
CSEE W4840 Embedded System Design Lab 3

Stephen A. Edwards

Due February 19, 2004

Abstract

Use your character generator from last time as part of a TV
Typewriter. Write a C program that uses the provided UART to
receive and display a stream of ASCII characters. Handle new-
lines, carriage returns, and scrolling the screen when the cursor
reaches the bottom.

1 Introduction

The Xilinx-provided UART can receive characters as well as
transmit them; we will use this feature in this lab to turn the
XSB-300E into a quasi-useful peripheral: a TV typewriter.

The basic idea is for the board to receive characters through
the serial port (transmitted, in this case, by the minicom pro-
gram) and display them as text on the video screen. Use the
character generator from Lab 2 to display the characters, an in-
terrupt routine to receive the character from the UART, and a
main loop that copies the characters from the buffer where the
interrupt routine has placed them onto the screen.

For printable characters, your program should simply display
them and advance the cursor. Non-printing characters, specifi-
cally carriage return (control-M) and newline (control-J), should
move the cursor. Specifically, a carriage return should move the
cursor to the leftmost position on the same line, while newline
should move the cursor down a line without affecting its hori-
zontal position. This behavior is typical for terminals and is left
over from Teletype days.

If the cursor tries to go off the bottom of the screen, scroll the
characters on the screen up one line to ensure the cursor stays at
the bottom.

2 Interrupts

Your TV typewriter will accept characters at 9600 baud, mean-
ing a new character can arrive every

8 data bits+1 start bit+1 stop bit
9600 bits / second

≈ 1ms

The Microblaze runs at 50 MHz, so this gives us at most

50×106 instructions
second

·1ms = 50000 instructions,

which is plenty of time to display a single character and move
the cursor. However, when it becomes necessary to scroll the
screen, we need to copy 640× 480 = 307200 bytes (one per

pixel). At the very least, it would take at least twice this many
cycles (one read and one write) to completely scroll the screen,
so we could easily miss at least ten characters every time the
screen scrolls if we do not check for incoming characters during
a scroll.

One possibility is to modify the scrolling routine to period-
ically check whether a new character has arrived on the serial
port, but this is difficult, obfuscates the code, and might need
to be changed if the baud rate, processor speed, screen size, or
some other parameter changed.

Interrupts are the preferred solution for handling communi-
cation from a peripheral to a processor. Rather than having to
repeatedly check the peripheral, the peripheral sends an interrupt
to the processor that causes it to stop what it is doing, save its
state, and run an interrupt routine that quickly gathers data from
the peripheral before returning to the program that was running
before the interrupt occurred.

Interrupts are the solution to the scrolling problem: by mak-
ing it possible for the UART to interrupt the scrolling routine,
characters that arrive during a scroll can be saved for after the
scrolling finishes. While such an approach does not help us if
the program simply cannot keep up with its input (e.g., when
the time to process a character is longer than the time between
characters), we expect that scrolling happens fairly infrequently.

Interrupt service routines are written to run as quickly as pos-
sible and do as little work as possible. While it would be pos-
sible to have the interrupt routine itself display characters and
scroll the screen, this defeats the purpose of using an interrupt.
Instead, the interrupt routine should only check whether a new
character has arrived (other sources of interrupts might have in-
advertantly invoked the routine), get the new character from the
UART, acknowledge the interrupt so the UART is ready for the
next character, and enqueue the character into a buffer for the
main routine to handle later.

A tricky aspect of having an interrupt routine is that it may be
invoked at any time. This is not a problem provided the interrupt
routine does not modify anything the main routine is trying to
read or write, but at least something needs to be shared since
some form of communication must take place.

The danger comes, for example, when the interrupt routine
is writing a character into the buffer at the “same time” main
routine is reading a character. If the execution of these two op-
erations is not carefully interleaved, the buffer used to commu-
nicate between the two systems might become corrupted (e.g.,

1



appear to have a character in it when it does not).
The usual solution is to disable interrupts while accessing

memory locations that are shared with an interrupt routine. This
guarantees that the interrupt routine will not modify this mem-
ory during this time, albeit at the possible expense of increasing
interrupt latency—the maximum time between when a periph-
eral issues an interrupt and when the program acknowledges it.

3 Memory Layout

To give you more headroom in this assignment, we have written
a linker script (called, imaginatively, “mylinkscript”) that directs
most of the program into the off-chip SRAM instead of the small
on-chip RAM. The script is fairly complicated since it sends
certain parts of the program (specifically, system initialization
and the interrupt service routines) into the on-chip RAM.

The first few lines of the linker script describe the two avail-
able memory regions. Note that the SRAM region actually starts
after the end of the memory used for the framebuffer.

MEMORY {
BRAM : ORIGIN = 0x00000000, LENGTH = 0x01000
SRAM : ORIGIN = 0x00860000, LENGTH = 0x20000

}

The linker is a fairly complex program that collects a set of
object files generated by the asssembler (which, in turn, takes
its output from the C compiler) into an Executable and Link-
ing Format (ELF) file. This file ultimately contains blocks of
data along with the addresses at which they should be located in
memory. The linker script instructs the linker how to construct
this file.

The new Makefile for this lab downloads two files to the XSB-
300E board: a bitstream for the FPGA and a .hex file for the
on-board SRAM. The Makefile uses the data2mem program to
insert the appropriate segments from the .elf file into the .bit
file for the FPGA and objcopy (one of the binutils programs)
combined with bin2hex to extract and convert the data for the
SRAM.

4 The Assignment

In ˜sedwards/4840/lab3.tar.gz, you will find a skele-
ton for this lab that includes two C files: main.c and isr.c. Main.c
is fairly straightforward: it enables interrupts and registers the
handler before going into a (boring) main loop that periodically
prints the number of characters the interrupt routine has received
and the most recent character.

The interrupt routine in isr.c is more interesting. The
setup_interrupts() function in main.c installs this func-
tion as a handler for interrupts generated by the UART. It checks
whether a new character has come in (see the Xilinx UART lite
datasheet for documentation) and if so, saves the character and
increments a counter.

Implement a circular buffer that communicates from the in-
terrupt routine to the main character routine. Use two pointers:
one pointing to where the next character will be written into the

buffer and one pointing to the next character to be taken from
the buffer. Make the two wrap around and be sure to avoid a
buffer overflow condition. Be careful when reading from the
buffer—disable interrupts when necessary and do so for as little
time as possible.

The main routine should look like

for (;;) {
while (no character in buffer)
/* do nothing */

get character from buffer
display character on screen
if necessary, scroll the screen

}

The interrupt routine should look like

if (there is a new character) {
get the character
clear the interrupt
if (the buffer is not full) {
write the character into the buffer
advance the buffer pointer

}
}

Use the character generator you wrote for lab 2 to draw the
characters. The video display circuitry is included in the skele-
ton for lab 3.

As usual, show your working TV typewriter to a TA, have
him sign a printout of your solution (i.e., all .c files), and hand
that it.

Shorter, elegant, readable solutions will score higher, as
usual.

2


