of colors is 3.

Bytes (WxH + 6) -> (2xWxH + 6): Green color data

Bytes (2xWxH + 6) ->(3xWxH + 6): Blue color data

CSEE W4840 — Embedded Systems & Design, Final Project Report — TAMF
E. Farhat, E. Herrera, R. Jordan, A. Wilkes

With any program or project design, there are always changes made during the
implementation of the project which aren't realized at the time of design. Our initial program
had taken an image and converted each pixel character data into sequential integer ASCII
values. From there, we had taken the integer value, completely ignoring RAM, and stored the
ASCII values in a ROM, similar to the task executed in Lab 3 with the font_8x8 ROM file. We
then took the integer value, corresponding to the pixel value, and enabled that pixel on the
screen. This process remains the same in our final program design and was implemented in
VHDL.

Before the actual use of the C program we had to take a *.jpg file and convert it to a *.pnm
file. A "PNM" file stands for "Portable Any Map" and is intended to cover all six variations of
bit/gray/pixel maps, (PBM, PGM, and PPM) whether ASCII or binary. PNM files aren't
compressed and are two-dimensional. We used a GNU Image Manipulation Program (GIMP)
to read a JPG file and write out a copy of the PNM file format.

Our final C program implemented more efficient algorithm and was much more compact.
The PNM file converted every pixel into a long list of ASCII integer values. Each 3
consecutive ASCII integer values represent one color bit, starting with RED. A total of 9
consecutive numbers represents all three colors: R, G, and B. The C program does byte
shifting on the ASCII integer values and the output is a binary address of each set of pixel
colors.

3.2C-Code

#i ncl ude <stdio. h>
int main()
int r, g, b;
int i;
int color;
/*required to start reading after the 4th |ine*/
(1 =0; 0 <4; i++)
(getchar() '="\n");
(:3)
color = 0;
/* fills in the lower nost bits */
(scanf("%l\n", &) !'= 1) 1;

(scanf("%\n", &g) '= 1) 1;
(scanf("%l\n", &) !'= 1) 1;

—

& OxF8;
& OxXFC;
& OXFS8;

(e}
i nu
T Q

Q
nnon
ocaQ =
VAR
QW

color =r | g | b;

put char (col or >> 8);

CSEE W4840 — Embedded Systems & Design, Final Project Report — TAMF
E. Farhat, E. Herrera, R. Jordan, A. Wilkes

put char (col or & Oxff);
} //infinite for()

0;
} //end nain()

3.3 Compilation

In the following section, the steps required for compiling the C program, converting an image
from *.pnm to *.bin and finally converting the binary file to hex in order for mapping into the
SRAM of the Xilinx board are listed.

$ gcc -o convert convert.c

Step 01 Makes an object file, named convert
$./convert
Step 02 puns the file
Step 03 $./convert < picture_name.pnm > picture_nane. bin
P Line to make the conversion. creates binary file named picture_name.bin
Step 04 $./bin2hex -a O <pi cture_nane. bi n> pi cture_nane. hex

Uses a supplied programto convert from binary to hex

$ /usr/cad/ xess/ bi n/ xsl oad -b XSB-300E -ram pi cture. hex
Step 05 Loads the hex picture into SRAM

Several changes were made to the Makefile to automate these steps and for required
compilation within the Make:

SRAM BI NFI LE
SRAM _HEXFI LE

i mages/ <pi cture_nane>. bin
i mages/ <pi ct ur e_nane>. hex

To create a .hex file with data for the SRAM

$(SRAM HEXFI LE) : $(SRAM BI NFI LE)
_/bin2hex -a 0 < $(SRAM BI NFI LE) > $(SRAM HEXFI LE)

3.4Image Resolution

The original vga.vhd code was initialized for RGB values of 3-2-3 bits respectively, which
meant that each pixel had an 8 bit value and there were two pixels per memory address.
However the 3-2-3 RGB values left the picture with a very low resolution and we were unable
to clearly see all of the faces in our image. For instance, the image is a picture of our system
design group and one of the member’s eyes were excluded from screen. We then decided to
change the RGB values to a 5-6-5 scale, which would make each pixel 16 bits, thus taking up
one memory address per pixel. After this modification we ran in to another problem. To
represent each pixel as 16 bits we would need to use 300 Kbyte words of memory for a
screen of 640 by 480 pixels. However the FPGA has only 512 Kbyte words of memory
available on its SRAM. This along with the other programs that we needed to store onto the

CSEE W4840 — Embedded Systems & Design, Final Project Report — TAMF
E. Farhat, E. Herrera, R. Jordan, A. Wilkes

SRAM proved to be too big for the FPGA to handle so we changed the image size to 320 by
240. These dimensions worked for our purposes; however Professor Edwards thought that
the display would look better with a larger image. After a few calculations we were able to
come up with a picture size that would be larger than 320 X 240 but would leave enough
space in SRAM to implement high resolution (i.e. 5-6-5). This led us to the size that we are
now using, 480 X 360. After deciding on a picture size, we next needed to center the image
to our screen, which is larger than the picture, so that it won’t be displayed in one corner. In
order to center the image we simply changed the initialization of the screen display values.
This was accomplished by subtracting 240 pixels from H_ACTIVE, since our active area was
now only 480 pixels long, and distributing it evenly to H_FRONT_PORCH and
H_BACK_PORCH. We did the same for the 180 pixels that were left over from V_ACTIVE.
The final product was an image that had high resolution and was centered in the middle of
the screen with a length of 480 pixels and a height of 360 pixels.

4. Image Manipulation

After the image had been converted to hexadecimal values, saved in SRAM, and printed to the
screen, we next attempted to manipulate our image. It was our goal to initially compress the
image and then produce interesting shapes with the image, such as triangular shapes, hour-
glass shapes, etc. However, we ran into a few difficulties and made the following attempts to
make our project a success.

4.1 Compression: Attempt #1

We began by tweaking the RAM address generator in the vga_timing.vhd file to increment by
two pixels instead of one, with the hope that the image would compress. However, this did
not work the way in which desired: the image compressed; however, two of the same
compressed images were displayed side by side.

4.2 Compression: Attempt #2

After our first attempt and failure to compress our image, we consulted Prof. Stephen
Edwards, who suggested creating a C program that generates four important values:
blank_len, step_size, start_addr, and cnt_pix.

* blank_len : represents blank length, i.e. the number of pixels on each line of the
image that will be skipped before pixels are displayed. This value one word long.

* step_size : represents step size. This value is essential to compression as it describes
the increment of addresses between displayed pixels on each line. For example, if
step_size is 1, we display image information from addresses 1, 2, 3.... If step_size is 2,
we display image information from addresses 1, 3, 5,... This value two words long.

» start_addr : represents start address. For the purposes of this project, this value will
always be zero and for each line will increment by 480. This value is two words long.

* cnt_pix : represents the last address on a single line of pixels at which image
information will be displayed. This value is one word long.

Example 1: screen size is 640 x 480; image size 640 x 480
blank_len is 0, step_size is 1, start_addr is 0, and cnt_pix is 640

Example 2: screen size is 640 x 480; image size 320 x 480
blank_len is 160, step_size is 2, start_addr is 0, and cnt_pix is 480

Figure 2 and Figure 3 below are visual illustrations of our four golden values and the above examples.

CSEE W4840 — Embedded Systems & Design, Final Project Report — TAMF
E. Farhat, E. Herrera, R. Jordan, A. Wilkes

Figure3

These four “golden values” will be generated by the C program and sent to specific addresses
in SRAM (not occupied with image information). In vga.vhd, we called/accessed these
addresses to save the golden values in a shift register, and then retrieved these values from
the shift register (in order to process a single line of pixels) all in one cycle during horizontal
blanking so that during the rise of the next clock cycle we could retrieve the four values for
the next line of pixels; this was to be done until every line of the image was processed.

The following code was used to implement the aforementioned concepts:

)

Process 1: if rst = '1’, we want sel =’0’; otherwise, as soon as blanking begins, sel = ‘1’ for six
consecutive cycles in order to read only six words

process (pix_clk,rst)

begi n

if rst =1 then
sel <= *'0;

el sif pixel_count = (H ACTIVE + H FRONT_PORCH - 1) then
sel <="1";

el sif pixel_count = (H ACTIVE + H FRONT_PORCH — 1 + 6) then
sel <="0

endi f;

end process;

Process 2: if rst = ’1’ we reset info_addr to zero. If rst = ‘0’ & sel = ‘0’ we want info_addr =
INIT_ADDR. Otherwise, we want to increment info_addr by 1 and step up to the next
address

process (pix_clk,rst)
begi n
if rst =1 then

CSEE W4840 — Embedded Systems & Design, Final Project Report — TAMF
E. Farhat, E. Herrera, R. Jordan, A. Wilkes

i nfo_addr <= X"00000";

elsif sel =0 then
info_addr <= I NI T_ADDR;
elsif sel = ‘1" then
info _addr <= info_addr + 1;
end if;

end process;

Process 3: When sel = ‘1’, we’d like to read from the addresses in which the six words (four
golden values) are stored. Otherwise, we want to continue reading form the image

vi deo_addr <= vga_ram read_address (19 downto 0) when sel = ‘0’
el se info_addr;

Process 4: The following process will load the data read of the six words (four golden values)
into a register named info_reg whenever sel = ‘1. Otherwise it will load the information to
the default register, vga_shreg.

process (pix_clk)

begi n
if pix_clk’ event and pix_clk = ‘1" then
if sel ='0" then
if load video word = ‘1" then
end if;
end if;
el se
info_reg <= video_dat a;
end if;

end process;

Process 5: The following process reads from info_reg at every clock fall and assigns the
information to six words (the four golden values).

process (pix_clk)

begi n
if pix_clk’ event and pix_clk = *0" then
if pixel _count = H ACTIVE + HFRONT_PORCH — 1 + 1 then
start_addr (31 downto 16) <= info_reg;
if pixel _count = H ACTIVE + HFRONT_PORCH — 1 + 2 then

start_addr (15 downto 0) <= info_reg;

i f pixel _count = H ACTIVE + HFRONT_PORCH — 1 + 3 then
step_size (31 downto 16) <= info_reg;

if pixel _count = H ACTIVE + HFRONT_PORCH — 1 + 4 then
step_size (15 downto 0) <= info_reg;

i f pixel_count = HACTIVE + HFRONT_PORCH — 1 + 5 then
bl ank_len (15 downto 0) <= info_reg;

i f pixel_count = H ACTIVE + H FRONT_PORCH — 1 +1 then
cnt_pix (15 downto 0) <= info_reg;

end if;

end if;
end process;

Below is Figure 4 and 5, which show info_addr connectors and timing diagrams
respectively.

CSEE W4840 — Embedded Systems & Design, Final Project Report — TAMF

E. Farhat, E. Herrera, R. Jordan, A. Wilkes

¥YIVYY

y— il
TGy !
-ACTWE F PopCH
¢ »
< v K NG
Py r
< B_ROEC
< L)
H_oBLANEING
nmAnN
VUL
C re 12 ¥
el . gdden

One of the main problems that we were having when testing these processes was that we did
not know which addresses to write to and read from in SRAM. We thought that we would be

10

CSEE W4840 — Embedded Systems & Design, Final Project Report — TAMF
E. Farhat, E. Herrera, R. Jordan, A. Wilkes

able to calculate how much space the picture is taking in SRAM and then determine available
addresses to write to. After a few attempts at working this problem out and not getting any
results, Prof. Edwards suggested we use the first few addresses to store these values even
though they would be overwriting the picture. We changed our C-code so that we were
sending in blue, red, green and white pixels to the SRAM, we then tried to read from these
first few addresses and display these pixels on the screen. This worked perfect, therefore we
knew for a fact that we can read from and write to the SRAM. Since this was working
properly we decided to move on and test our processes. In order to test our processes we
did it one step at a time. First, in vga.vhd, we directly inserted constants into our four golden
variables. This worked, however because we were only able to input constants, we weren't
able to increment start_addr, therefore we were only displaying one line of pixels over and
over. In order to prove that it was really working the correct way we chose start_addr to
begin reading at the center of our image so that we will be able to open the image on the
side and verify that this line of pixel is correct. We were able to verify the one line of pixel
that it was using and so we went on to feeding different constants and making the line of
pixels compress to different sizes. This all worked properly therefore we confirmed that this
process was correct. We used the method that Prof Edwards discussed in class for debugging
a problem. We started at one point and if that worked then we moved back a few steps and
tried again until we found where our problem was. Our next step was testing to see if
info_reg was able to hold a value, and if our variables were able to read that value. We sent
in a constant to info_reg, instead of sending in video_data, and we then read in from info_reg
to one of our variables, and this did work, therefore we found where one of our problems
was occurring. We knew that it had to take in the constant and so the only way that the
variables would not be able to read from info_reg once the processes ran was if 'sel' was
never setting to '1'. 'We then moved up one step where 'sel' was being generated to see why
'sel' was never setting to 1. 'Sel' relied on pixel_count so it took us a while to figure out why
this would cause a problem. We coded it so that whenever pixel_count reached the point on
the screen where horizontal blanking occurred, select would switch to 1. After a while we
realized that we had made a small error, we realized that we never made a connection of
pixel_count between vga.vhd and vga_timing.vhd!

4.3 Compression: Attempt #3

After attempting to make the connection of pixel_count between vga_timing.vhd and vga.vhd
and making no progress, we decided to ask Marcio Buss to help us. Marcio pointed out that
our problem lied in making pixel_count an 'out' port in vga_timing.vhd and a 'signal' in
vga.vhd. The problem with this is that we were generating pixel_count in vga_timing.vhd and
we used operations such as "pixel_count <= pixel_count +1", which is not allowed if
pixel_count is of mode 'out'. We decided to leave pixel_count as a signal as it was before
and create a new port called pix_cnt, which at the end was used to take the value of
pixel_count (pix_cnt <=pixel_count;). We then used pix_cnt to communicate this value to
vga.vhd. Once we fixed this we were still having problems with info_reg. There were a lot
of things that could have gone wrong; therefore Marcio suggested that, instead of working this
problem out in hardware, we should manipulate it in software.

We decided that it would be easier; we would not have to deal with choosing a correct
address to start saving our four golden values. We decided to have the microblaze send these
values directly to the OPB bus instead of saving them onto SRAM. We started implementing
this idea by going into the opb_xsb300.vhd file and creating a state machine that would
control a select and enable signal that would tell it when we are writing to it from the C
program. We also made a multiplexer which depended on the chip enable that we created
and was able to send back a transfer acknowledgment allowing it to keep reading and
writing. We then created four registers called blank_len, start_addr, cnt_pix, and step_size.
These four registers are connected to vga.vhd and allow the values to run through vga.vhd
into vga.vhd_timing, where they are then being used to generate the ram address counter. In
the OPB there is a signal called wdata which holds any information transmitted from the
OPB_Bus. Wdata is of size 32 and so we used wdata to transmit information to the four
registers at different times. We wanted to make sure that our connections were working

11

CSEE W4840 — Embedded Systems & Design, Final Project Report — TAMF
E. Farhat, E. Herrera, R. Jordan, A. Wilkes

properly; we therefore fed in direct values to our golden variables and it worked perfectly.
Our next step was to test whether we were able to read and write into OPB. We did this by
instructing the C-Program (main.c) to send specific values to blank_len, start_addr, step_size,
and cnt_pix. After playing around with these two files we determined that all connections
were working. We were able to continuously display the same image, and we used minicom
to print out the values of the variables being read from OPB. Once we were certain that
everything was working properly, we moved onto the next step, which involved
synchronizing the C-Program with the vhd files.

Once again Marcio was there to help and make this synchronization work. Hsync is
generated in vga.vhd_timing so we had to bring it in from vga.vhd_timing through vga.vhd
and through the OPB into the C-Program. This allowed us to be able to access the full image
by increasing start _addr at the end of each line. It wasn't too difficult to get the H_Sync
working since it was simply making proper connections and using it accordingly in the C-
program. Once we got the horizontal and vertical sync working we were able to display the
full image.

At this point, the only task left to execute was fixing and improving our C-program to
generate values that would result in displaying our image in interesting shapes. The C-
program had to be tweaked so that it can generate different values for our four golden
variables. We were able to change the values directly in the C-program to compress the
image to any size desired. However we were unable to create different functions to create
multiple shapes.

4.4Final Attempt

After several hours of attempting to create arrays and different functions to calculate our
golden values we were becoming a little worried that we would not accomplish our goal as
the deadline was a day away. At approximately 12:30am on Sunday night, we were able to
get a hold of Christian to take a look at our C-code. He realized immediately what was wrong
with our code. At one point in our project making we had edited the Makefile, and had
commented some lines out. We never uncommented them and so the c-code was never
getting uploaded to the memory. It was a careless mistake but once we uncommented those
lines things starting flowing smoothly and very fast. We created structures that held 3
significant values, blank_len, cnt_pix and step_size. We defined two arrays that will do two
different calculations. One will do the calculations for our horizontal compression and the
triangle shape, and the other array will calculate the values necessary to create an hourglass
shape. The triangle shape was not difficult to implement, all we had to do was make sure
that we changed cnt_pix, blank_len and step_size everytime that start_addr was changed. By
3am that night (less than 3 hrs) we had the program finished. We created a user interface
where the user would type in ‘H’ for horizontal compression, ‘T” for the triangle shape, and
‘G’ for the hourglass shape. We made sure that it was not case sensitive, and created a menu
where the user would be informed of the keys that they can use. As default, if the user were
to input a letter not specified in the menu then we would just set the full image on the screen.
Everything worked perfect and what is most impressive is that our horizontal compression not
only compresses it, but it inverts the picture as well.

5. Conclusion

The project was a success. We were able to not only compress the image and make it invert,
but to make other shapes with our image. The user interface was useful to making our
project more organized and clear. We would like to thank Christian for helping us to clear
our program last minute and therefore allowing us to complete our project. All our
constraints were met and we are extremely pleased with our results. Our long hours in the
lab and the great effort that we each put into this project paid of very well.

12

CSEE W4840 — Embedded Systems & Design, Final Project Report — TAMF
E. Farhat, E. Herrera, R. Jordan, A. Wilkes

6. Lessons Learned

This project and the time elapsed during this project has been very interesting. This was the
first semester that any of our group members had seen VHDL. Our knowledge of the
hardware language was very limited. However, we made a great deal of improvement during
the first few weeks of working with the lab. We learned a great deal on our own, or harassed
Prof Edwards, Christian Soviani, or Josh Mackler with questions. We all made a great effort in
trying to understand what was needed to make our project work, and also as a while
attempted to understand more of VHDL itself. CSEE 4840, Embedded System Design, taught
by Prof. Stephen Edwards, was very interesting; our group simply hoped, however, that we
had a stronger background in computer organization and VHDL so that we may have been a
little more creative with the final capstone project. It was a very important step when we all
agreed on working on a video display project; as Prof. Edwards warned, it would be much
easier to debug as most problems and issues with the code would present themselves visually.

At the final stages of project design and implementation, our group has learned a great deal.
One of the most important aspects of group projects is who you are working with. We were
very fortunate in that we had such wonderful team members. Everyone worked just as hard
and everyone made put forth equal effort into our project. We were all understanding of each
other's workloads and worked around each other's schedules. We all were essentially on the
same level in terms of our knowledgeability of C and VHDL, and this worked out well; we did
not have one ¢ -programmer or one person doing most of the VHDL, we all worked just as
hard in all areas and this helped for all of us to gain a better understanding of the
programming languages and a better understanding of the overall project in itself. We were
open to each other’s ideas and never rejected any suggestions or thoughts; and we always
made time to discuss new thoughts and, if necessary, attempted to implement the ideas.

We learned that a team requires organization and structure at an early beginning. It is very
important to schedule mandatory weekly meeting times in order to make progress and to lay
down the fundamentals for the language. It won’t be correct to say that by having a
structurally solid administrative and cordially functional team that there won’t be problems
they will face later during the project. Even a functionally sound team will run into
unplanned issues, which arise due to unforeseen circumstances (i.e. issues with compilation,
grammar definitions, scheduling, etc.). This semester has been by far the most difficult for all
of us and has become a real test of time management.

This capstone project has been a tremendous learning experience like no other. Besides the
typical time management, communication, and project planning details the group had to work
out, there were other major issues that arose during the course of working on this project.
One important idea and practice that should always be executed when working on a project,
especially for embedded system design, is to regularly draw block diagrams. It is imperative
that one understands each and every one of the numerous interconnections of various .vhd,
.mhs, .c, and .opb files. Before this semester, project requirements only involved one or two
parts. However, in this project, there are many different parts and blocks that are
interconnected. Initially, we felt we could attempt this project the way we attempted the labs
of the course: we came up with a method or idea and simply began to type. However, in this
project, the block diagrams were not only conducive to a visual understanding of what was
happening; the diagrams helped us conceptually and also reminded us of connections that
should have been made but were forgotten. By the end of this project, if one of the team
members had an idea and couldn’t create a block diagram, it felt as if we were trying to
blindly implement a process. Block diagrams are good!!

It should be noted that, just as it is important for one to use block diagrams to understand the
interconnections of various files, it is also imperative to take a few steps before you actually
begin this final project. Throughout the first half of CSEE 4840, students were given six labs
to complete. The majority of the assignments involved tweaking and editing only one of the

13

CSEE W4840 — Embedded Systems & Design, Final Project Report — TAMF
E. Farhat, E. Herrera, R. Jordan, A. Wilkes

program files to fulfill the requirements given by Prof. Edwards. However, in order to run the
entire program, there existed numerous files that students didn’t even have to touch let alone
open. Nevertheless, it is extremely important to review and become familiar with all of the
files, such as the Makefile, .opb, and .mhs files, not only the .c and .vhd files. Inevitably,
there came the time when these files had to be understood to even begin to efficiently design
the capstone project.

Lastly, this project has allowed for a great deal of learning and experience. We definitely
learned that things don'’t turn out the way planned, no matter how much preparation is given.
This idea is clearly demonstrated by the fact that our project proposal and detailed project
design describing in detail the architecture of our project, both hardware and software, is
nothing like this final report. We made four completely different attempts to implement our
TAMF. It involved persistence and a great deal of patience. We learned to always print out
copies of code. It is important to have copies of your code at different times in the process
and comment on what your output is like. There were a few instances in which we deleted
code or Christian advised us to delete some processes, and for reference we would want to go
back to it and not remember what we had. This is also helpful in documenting progress.

Finally, we learned to not be afraid of utilizing other brains. At first we were nervous about
jumping into this project so quickly and so clueless; however we did a great job dealing with
it. After a great deal of harassing, a lot of emailing, and hours and hours in the lab
performing trial and error, we were able to accomplish most of our goals. We found that the
key is to ask questions. Often times our classmates were able to put us five steps ahead by
simply answering a single question of ours. For instance, Marcio Buss was able to help us a
great deal. He was always willing to answer questions, even when he was working with his
own project, and he ended up helping multiple groups with no hesitation.

As demonstrated above, our group has learned a great deal and working on this project has
taught lessons that can be applied in various instances throughout the rest of our lives. After
the many, many hours and nights of working on our beloved TAMF, our group would like to
make one suggestion: it would be wise in the future to have comfortable pillows in the lab for
the long nights in which students will want to take short 15 minute naps :-).

7. Code Modules

The following sub-sections contain the main source codes for our final project.

7.1Makefile

Makefile for CSEE 4840, Final Project -TAMF
SYSTEM = system
M CROBLAZE_OBJS =\
c_source_files/main.o \
c_source_files/isr.o
LI BRARI ES = nynicrobl aze/lib/libxil.a
ELF_FILE = $(SYSTEM.el f
NETLI ST = i npl enent ati on/ $(SYSTEM . ngc
Bitstreanms for the FPGA

FPGA BI TFI LE = i npl enent ati on/ $(SYSTEM . bi t
MERGED_BI TFI LE = i npl enent at i on/ downl oad. bi t

Files to be downl oaded to the SRAM

SRAM CODE_BI NFI LE = i npl ement ati on/ sram bin
SRAM CODE_HEXFI LE = i npl enent ati on/ sram hex

SRAM BI NFI LE
SRAM _HEXFI LE

i mages/ group2_320X240. bi n
i mages/ group2_320X240. hex

14

CSEE W4840 — Embedded Systems & Design, Final Project Report — TAMF

E. Farhat, E. Herrera, R. Jordan, A. Wilkes

MHSFI LE
MSSFI LE

= $(SYSTEM . nmhs
= $(SYSTEM . nsS
FPGA_ARCH = spartan2e
DEVI CE = xc2s300epq208-6

LANGUAGE = vhdl
PLATGEN_OPTI ONS = -p $(FPGA_ARCH)

-1 ang $(LANGUAGE)

LI BGEN_OPTI ONS = -p $(FPGA ARCH) $(M CROBLAZE_LI BG OPT)

Paths for progranms

XILINX = /usr/cad/xilinx/ise6.1i
ISEBINDIR = $(XILINX)/bin/lin

| SEENVCMDS = LD_LI BRARY_PATH=$(| SEBI NDI R) Xl LI NX=$(XI LI NX) PATH=$(| SEBI NDI R)

XI'LINX_EDK = /usr/cad/xilinx/edk3.2

M CROBLAZE = /usr/cad/ xilinx/gnu
MBBI NDI R = $(M CROBLAZE) / bi n
XESSBI NDI R = /usr/cad/ xess/ bin

Execut abl es

XST = $(| SEENVCMDS) $(| SEBI NDI R) / xst

XFLOW = $(1 SEENVCMDS) $(| SEBI NDI R) / xf | ow

BI TGEN = $(| SEENVCVDS) $(1 SEBI NDI R) / bi t gen
DATA2MEM = $(| SEENVCMDS) $(| SEBI NDI R) / dat a2mem
XSLOAD = $(XESSBI NDI R)/ xs! oad

XESS_BOARD = XSB- 300E

M CROBLAZE_CC = $(MBBI NDI R)/ mi crobl aze-gcc

M CROBLAZE_CC_SI ZE = $(MBBI NDI R)/ mi cr obl aze- si ze

M CROBLAZE_OBJCOPY = $(MBBI NDI R) / ni cr obl aze- obj

copy
External Targets
al |
@cho "Makefile to build a M croprocessor system:"
@cho "Run make with any of the follow ng targets"
@cho " make |ibs : Configures the swlibraries for this systent
@cho " nmake program Conpi |l es the program sources for all the processor
i nst ances"
@cho " nake netli st Generates the netlist for this system ($(SYSTEM)"
@cho " make bits Runs | npl ementation tools to generate the bitstreant
@cho " make init_bram Initializes bitstreamw th BRAM dat a"
@cho " make downl oad : Downl oads the bitstreamonto the board"
@cho " make netlistclean: Deletes netlist"
@cho " make hwcl ean Del etes i nplenentation dir"
@cho " make |ibsclean: Deletes swlibraries"”
@cho " nmake prograntl ean: Del etes conpiled ELF fil es"
@cho " make clean Del etes all generated files/directories"
@cho " "
@cho " make <target> : (Default)"
@cho " Creates a Mcroprocessor systemusing default initializations"
@cho " specified for each processor in MS file"
bits : $(FPGA_BI TFI LE)
netli st $(NETLI ST)
l'ibs : $(LIBRARI ES)
program : $(ELF_FI LE)
init_bram: $(MERGED_BI TFI LE)
clean : hwcl ean |ibscl ean prograncl ean
rm-f braminit.sh
rm-f _inpact.cnd
rm-r xst
sysclean : rminpl ementation/system ngc

rm i npl ement ati on/ xsb300_wr apper . ngc
rm-rf xst

15

CSEE W4840 — Embedded Systems & Design, Final Project Report — TAMF
E. Farhat, E. Herrera, R. Jordan, A. Wilkes

hwecl ean : netlistclean
rm-rf inplenentation synthesis xst hdl
rm-rf xst.srp $(SYSTEM. srp

netlistclean :
rm-f $(FPGA_BI TFI LE) $(MERGED_BI TFI LE) \

$(NETLI ST) i npl enent ati on/ $(SYSTEM _bd. bnm

I'i bscl ean :
rm-rf mymcroblaze/lib

prograntl ean :

rm-f $(ELF_FILE) $(SRAM BI TFILE) $(SRAM HEXFI LE)

#
Software rul es
#

M CROBLAZE_MODE = execut abl e

Assenble software libraries fromthe .nmss and .nmhs files

$(LI BRARI ES) : $(MHSFI LE) $(MSSFI LE)

PATH=$$PATH: $(MBBI NDI R) XI LI NX=$(XI LI NX) XI LI NX_EDK=$(XI LI NX_EDK) \
perl -1 $(XILINX_EDK)/bin/nt/perl5lib $(X LI NX_EDK)/bin/nt/libgen.pl

$(LI BGEN_OPTI ONS) $(MSSFI LE)
Conpil ation

M CROBLAZE_CC_CFLAGS =
M CROBLAZE_CC OPT = -3 #- nxl - gp- opt
M CROBLAZE_CC DEBUG FLAG =# -gstabs
M CROBLAZE_| NCLUDES = -1I./nym crobl aze/include/ # -1
M CROBLAZE_CFLAGS = \
$(M CROBLAZE_CC_CFLAGS) \
-nxl -barrel -shift \
$(M CROBLAZE_CC_OPT) \
$(M CROBLAZE_CC_DEBUG FLAG) \
$(M CROBLAZE_| NCLUDES)

$(M CROBLAZE OBJS) : %0 : %¢c

PATH=$(MBBI NDI R) $(M CROBLAZE_CC) $(M CROBLAZE CFLAGS) -¢ $< -0 $@

Linking

Uncomment the following to make linker print locations for everything

M CROBLAZE_LD_FLAGS = -W,-M

M CROBLAZE LI NKER_SCRIPT = -W,-T -W, nylinkscri pt
#M CROBLAZE_LI NKER_SCRI PT =

M CROBLAZE_LI BPATH = -L./nynicrobl aze/li b/

M CROBLAZE_CC_START_ADDR FLAG= - W, - def sym - W, _TEXT_START_ADDR=0x00000000
M CROBLAZE_CC_STACK_SI ZE_FLAG= -W, - def sym - W, _STACK_SI| ZE=0x200

M CROBLAZE_LFLAGS = \
- x| - mode- $(M CROBLAZE_MODE) \
$(M CROBLAZE LD _FLAGS) \
$(M CROBLAZE_LI NKER_SCRI PT) \
$(M CROBLAZE_LI BPATH) \
$(M CROBLAZE_CC_START_ADDR FLAG) \
$(M CROBLAZE_CC_STACK_SI ZE_FLAG)

$(ELF_FILE) : $(LIBRARIES) $(M CROBLAZE_OBJS)

PATH=$(MBBI NDI R) $(M CROBLAZE_CC) $(M CROBLAZE_LFLAGS) \

$(M CROBLAZE_OBJS) -0 $(ELF_FILE)
$(M CROBLAZE_CC S| ZE) $(ELF_FI LE)

#
Hardware rul es
#

Hardware conpilation : optimze the netlist, place and route

$(FPGA BI TFILE) : $(NETLIST) \

etc/fast_runtinme.opt etc/bitgen.ut data/ $(SYSTEM . ucf

cp -f etc/bitgen.ut inplenmentation/
cp -f etc/fast_runtinme.opt inplenmentation/

cp -f data/$(SYSTEM . ucf inplenentation/$(SYSTEM . ucf

\

16

CSEE W4840 — Embedded Systems & Design, Final Project Report — TAMF

E. Farhat, E. Herrera, R. Jordan, A. Wilkes

$(XFLOW -wd inplenmentation -p $(DEVICE) -inplenment fast_runtinme.opt \
$(SYSTEM . ngc
cd inplementation; $(BI TGEN) -f bitgen.ut $(SYSTEM

Hardware assenbly: Create the netlist fromthe .mhs file

$(NETLI ST) : $(MHSFI LE)
XI LI NX=$(XI LI NX) XI LI NX_EDK=$(XI LI NX_EDK) \
perl -1 $(XI LI NX_EDK)/bin/nt/perl5lib $(X LI NX_EDK)/bin/nt/platgen.pl \
$(PLATGEN_OPTI ONS) -st xst $(MHSFI LE)
perl synth_npdul es. pl < synthesis/xst.scr > xst.scr
$(XST) -ifn xst.scr
rm-r xst xst.scr
$(XST) -ifn synthesis/$(SYSTEM. scr

#
Downl oadi ng
#

Add software code to the FPGA bitfile

$(MERGED_BI TFI LE) : $(FPGA Bl TFI LE) $(ELF_FILE)
$(DATA2MEM) - bm i npl ement ati on/ $(SYSTEM _bd \
-bt inplenentation/$(SYSTEM \
-bd $(ELF_FILE) tag bram-o b $(MERGED_BI TFI LE)

Create a .hex file with data for the SRAM

$(SRAM_HEXFI LE) : $(SRAM BI NFI LE)
./bin2hex -a 0 < $(SRAM BI NFILE) > $(SRAM HEXFI LE)

$(SRAM_CODE_HEXFI LE) : $(ELF_FI LE)
$(M CROBLAZE_OBJCOPY) \
-j .sramtext -j .sdata2 -j .sdata -j .rodata -j .data \
-O binary $(ELF_FILE) $(SRAM CCDE_BI NFI LE)
./bin2hex -a 60000 < $(SRAM CODE_BI NFI LE) > $(SRAM CODE_HEXFI LE)

Downl oad the files to the target board
downl oad : $(MERGED_BI TFI LE) $(SRAM HEXFI LE) $(SRAM CODE_HEXFI LE)
$(XSLOAD) -ram -b $(XESS_BOARD) $(SRAM HEXFI LE)

$(XSLOAD) -ram -b $(XESS_BOARD) $(SRAM CODE_HEXFI LE)
$(XSLOAD) -fpga -b $(XESS_BOARD) $(MERGED_BI TFI LE)

7.2convert.c

#i ncl ude <stdio. h>

int nmain()
int r, g, b;
int i;
int color;
for (i =0 ; i <4 ; i++)
while (getchar() !'="\n")
for (;3;)
{
color = 0;

/* fills in the |lower nost bits */

if (scanf("%\n", &) != 1) return 1;
if (scanf("%\n", &) != 1) return 1;
if (scanf("%\n", &) != 1) return 1;

r =r & OxFS;
g = g & OxFC
b = b & O0XFS8;
r = r << 8
g:g<<3
b=Db>3

17

CSEE W4840 — Embedded Systems & Design, Final Project Report — TAMF
E. Farhat, E. Herrera, R. Jordan, A. Wilkes

/*Make color 16 bits by conbining RGB with an OR statenent*/
color =r | g | b;

put char (col or >> 8);
putchar (col or & Oxff);

}

return O;

}

7.3main.c

#i ncl ude "xbasic_types.h"
#i ncl ude "xio. h"

#include "xintc_|.h"
#include "xuartlite_l.h"

/* /] defined inisr.c */

extern void uart_handl er(void *cal |l back);
extern int uart_interrupt_count;

extern char uart_character [256];

#defi ne W 480
#define H 360
#def i ne VGA_START 0x00800000
#def i ne RED OxF800

#defi ne GREEN 0x07EO

#defi ne BLUE Ox001F

#def i ne NOT_VERT_SYNC (Xl o_|I

n32(0x01800014))
#def i ne VERT_SYNC (IXio_l
n
|

n32(0x01800014))
32(0x01800010))
n32(0x01800010))

#def i ne NOT_HORZ_SYNC (Xl o_l
#def i ne HORZ_SYNC (!X

setup_interrupts: Initialize the interrupt sources and handl ers
Shoul d be call ed once when the systemstarts

The main _interrupt_handler() function from Xilinx
7
Saves and restores CPU context, etc.

Sees which interrupts are pending, and for each it
acknow edges the interrupt and
calls a user-defined interrupt handler in Xintc_InterruptVectorTable

Pl ace interrupt service routines inisr.c to ensure they are placed in
the proper nenory segment.
/

ok ok ok Ok ko ok Ok % k% 3k ok X

voi d setup_interrupts()

/*
* Reset the interrupt controller peripheral
*/

/* Disable the interrupt signal */
XI nt c_mvast er Di sabl e(XPAR_I NTC_SI NGLE_BASEADDR) ;

/* Disable all interrupt sources */
Xl nt c_nEnabl el ntr (XPAR_| NTC_SI NGLE_BASEADDR, 0) ;

/* Acknow edge all possible interrupt sources
to make sure none are pending */
Xl nt c_mAckl nt r (XPAR_I NTC_SI NGLE_BASEADDR, Oxffffffff);

/*
* Install the UART interrupt handl er
*/

XIntc_I nterruptVect or Tabl e[XPAR | NTC_MYUART_| NTERRUPT_I NTR] . Handl er =
uart _handl er;

18

CSEE W4840 — Embedded Systems & Design, Final Project Report — TAMF
E. Farhat, E. Herrera, R. Jordan, A. Wilkes

/*
* Enabl e interrupt sources
*/

/* Enable CPU interrupts */
m crobl aze_enabl e_interrupts();

/* Enable interrupts fromthe interrupt controller */
Xl nt c_miVast er Enabl e(XPAR_| NTC_SI NGLE_BASEADDR) ;

/* Tell the interrupt controller to accept interrupts fromthe UART */
Xl nt c_nEnabl el ntr (XPAR_| NTC_SI NGLE_BASEADDR, XPAR_MYUART_| NTERRUPT_MASK) ;

/* Enabl e UART interrupt generation */
XUar t Li t e_nEnabl el nt r (XPAR_MYUART_BASEADDR) ;
}

//Creating our Structure

typedef struct {
int blank_len;
int step_size;
int cnt_pix;

} line_info;

line_info lines[H;
line_info lines2[H;

/1 This conmputes all the major operations required to cal cul ate our necessary
/lval ues.

voi d conpute_linfo()

e
int i;
int npix;
for(i=0;i<Hi++){
npix =1i;

lines[i].blank_len = (Wnpix)/2;
lines[i].step_size = (W<12) / (npix +1);
lines[i].cnt_pix= npix + (Wnpix)/2;

}
npi x = H
for(i=0;i<Hi++){
if(i <= 180)
npi x- -;
el se
npi x=i ;

lines2[i].blank_len = (Wnpix)/2;
lines2[i].step_size = (W<12) / (npix +1);
lines2[i].cnt_pix= npix + (Wnpix)/2;

}
}

/1 This function will create a triangle shape where our heads are conpressed
/1 and our bodies are seni-nornal

void Tri_conp()
{

char c;
int i, x;

int start_addr;

int j =0;
int nl;

whi | e(1)

19

CSEE W4840 — Embedded Systems & Design, Final Project Report — TAMF

E. Farhat, E. Herrera, R. Jordan, A. Wilkes

}

}

whi | e(VERT_SYNC) ;
if(j == 500)
return;
nl =- 88;
start_addr = -480*90;

whi | e(1)
{
whi | e(NOT_HORZ_SYNC) ;

/1 Blank |ength
Xl o_Qut 32(0x01800000,

/1 Start address
Xl o_Qut 32(0x01800004,

/Il Step size
Xl o_Qut 32(0x01800008,

/1 Cnt pix
Xl o_Qut 32(0x0180000C,

start_addr += 480;
nl ++;

if (VERT_SYNC)
br eak;

whi | e(HORZ_SYNC) ;
}//second while
j++;

lines[nl].blank_len);

start_addr);

lines[nl].step_size);

lines[nl].cnt_pix);

/1 This function will
voi d Hour _d ass()
{ _char_c;

int i, x;

int start_addr;

int j =0;
int nl;

whi | e(1)

take our image and formit

whi | e(VERT_SYNC) ;

if(j == 500)
return;
nl =- 89;

start_addr = -480*90;

whi | e(1)

into an hourgl ass shape

whi | e(NOT_HORZ_SYNC) ;

/1 Blank |ength
Xl o_Qut 32(0x01800000,

/1 Start address
Xl o_Qut 32(0x01800004,

/Il Step size
Xl o_CQut 32(0x01800008,

/1 Cnt pix
Xl o_Qut 32(0x0180000C,

start_addr += 480;
nl ++;

if (VERT_SYNC)
br eak;

lines2[nl].blank_Ien);

start_addr);

lines2[nl].step_size);

lines2[nl].cnt_pix);

20

CSEE W4840 — Embedded Systems & Design, Final Project Report — TAMF
E. Farhat, E. Herrera, R. Jordan, A. Wilkes

whi | e(HORZ_SYNC) ;
}//second while
j++;
}
}
//This will show the full inage with nornmal dinensions
void Full ()
int j=0;
int start_addr;
int i = 1<<12;
whi | e(1)
whi | e(VERT_SYNC) ;
if(j==10)
return;
start_addr = -480*90;
whi | e(1)
whi | e(NOT_HORZ_SYNC) ;

/1 Blank |ength
Xl o_Qut 32(0x01800000, 3);

/] Start address
Xl o_Qut 32(0x01800004, start_addr);

Il Step size
Xl o_Qut 32(0x01800008, i

~

/1 Cnt pix
Xl o_Qut 32(0x0180000C, 480);

start_addr += 480;

if (VERT_SYNC)
br eak;

whi | e(HORZ_SYNC) ;
}//second while
j++;
}
}

/* This will horizontally conpress our inage and once it reaches
the center of the screen it will begin to invert and once again go back
to its original size

*/

voi d Horz_conp()
{

char c;
int i, x;
int start_addr;

int j =0;
int nl;
x=0;

nl=H ;
whi | e(1)

whi | e(VERT_SYNC) ;

[*conpr esses*/
if(j < HI1){
nl--;

21

CSEE W4840 — Embedded Systems & Design, Final Project Report — TAMF

E. Farhat, E. Herrera, R. Jordan, A. Wilkes

}

start_addr = -W90;
i=lines[nl].step_size;

/*start expandi ng*/

else if(j

< 2*H){
start_addr = -W90 +W
= - lines[nl].step_size;
nl ++;

/*del ay and return*/
else if (j<3*H)({

}

whi

nl--;
start_addr = -W90 + W
i=-lines[nl].step_size;

/lreturn;
el se{
nl ++;
start_addr = -W90;
i=lines[nl].step_size;
i f(nl==H+1)

return;

le(1)
whi | e(NOT_HORZ_SYNC) ;

/1 Blank |ength

Xl o_Qut 32(0x01800000, lines[nl].blank_len);
/] Start address

Xl o_Qut 32(0x01800004, start_addr);
/Il Step size

Xl o_Qut 32(0x01800008, i);
/1 Cnt pix

Xl o_Qut 32(0x0180000C, lines[nl].cnt_pix);

start_addr += W

if (VERT_SYNC)
br eak;

whi | e(HORZ_SYNC) ;
}//second while

j++;

int nmain()

{

char *prt_char;
char *read_char;
int j;

/1
mi

pri
pri
pri
pri
pri
pri
pri
pri
pri

Enabl e the instruction cache:

crobl aze_enabl e_i cache();

nt("
nt("
nt("
nt("
nt("
nt("
nt("
nt("
nt("

Hell o and wel come to our final project!\r\n");

Here is our MENU: \r\n");

\r\n"
~ To conpress and invert us please enter 'H ~\r\n"
~ To see us in an hourgl ass please enter 'G ~\r\n"
~ To see us in a pyranid please enter 'T ~\r\n"

\r\n"

Pl ease note our programis NOT case sensitive.\r\n"

What woul d you like to display?");

makes the code run 6 tinmes faster

—

22

CSEE W4840 — Embedded Systems & Design, Final Project Report — TAMF
E. Farhat, E. Herrera, R. Jordan, A. Wilkes

i =0

conpute_linfo();
setup_interrupts();
for (;;) {
prt_char = &uart_character[j];
//We will disable the interrupt for a short while
m crobl aze_di sabl e_i nterrupts();
read_char = &uart_character[uart_interrupt_count 9%256];
m crobl aze_enabl e_interrupts();
if(read_char == prt_char){ // buffer is not enpt
Full ();
/*handl es input from n ni cont/

if(read_char !'= prt_char){ // buffer is not enpty

/*if his pressed will begin Horz_conmp() */

if (*prt_char=="t' || *prt_char=="T"){
Tri _comp();
Y lend if

/*or if t is entered, then makes a triangle formof the imge */
else if (*prt_char=="h"|| *prt_char=="H){
Hor z_conp() ;

}
/*or if t 1is entered, then makes a triangle formof the inmage */
else if (*prt_char=="g'|| *prt_char=="G){

Hour _d ass();
}
/* otherwi se, print to the screen */
el se{
Full ();
}
j =(j +1) %256;
Yyrrif
Y/ for
return O;
}
7.4vga.vhd
-- VGA video generator
-- Uses the vga_timng nodule to generate hsync etc.
-- Massages the RAM address and requests cycles fromthe nmenory controller
-- to generate video using one byte per pixel
-- Cristian Soviani, Dennis Lim and Stephen A. Edwards
-- Mudified by E. Farhat, E. Herrera, R Jordan, A WIkes
library | EEE;

use | EEE. STD LOG C _1164. ALL;
use | EEE. STD LOG C_ARI TH. al | ;
use | EEE. STD LOG C_UNSI GNED. al | ;

23

CSEE W4840 — Embedded Systems & Design, Final Project Report — TAMF

E. Farhat, E. Herrera, R. Jordan, A. Wilkes

entity vga is

port (
clk : in std_l ogic;
pix_clk : in std_logic;
rst : in std_logic;
video_data : in std_logic_vector(15 downto 0);

vi deo_addr : out std_logic_vector(19 downto 0);

video_req : out std_

| ogi c;

vidout _clk : out std_|logic;

blank_len : in std_logic_vector (15 downto 0);
start_addr : in std_logic_vector(31 downto 0);
step_size : in std_logic_vector(31 downto 0);
cnt _pix : in std_logic_vector (15 downto 0);

vidout _RCR : out std_logic_vector(9 downto 0);
vidout _GY : out std_logic_vector(9 downto 0);
vidout _BCB : out std_logic_vector(9 downto 0);
vi dout _BLANK_N : out std_l ogic;

vi dout _HSYNC_N : out std_l ogic;

vi dout _VSYNC_N : out std_logic);

end vga;
architecture Behavi oral

constant H_ACTI VE

of vga is

const ant H_FRONT_PORCH

const ant H_BACK_I_DO?CH
constant H _TOTAL

-- Fast |owvoltage TTL-1evel

conmponent OBUF_F_12
port (

O : out STD_ULCG C;
I in STD ULCA Q) ;

end conponent;

integer := 480;
i nteger := 96;
integer := 128;
i nteger := 800;

I1/Opad with 12 mA drive

-- Basic edge-sensitive flip-flop

conmponent FD
port (
C: in std_logic;
D: in std_logic;

Q: out std_logic);

end conponent;

-- Force instances of FD into pads for speed

attribute iob : string;

attribute iob of FD:

conponent vga_tim ng
port (
h_sync_del ay
v_sync_del ay
bl ank

conponent

vga_ram r ead_address

pi xel _cl ock
reset
bl ank_I en
start_addr
step_si ze
cnt _pi x
pi x_cnt

end conponent;

signal r
signal g
signal b

si gnal bl ank
signal hsync
signal vsync

signal vga_ramread_address

signal vreq
signal vreqg_1

is "true";

out std_l ogic;

out std_l ogic;

out std_l ogic;

out std_logic_vector (19 downto 0);
in std_l ogic;

in std_l ogic;

std_l ogi c_vector (15 downto 0);
std_l ogi c_vector (31 downto 0);
std_l ogi c_vector (31 downto 0);
std_l ogi c_vector (15 downto 0);
out std_l ogic_vector(10 downto 0));

i
in
in
in
in
in

u

std_l ogi c_vector (9 downto 0);
std_l ogi c_vector (9 downto 0);
std_l ogi c_vector (9 downto 0);

std_|l ogic;
std_|l ogic;
std_| ogic;
std_l ogi c_vector (19 downto 0);
std_| ogic;
std_|l ogic;

24

CSEE W4840 — Embedded Systems & Design, Final Project Report — TAMF

E. Farhat, E. Herrera, R. Jordan, A. Wilkes

signal | oad_vi deo_word : std_l ogic;

signal vga_shreg : std_logic_vector(15 downto 0);

si gnal RAG counter : std_logic_vector(19 downto 0);

si gnal pixel _count : std_logic_vector (10 downto 0);
begi n

st : vga_timng port map (
pi xel _cl ock => pix_clk,
reset => rst,

h_sync_del ay => hsync,

v_sync_del ay => vsync,

bl ank => bl ank,

vga_ramread_address => vga_ram read_address,
bl ank_| en => bl ank_I en,

start_addr => start_addr,

step_size => step_si ze,

cnt _pi x => cnt_pi X,

pi x_cnt => pi xel _count

)

vreq <= '1";

-- Generate | oad_video_word by delaying vreq two cycl es

process (pix_clk)
begi n
if pix_clk'event and pix_clk="1" then
vreq_1l <= vreq;
| oad_vi deo_word <= vreq_1;
end if;
end process;

-- Generate video_req (to the RAM control Il er) by del aying vreq by

-- a cycle synchronized with the pixel clock

process (clk)
begi n
if clk'event and clk="1" then
video_req <= pix_clk and vreq;
end if;
end process;

vi deo_addr <= vga_ram read_address(19 downto 0);

process (pix_clk)
begi n
if pix_clk'event and pix_clk="1" then
vga_shreg <= vi deo_dat a;
end if;
end process;

-- RGB 5-6-5

r(9 dowmnto 5) <= vga_shreg (15 downto 11);
r(4 downto 0) <= "00000";

g(9 downto 4) <= vga_shreg (10 downto 5);
g(3 downto 0) <= "0000";

b(9 downto 5) <= vga_shreg (4 downto 0);
b(4 downto 0) <= "00000";

-- Video clock 1/0O pad to the DAC
vidclk : OBUF_F_12 port map (
O => VI DQUT_cl k,
I => pix_clk);
-- Control signals: hsync, vsync, and bl ank
hsync_ff : FD port map (

C => pi x_clk,
D => not hsync,

25

CSEE W4840 — Embedded Systems & Design, Final Project Report — TAMF
E. Farhat, E. Herrera, R. Jordan, A. Wilkes

Q => VI DOUT_HSYNC N);

vsync_ff : FD port map (
C => pi x_clk,
D => not vsync,
Q => VI DOUT_VSYNC N);

blank_ff : FD port map (
C => pi x_clk,
D => not bl ank,
Q => VI DOUT_BLANK_N);

-- Three digital color signals

_‘

«Q
o

|
-
-

for i in 0 to 9 generate

_‘
—
—

FD port map (

pi x_cl k,

r(i),

VI DOUT_RCR(i));

lolvie]
oo
V VvV

FD port map (
pi x_cl k,

g(i),

VI DOUT_GY(i));

2
QUo
Inomnnu
vV V. V

(=2
—_
—_

FD port map (

pi x_cl k,

b(i),

VI DOUT_BCB(i));

QOO
o
V VvV

end generate;

end Behavi oral ;

7.5vga_timing.vhd

-- VGA timng and address generator

-- Fixed-resolution address generator. GCenerates h-sync, v-sync, and bl anki ng
-- signals along with a 20-bit RAM address. H-sync and v-sync signals are
-- delayed two cycles to conpensate for the DAC pi peline.

-- Cristian Soviani, Dennis Lim and Stephen A. Edwards
-- Mddified by : E. Farhat, E. Herrera, R Jordan, A WIkes

library | EEE;

use | EEE. STD_LOG C_1164. ALL;

use | EEE. STD_LOG C_ARI TH. ALL;
use | EEE. STD_LOG C_UNSI GNED. ALL;

entity vga_timng is

port (
pi xel _cl ock :in std_l ogic;
reset :in std_l ogic;
h_sync_del ay : out std_l ogic;
v_sync_del ay : out std_l ogic;
bl ank : out std_l ogic;
vga_ram read_address : out std_logic_vector (19 downto 0);
bl ank_I en : in std_l ogic_vector (15 downto 0);
start_addr : in std_logic_vector (31 downto 0);
step_si ze : in std_logic_vector (31 downto 0);
cnt _pix : in std_l ogic_vector (15 downto 0);
pi x_cnt : out std_logic_vector(10 downto 0));

end vga_tim ng;
architecture Behavioral of vga_timng is
constant SRAM DELAY : integer := 3;
-- 640 X 480 @60Hz with a 25.175 MHz pixel clock

constant H_ACTI VE . integer := 480;
constant H FRONT_PORCH : integer := 96;

26

CSEE W4840 — Embedded Systems & Design, Final Project Report — TAMF

E. Farhat, E. Herrera, R. Jordan, A. Wilkes

constant H_BACK_PORCH

constant H TOTAL

constant V_ACTI VE

const ant
const ant

constant V_TOTAL

si gnal
si gnal

si gnal
si gnal

si gnal
si gnal

si gnal
si gnal
si gnal

Ii ne_count
pi xel _count

V_FRONT_PORCH :
V_BACK_PORCH

std_|
std_|

h_sync : std_logic
v_sync : std_logic; -- vertical sync

h_sync_del ay0
v_sync_del ay0

nt eger
nt eger

nt eger
nt eger
nt eger
nt eger

128;
800

360;
71;
91;
524;

ogi c_vector (9 downto 0); --
ogi c_vector (10 downto 0); --

-- horizontal sync

std_|l ogic;
std_|l ogic;

h_blank : std_l ogic
v_blank : std_logic
mybl ank : std_l ogic

Y coordinate
X coordinate

-- h_sync delayed 1 clock
-- v_sync delayed 1 clock

-- flag to reset the ram address during vertica

si gnal

reset _vga_ram read_address

std_|l ogic;

-- flag to hold the address during horizonta

signal hold_vga_ramread_address : std_logic
signal ram address_counter
signal active_begin std_logic
begi n
-- Pixel counter
process (pixel _clock, reset)
begi n
if reset ="'1' then
pi xel _count <= "00000000000"
el sif pixel _clock'event and pixel _clock = "1
if pixel_count = (H_TOTAL - 1) then
pi xel _count <= "00000000000"
el se
pi xel _count <= pixel _count + 1;
end if;
end if;
end process
-- Horizontal sync
process (pixel _clock, reset)
begi n
if reset ="'1' then
h_sync <= '0'
el sif pixel _clock'event and pixel _clock = "1
if pixel_count = (H_ACTIVE + H_FRONT_PORCH -
h_sync <= '1";
el sif pixel_count = (H_TOTAL - H BACK PORCH -
h_sync <= "'0'
end if;
end if;
end process
-- Line counter
process (pixel _clock, reset)
begi n
if reset ="'1' then
i ne_count <= "0000000000"
el sif pixel _clock'event and pixel _clock = "1

if ((line_count

end if;

= (H_TOTAL -

hori zontal bl anking

vertica

bl anki ng

bl anki ng

bl anki ng

std_l ogic_vector (31 downto 0)

= V_TOTAL -
i ne_count <= "0000000000"
el sif pixel _count
line_count <= line_count + 1

1) then

t hen

t hen

1) then

1) then

t hen
1) and (pixel _count = H TOTAL - 1)) then

27

CSEE W4840 — Embedded Systems & Design, Final Project Report — TAMF
E. Farhat, E. Herrera, R. Jordan, A. Wilkes

end if;
end process;

-- Vertical sync

process (pixel _clock, reset)

begi n
if reset ="'1' then
v_sync <= '0";
el sif pixel _clock'event and pixel _clock = "'1" then

if line_count = (V_ACTIVE + V_FRONT_PORCH -1) and
pi xel _count = (H_TOTAL - 1) then

v_sync <= '"1";

elsif line_count = (V_TOTAL - V_BACK PORCH - 1) and

pi xel _count = (H_TOTAL - 1) then

v_sync <= '0";

end if;

end if;
end process;

-- Add two-cycle delays to h/v_sync to conpensate for the DAC pipeline

process (pixel _clock, reset)
begi n
if reset ="'1' then
h_sync_del ay0 <= '0';
v_sync_del ay0 <= '0';
h_sync_delay <= "'0";
v_sync_delay <= '0";
el sif pixel _clock'event and pixel _clock = "'1" then
h_sync_del ay0 <= h_sync;
v_sync_del ay0 <= v_sync;
h_sync_delay <= h_sync_del ayO0;
v_sync_delay <= v_sync_del ay0;
end if;
end process;

-- Horizontal bl anking

-- The constants are offset by two to conpensate for the del ay
-- in the conposite blanking signal

process (pixel _clock, reset)

begi n
if reset ="'1' then
h_blank <= "'0";
el sif pixel _clock'event and pixel _clock = "'1" then

if pixel_count = (H_ACTIVE - 2) then
h_blank <= "1";
el sif pixel_count = (H_TOTAL - 2) then
h_blank <= "'0";
end if;
end if;
end process;

-- Vertical Blanking

-- The constants are offset by two to conpensate for the del ay
-- in the conposite blanking signal

process (pixel _clock, reset)

begi n
if reset ="'1' then
v_blank <= "'0";
el sif pixel _clock' event and pixel _clock = "'1" then

if line_count = (V_ACTIVE - 1) and pixel _count = (H_TOTAL - 2) then
v_blank <= "1';
elsif line_count = (V_TOTAL - 1) and pixel _count = (H_TOTAL - 2) then
v_blank <= "'0";
end if;
end if;
end process;

-- Composite blanking

process (pixel _clock, reset)

28

CSEE W4840 — Embedded Systems & Design, Final Project Report — TAMF

E. Farhat, E. Herrera, R. Jordan, A. Wilkes

begi n
if reset ="'1' then
bl ank <= "'0";
el sif pixel _clock'event and pixel _clock = "'1" then
bl ank <= h_bl ank or v_bl ank or nybl ank;
end if;

end process;
--ram address generator
active_begin <='1'" when pixel _count = (blank_|l en - SRAM DELAY) else '0';

process (pixel_clock, reset)
begi n
if reset ='1' then
ram addr ess_count er <=X"00000000";
el sif pixel _clock'event and pixel _clock ='1'" then
if active_begin ='1'" then
ram address_counter (31 downto 12) <= start_addr(19 downto 0);
ram address_counter (11 downto 0) <= X"'000";
el se
ram address_counter <= ram address_counter + step_size;
end if;
end if;

end process;

process (pixel_clock, reset)
begi n
if reset ='1' then
mybl ank <= '0';
el sif pixel _clock'event and pixel _clock ='1'" then
if pixel_count = blank_len then
mybl ank <= '0';
el sif pixel_count = cnt_pix then
nmybl ank <= "1";
end if;
end if;
end process;

vga_ramread_address <= ram address_counter (31 downto 12);
pi x_cnt <= pi xel _count;

end Behavi oral ;

7.6system.mhs

Essa Far hat
Eveliza Herrera
Rhonda Jor dan
Amon W | kes

H* B H

F*

System nhs file for Final Project - TAWF

Paraneters
PARAMETER VERSION = 2.0.0

d obal Ports

Signals of opb_xsb300 nodul e
PORT PB_A = PB_A, DIR = QUT, VEC = [19:0]

PORT PB D = PB_D, DIR = I NOUT, VEC = [15: 0]
PORT PB LB N = PB LB N, DIR = OUT

PORT PB_UB N = PB_UB N, DIR = OUT

PORT PB_WE N = PB WVE N, DIR = OUT

PORT PB_OE N = PB CE N, DIR = OUT

PORT RAM CE N = RAMCE N, DIR = OUT

PORT VI DOUT_CLK = VI DOUT_CLK, DIR = OUT

PORT VI DOUT_HSYNC_N = VI DOUT_HSYNC_N, DIR = OUT
PORT VI DOUT_VSYNC_N = VI DOUT_VSYNC_N, DIR = OUT
PORT VI DOUT_BLANK_N = VI DOUT_BLANK_N, DIR = OUT
PORT VI DOUT_RCR = VI DOUT_RCR, DIR = OUT, VEC = [9: 0]

PORT VI DOUT_GY = VIDOUT_GY, DIR = OUT, VEC = [9: 0]
BCB, DIR = OUT, VEC = [9:0]

29

CSEE W4840 — Embedded Systems & Design, Final Project Report — TAMF

E. Farhat, E. Herrera, R. Jordan, A. Wilkes

PORT RS232_TD
PORT RS232_RD
PORT AU _CSN_N

RS232_TD, DI R=QUT
RS232_RD, DI R=I N
AU _CSN_N, DI R=OUJT

PORT AU BCLK = AU_BCLK, DI R=QUT
PORT AU _MCLK = AU_MCLK, DI R=QUT
PORT AU _LRCK = AU_LRCK, DI R=QUT
PORT AU_SDTI = AU_SDTI, DI R=QUT

PORT AU_SDTQ0 = AU_SDTQO, DI R=IN

#Si gnal s for video decoder |2C Bus
#PORT VID_|2C SCL = VID_|2C SCL, DR
#PORT VID_|2C_ SDA = VID_|2C_SDA, DR

Sub Conponents

BEG N ni crobl aze

PARAMETER | NSTANCE = nymi crobl aze
PARAMETER HW VER = 2.00. a
PARAMETER C USE_BARREL = 1
PARAMETER C USE_| CACHE = 1
PARAMETER C_ADDR_TAG BI TS =
PARAMETER C_CACHE BYTE_SI ZE
PARAMETER C_| CACHE_BASEADDR
PARAMETER C_| CACHE_HI GHADDR
PORT Ak = sys_clk

PORT Reset = fpga_reset
PORT Interrupt = intr

BUS_| NTERFACE DLMB = d_I nb
BUS_| NTERFACE I LMB = i _I nb
BUS_| NTERFACE DOPB = myopb_bus
BUS_| NTERFACE | OPB = myopb_bus
END

2048
0x00860000
0x0087FFFF

mino

BEG N opb_intc

PARAMETER | NSTANCE = intc
PARAMETER HW VER = 1.00.c
PARAMETER C_BASEADDR = O0xFFFF0000
PARAMETER C_HI GHADDR = OxFFFFOOFF
PORT OPB_C k = sys_clk

PORT Intr = wuart_intr

PORT Irq = intr

BUS_| NTERFACE SOPB = nyopb_bus
END

BEG N bram bl ock

PARAMETER | NSTANCE = bram
PARAMETER HW VER = 1.00. a
BUS_| NTERFACE PORTA = conn_0
BUS_| NTERFACE PORTB = conn_1
END

BEG N opb_xsb300

PARAMETER | NSTANCE = xsb300
PARAMETER HW VER = 1.00. a
PARAMETER C_BASEADDR = 0x00800000
PARAMETER C_HI GHADDR = 0xO00FFFFFF
PORT PB_A = PB_A

PORT PB_.D = PB_D

PORT PB_LB_N = PB_LB_N

PORT PB_UB_N = PB_UB_N

PORT PB_WE_N = PB_VE_N

PORT PB_CE_N = PB_CE_N

PORT RAM CE_N = RAM CE_N

PORT OPB_C k = sys_clk

PORT pi xel _cl ock = pi xel _cl ock

PORT VI DOUT_CLK = VI DOUT_CLK

PORT VI DOUT_HSYNC_N = VI DOUT_HSYNC_N
PORT VI DOUT_VSYNC_N = VI DOUT_VSYNC_N
PORT VI DOUT_BLANK_N = VI DOUT_BLANK_N
PORT VI DOUT_RCR = VI DOUT_RCR

PORT VI DOUT_GY = VI DOUT_GY

PORT VI DOUT_BCB = VI DOUT_BCB

BUS_I NTERFACE SOPB = myopb_bus

END

PORT OPB_C k = sys_clk

30

CSEE W4840 — Embedded Systems & Design, Final Project Report — TAMF

E. Farhat, E. Herrera, R. Jordan, A. Wilkes

#BUS_| NTERFACE SOPB = nyopb_bus
END

BEG N cl kgen

PARAMETER | NSTANCE = cl kgen_0
PARAMETER HW VER = 1.00. a

PORT FPGA_CLK1 = FPGA_CLK1
PORT sys_clk = sys_clk

PORT pi xel _cl ock = pi xel _cl ock
PORT fpga_reset = fpga_reset
END

BEG N I nb_I mb_bram.if_cntlr
PARAMETER | NSTANCE = | nb_I nb_bram.if_cntlr_0
PARAMETER HW VER = 1.00. a

PARAMETER C_BASEADDR = 0x00000000
PARAVETER C_HI GHADDR = 0x000007FF
BUS_| NTERFACE DLMB = d_I b
BUS_I NTERFACE | LMB = i | b

BUS_| NTERFACE PORTA = conn_0
BUS_| NTERFACE PORTB = conn_1
END

BEG N opb_uartlite

PARAMETER | NSTANCE = myuart
PARAMETER HW VER = 1.00. b
PARAMETER C_CLK_FREQ = 50_000_000
PARAMETER C USE_PARITY = 0
PARAMETER C_BASEADDR = OxFEFF0100
PARAMETER C_HI GHADDR = OxFEFFO1FF
PORT OPB_C k = sys_clk

PORT Interrupt = uart_intr

BUS_| NTERFACE SOPB = myopb_bus
PORT RX=RS232_RD

PORT TX=RS232_TD

END

BEG N opb_v20

PARAMETER | NSTANCE = myopb_bus
PARAMETER HW VER = 1.10.a
PARAMETER C DYNAM PRICRITY = 0
PARAMETER C_REG GRANTS = 0
PARAMETER C PARK = 0
PARAMETER C_PROC_| NTRFCE = 0
PARAMETER C DEV_BLK ID = 0

PARAMETER C DEV_M R _ENABLE = 0
PARAMETER C_BASEADDR = 0xOf f f 1000
PARAMETER C_HI GHADDR = 0xOf f f 10f f
PORT SYS Rst = fpga_reset

PORT OPB_C k = sys_clk

END

BEG N | mb_v10

PARAMETER | NSTANCE = d_I nb
PARAMETER HW VER = 1.00. a
PORT LMB_C k = sys_clk
PORT SYS _Rst = fpga_reset
END

BEG N | mb_v10

PARAMETER | NSTANCE = i _I nb
PARAMETER HW VER = 1.00. a
PORT LMB_C k = sys_clk
PORT SYS Rst = fpga_reset
END

7.7 opb_xsb300.vhd

-- OPB bus bridge for the XESS XSB-300E board

-- Includes a nenory controller, a VGA franebuffer,

and glue for the SRAM

31

CSEE W4840 — Embedded Systems & Design, Final Project Report — TAMF

E. Farhat, E. Herrera, R. Jordan, A. Wilkes

-- Cristian Soviani, Dennis Lim and Stephen A. Edwards
-- Mddified by E. Farhat, E. Herrera, R Jordan, A WIkes

library | EEE;
use | EEE. STD_LOG C_1164. ALL;

entity opb_xsb300 is

generic (

C_OPB_AW DTH : integer := 32;

C_OPB_DW DTH : integer := 32;

C_BASEADDR : std_logic_vector := X'2000_0000";

C_H GHADDR : std_logic_vector := X'2000_00FF");
port (

OPB_ Ak : in std_logic;

OPB_Rst : in std_logic;

OPB_ABus : in std_logic_vector (31 downto 0);
OPB_BE : in std_logic_vector (3 downto 0);
OPB_DBus : in std_logic_vector (31 downto 0);
OPB_RNW: in std_|logic;

OPB_sel ect : in std_l ogic;
OPB_seqAddr : in std_l ogic;
pi xel _clock : in std_l ogic;

U O DBus : out std_logic_vector (31 downto 0);
U O errAck : out std_l ogic;

UOretry : out std_l ogic;

U O toutSup : out std_logic;

U O xferAck : out std_logic;

PB_A : out std_logic_vector (19 downto 0);
PB_UB_N : out std_logic;
PB LB N : out std_logic;
PB_ VE_N : out std_logic;
PB_OCE_N : out std_logic;

RAM CE_N : out std_logic;

VI DOUT_CLK : out std_|l ogic;

VI DOUT_RCR : out std_logic_vector (9 downto 0);

VIDOUT_GY : out std_logic_vector (9 downto 0);

VI DOUT_BCB : out std_logic_vector (9 downto 0);

VI DOUT_BLANK_N : out std_l ogic;

VI DOUT_HSYNC_N : out std_l ogic;

VI DOUT_VSYNC_N : out std_l ogic;

PB D : inout std_logic_vector (15 downto 0));
end opb_xsb300;

architecture Behavioral of opb_xsb300 is
constant C MASK : integer := 0; -- huge address wi ndow as we are a bridge

signal addr_nux : std_logic_vector(19 downto 0);
signal video_addr : std_logic_vector (19 downto 0);
signal video_data : std_logic_vector (15 downto 0);
signal video_req : std_logic;

signal video_ce : std_logic;

signal i : integer;

signal cs : std_logic;

-- Added

signal cs2, g2, ql, qO0, ce, xfer2 : std_logic;

signal blank_len, cnt_pix : std_|l ogic_vector (15 downto 0);

signal start_addr, step_size : std_logic_vector(31 downto 0);

signal horz, vert, hsync_n, vsync_n : std_|l ogic;

signal data_bus, data_bus_ce, data_bus_rce : std_logic_vector(31 downto 0);

signal onecycle : std_logic ;

signal videocycle, amuxsel, hihalf : std_|logic;
signal rce0, rcel, rreset : std_l ogic;

signal xfer : std_l ogic;

signal pb_wr, pb_rd : std_l ogic;

signal sramce : std_|l ogic;

signal rnw: std_|logic;

signal addr : std_logic_vector (23 downto 0);

32

CSEE W4840 — Embedded Systems & Design, Final Project Report — TAMF

E. Farhat, E. Herrera, R. Jordan, A. Wilkes

signal be : std_logic_vector (3 downto 0);

signal pb_bytesel std_l ogic_vector (1 downto 0);
signal wdata : std_l ogic_vector (31 downto 0);
signal wdata_mux : std_logic_vector (15 downto 0);
signal rdata : std_logic_vector (15 downto 0); --

conponent vga

port (
clk : in std_l ogic;
pix_clk : in std_logic;
rst in std_l ogic;

vi deo_data :
vi deo_addr
video_req :
vidout _clk :

out std_l ogic;
out std_l ogic;

-- Added

bl ank_I en in std_l ogic_vector (15 downto 0);
start_addr in std_l ogic_vector (31 downto 0);
step_si ze in std_l ogic_vector (31 downto 0);
cnt _pix in std_l ogic_vector (15 downto 0);
vidout _RCR : out std_logic_vector(9 downto 0);
vidout _GY : out std_logic_vector(9 downto 0);
vidout _BCB : out std_logic_vector(9 downto 0);

vi dout _BLANK_N :
vi dout _HSYNC N :
vi dout _VSYNC N :

out std_l ogic;
out std_l ogic;
out std_logic);

end conponent;

conponent menoryctrl

port (
rst in std_l ogic;
clk : in std_l ogic;
cs : in std_l ogic;
selectO0 : in std_logic;
rnw : in std_|ogic;
vreq : in std_logic;
onecycle : in std_l ogic;
vi deocycl e : out std_|l ogic;
hi hal f out std_l ogic;
pb_wr out std_l ogic;
pb_rd : out std_l ogic;
xfer out std_l ogic;
ce0 : out std_logic;
cel : out std_logic;
rres : out std_l ogic;
video_ce : out std_logic);

end comnponent;

conponent pad_io

port (

clk : in std_l ogic;

rst in std_l ogic;

PB_A : out std_logic_vector (19 downto 0);
PB_UB_N : out std_logic;

PB LB_N : out std_logic;

PB_VWE_N : out std_logic;

PB_OCE_N : out std_logic;

RAK/I_CE_N : out std_l ogic;

PB D : inout std_logic_vector(15 downto 0);
pb_addr in std_l ogic_vector (19 downto 0);
pb_ub : in std_l ogic;

pb_lb : in std_l ogic;

pb_w : in std_l ogic;

pb_rd : in std_l ogic;

ramce : in std_|logic;

pb_dread : out std_logic_vector (15 downto 0);
pb_dwite : in std_|logic_vector(1l5 downto 0));

end conponent;

begi n

Fr anebuf f er

in std_l ogic_vector (15 downto 0);
out std_l ogi c_vector(19 downto 0);

regi ster data read - FDRE

33

CSEE W4840 — Embedded Systems & Design, Final Project Report — TAMF

E. Farhat, E. Herrera, R. Jordan, A. Wilkes

vgal : vga
port map (

clk => OPB_C k,

pi x_cl k => pi xel _cl ock,
rst => OPB_Rst,

vi deo_addr => vi deo_addr,
vi deo_data => vi deo_dat a,
vi deo_req => video_req,

-- Added the follw ng 4
bl ank_Il en => bl ank_I en,
start_addr => start_addr,
step_size => step_size,
cnt _pix => cnt _pi X,

VI DOUT_CLK => VI DOUT_CLK,

VI DOUT_RCR => VI DOUT_RCR,

VI DOUT_GY => VI DOUT_GY,

VI DOUT_BCB => VI DOUT_BCB,

VI DOUT_BLANK_N => VI DOUT_BLANK_N,
VI DOUT_HSYNC_N => hsync_n,

VI DOUT_VSYNC_N => vsync_n);

-- Menory control/arbitration state machi ne

mermoryctrl 1l : menmoryctrl port map (
rst => OPB_Rst,
clk => OPB_C k,
cs => cs,
sel ect0 => OPB_sel ect,
rnw => rnw,
vreq => video_req,
onecycl e => onecycl e,
vi deocycl e => vi deocycl e,
hi hal f => hi hal f,
pb_w => pb_wr,
pb_rd => pb_rd,
xfer => xfer,
ce0 => rce0,
cel => rcel,
rres => rreset,
vi deo_ce => video_ce);

-- 1/0 pads
pad_iol : pad_io port map (

clk => OPB_C k,
rst => OPB_Rst,

PB A => PB A
PB_UB_N => PB_UB N,
PB_LB_N => PB_LB N,
PB_VE_N => PB_VE N,
PB_OE_N => PB_CE N,

RAM CE_N => RAM CE N,
PB_D => PB_D,

pb_addr => addr _nux,
pb_rd => pb_rd,

pb_w => pb_wr,

pb_ub => pb_bytesel (1),
pb_l b => pb_bytesel (0),
ramce => sramce,
pb_dread => rdata,
pb_dwite => wdata_mnux);

sram ce <= pb_rd or pb_w;
amuxsel <= vi deocycl e;

addr _nmux <= vi deo_addr when (anmuxsel = "'1")
el se (addr (20 downto 2) & (addr(1) or hihalf));

onecycl e <= (not be(3)) or (not be(2)) or (not be(l)) or (not be(0));

wdat a_nux <= wdata(15 downto 0) when ((addr(1) or hihalf) ="1")
el se wdata(31 downto 16);

process(vi deocycl e, be, addr(1), hihalf, pb_rd, pb_w)

34

CSEE W4840 — Embedded Systems & Design, Final Project Report — TAMF
E. Farhat, E. Herrera, R. Jordan, A. Wilkes

begi n
if videocycle ='1' then
pb_bytesel <= "11";
elsif pb_rd="1" or pb_w="1" then
if addr(1)="1" or hihalf="1" then
pb_bytesel <= be(1l downto 0);

el se
pb_bytesel <= be(3 downto 2);
end if;
el se
pb_bytesel <= "00";
end if;

end process;
cs <= OPB_sel ect when OPB_ABus(31 downto 20) = X"008" else '0';
cs2 <= OPB_sel ect when OPB_ABus(31 downto 16) = X"'0180" else '0';

process (OPB_C k)

begi n
if OPB_Ck'event and OPB_Ck = "'1" then
if OPB_Rst = '1' then
rnw <= "'0";
el se
rnw <= OPB_RNW
end if;
end if;

end process;

process (OPB_C k)
begi n
if OPB_Ck'event and OPB_Ck = "1 then
if OPB_RST = '1' then
addr <= X"000000";
el se
addr <= OPB_ABus(23 downto 0);
end if;
end if;
end process;

process (OPB_C k)

begi n
if OPB_Ck'event and OPB_Ck = "'1" then
if OPB_Rst = '1' then
be <= "0000";
el se
be <= OPB_BE;
end if;
end if;

end process;

process (OPB_C k)

begi n
if OPB_Clk'event and OPB_Ck = "'1" then
if OPB_Rst = '1' then
wdat a <= X"00000000";
el se
wdat a <= OPB_DBus;
end if;
end if;

end process;

process (OPB_Cl k)
begi n
if OPB_Clk'event and OPB_Ck = "1" then
if video_ce = "'1" then
vi deo_data <= rdata;
end if;
end if;
end process;

process (OPB_Clk, OPB_Rst)
begi n
if OPB_Rst="1" then
horz <= "'0";
elsif OPB_C k'event and OPB_Cl k="1"' then
horz <= hsync_n;

35

CSEE W4840 — Embedded Systems & Design, Final Project Report — TAMF
E. Farhat, E. Herrera, R. Jordan, A. Wilkes

end if;
end process;

process (OPB_Clk, OPB_Rst)
begi n
if OPB_Rst="1" then
vert <= '0";
elsif OPB_C k'event and OPB_Cl k="1"' then
vert <= vsync_n;
end if;
end process;

process (OPB_Clk, OPB_Rst)
begi n
if OPB_Rst = '1' then
dat a_bus_ce <= X"00000000";
elsif OPB_Ck'event and OPB_Ck = '1" then
if ce="1'" and rnw="1" then
if addr(4 downto 0)="00000" then
data_bus_ce <= X"0000" & bl ank_I en;
el sif addr(4 downto 0)="00100" then
data_bus_ce <= start_addr;
el sif addr(4 downto 0)="01000" then
dat a_bus_ce <= step_si ze;
el sif addr(4 downto 0)="01100" then
data_bus_ce <= X"0000" & cnt_pix;
el sif addr(4 downto 0)="10000" then
dat a_bus_ce <= X"0000000" & "000" & horz;
el sif addr(4 downto 0)="10100" then
dat a_bus_ce <= X"0000000" & "000" & vert;
end if;
el se
dat a_bus_ce <= X"00000000";
end if;
end if;
end process;

-- Wite the lowtwo bytes if rce0 or rcel is enabled

process (OPB_Clk, OPB_Rst)
begi n
if OPB_Rst = '1' then
data_bus_rce(15 downto 0) <= X"0000";
elsif OPB_Ck'event and OPB_Ck = '1" then
if rreset ="'1' then
data_bus_rce(15 downto 0) <= X"0000";
elsif (rcel or rce0) ="'1 then
data_bus_rce(15 downto 0) <= rdata(1l5 downto 0);
end if;
end if;
end process;

-- Wite the high two bytes if rce0 is enabl ed

process (OPB_Clk, OPB_Rst)
begi n
if OPB_Rst = '1' then
data_bus_rce(31 downto 16) <= X"0000";
elsif OPB_Ck'event and OPB_Ck = '1" then
if rreset ="'1' then
data_bus_rce(31 downto 16) <= X"0000";
elsif rced0 ="'1" then
data_bus_rce(31 downto 16) <= rdata(l5 downto 0);
end if;
end if;
end process;

process (OPB_C k)
begi n
if OPB_Ck'event and OPB_Cl k="1" then
g2 <= (not g2 and qgl1) or (g2 and not ql);
gl <= (cs2 and not g2 and not qgl) or (g2 and not ql);
g0 <= g2 and not q1l;
end if;

36

CSEE W4840 — Embedded Systems & Design, Final Project Report — TAMF
E. Farhat, E. Herrera, R. Jordan, A. Wilkes

end process;

ce <= (g2 and not qgl1) or (qO)
xfer2 <= qO;

--witing into our 4 registers

process (OPB_Clk, OPB_Rst)
begi n
if OPB_Rst="1" then
bl ank_| en <= X"0000";
start_addr <= X"00000000";
step_si ze <= X"00000000";
cnt _pix <= X"0000";
elsif OPB_Ck'event and OPB_Cl k="1"' then
if ce="1'" and rnw="0" then
if addr(3 downto 0)= "0000" then
bl ank_| en <= wdata(15 downto 0);
el sif addr(3 downto 0)= "0100" then
start_addr <= wdat a;
el sif addr(3 downto 0)="1000" then
step_size <= wdat a;
el sif addr(3 downto 0)="1100" then
cnt _pix <= wdata(15 downto 0);
end if;
end if;
end if;
end process;

VI DOUT_HSYNC_N <= hsync_n;
VI DOUT_VSYNC_N <= vsync_n;

-- unused outputs

data_bus <= data_bus_ce when ce='1" el se data_bus_rce;
U O _DBus <= data_bus;

U O errAck <= '0";

UQOretry <='0'";

U O toutSup <= '0";

U O xferAck <= xfer when ce='0" else xfer2;

end Behavi oral ;

37

