CSEE W4840 Embedded System Design Lab 5

Stephen A. Edwards

Due March 4, 2004

Abstract

Modify the simple framebuffer we provided to make it display
characters instead of a bitmap. Couple this with a simple C pro-
gram that display “Hello World.”

1 Introduction

Engineering rarely starts with a blank slate. A bridge builder
starts with a site; a computer engineer often starts with exist-
ing pieces of a system—a programming language, an operating
system, pre-built peripherals, and whatnot. As a result, system
integration—the act of assembling and adapting pieces to form
systems—is often the most important part of an engineer’s job.
In this lab, you will reverse-engineer the framebuffer we have
provided and modify it to directly generate characters, effec-
tively moving the responsibility for displaying character from
software to hardware.

In labs two and three, you used a bitmapped framebuffer to
display characters. While most modern computers take this
approach to support GUIs and other graphical applications, it
puts more of a strain on the memory and video system than a
character-based display. Historically most video displays were
character-based, meaning memory held information about char-
acters rather than pixels, and the video hardware was respon-
sible for translating this information on-the-fly into a suitable
bitmap. Character displays have two advantages and one main
disadvantage. Since a single byte can represent a, say 8 x 8 char-
acter matrix, a character display requires far less memory than
a bitmapped one. Furthermore, since only one byte is neces-
sary per character, the memory bandwidth is also reduced. The
main disadvantage, obviously, is that a character display cannot
display arbitrary images.

For this lab, you will modify the framebuffer we have pro-
vided to make it directly display characters, i.e., a byte in video
memory will contain a code for an ASCII character, not pixels.
To do this, you will modify the VGA memory address generator
and video data output circuitry to convert in-memory data to a
character bitmap before sending it out to the screen.

2 The opb_xsb300 Peripheral

The VHDL files for the custom peripheral we designed are in
myip/opb_xsb300_v1_00_a/hdl/vhdl in the lab5.tar.gz tarball and
described in Table 1.

This peripheral performs three important functions. First,
it generates video by generating the necessary timing signals
(horizontal sync, vertical sync, and blanking, which blanks the
video output during horizontal and vertical refresh), memory
addresses for each pixel, and eventually formats and ships out
this video data to the triple 8-bit video DAC on the board. The

file purpose

opb_xsh300.vhd The top-level module: instances of the
memory controller and video circuitry

pad_io.vhd 1/0O pads for the off-chip memory bus

memoryctrl.vhd A complex state machine that arbitrates be-

tween processor and video accesses

The video timing and address generator.
Produces synchronization and blanking sig-
nals along with video memory addresses

The video generator: uses the video tim-
ing generator and the memory controller to
fetch bytes from memory and send them to
the video DAC.

vga_timing.vhd

vga.vhd

Table 1: Files in the opb_xsb300 peripheral

vga_timing.vhd file generates the control signals and vga_vhd
does the rest.

Second, it controls the off-chip SRAM through address and
data busses, chip selects, and so forth. The glue logic in the main
module, opb_xsb300.vhd, generates the signals and the off-chip
drivers for these signals are in pad_io.vhd.

Finally, it arbitrates access to this memory between the video
controller and the processor. In each cycle, the processor, video,
or both may want access to the memory. Since the video abso-
lutely needs the memory when it asks for it (otherwise, the dis-
play would flicker), the memory controller (in memoryctrl.vhd)
gives priority to the video system, possibly making the proces-
sor wait its turn.

For this assignment, you will need to modify the vga and
vga_timing files to adapt them to work as a character display.
It should not be necessary to modify the others.

The vga_timing block generates four key signals: horizon-
tal sync, vertical sync, blanking, and the RAM address for the
currently-displayed pixel. These are generated from three coun-
ters: a pixel counter that tracks the horizontal position of the
current pixel, a line counter, and an address counter that is reset
at the beginning of each field and advanced every time a visible
pixel is displayed (i.e., the address counter does not count dur-
ing horizontal and vertical blanking). The horizontal and ver-
tical sync signals turn on for a fixed range of pixels and lines
respectively. The blanking signal is essentially the logical OR
of slightly fatter versions of these signals.

The vga block contains a single instance of vga_timing. It
slightly modifies the RAM address before passing it along to
the memory controller. It stores the video data from memory in
a very simple shift register, since memory returns 16 bits at a



time that encode two pixels. In alternate pixels, the shift register
loads a 16-bit value from memory and shifts one byte left to get
the second pixel in a 16-bit word.

3 The Assignment

Adapt the provided video controller to display characters and

demostrate it works by creating a simple C program that displays

“Hello character world” using your new display controller.
There are three main tasks in VHDL:

o Create a character set ROM using distributed RAM blocks.
See the VHDL handout or the XST manual for templates
for specifying such blocks. You may want to write a lit-
tle program that generates the VHDL for initializing this
ROM. You may use the same font you used for Lab 2.

If you put your ROM in a separate VHDL file,
make sure you add its filename to the “pao” file in
myip/opb_xsb300_v1_00_a/data. This is a list of VHDL
files that comprise the peripheral.

e Modify the video shift register in vga.vhd so that it loads
itself from the character set ROM, shifts one bit left every
pixel, and uses one bit per pixel. Make sure to change the
frequency of the “video request” signal coming from the
vga block so that it fetches a new word every two characters
instead of every two pixels.

e Modify the video address generator in vga_timing.vhd to
advance only one byte every eight pixels (I suggest using
an 8 x 8 character grid) and repeat the same set of addresses
for eight lines before advancing.

As usual, turn in a printout of every file you personally create
for this assignment (e.g., if you do not modify memoryctrl.vhd,
do not bother to print it out). Make sure your names are on it.
Demonstrate it to a TA, have him sign off on it, and turn in the
listing.

VHDL is a terribly verbose language that can quickly become
unreadable. Again, we are looking for style in addition to sub-
stance.



