
CS 4115 - SPINNER White Paper

William Beaver1

wmb2013@columbia.edu
Marc Eaddy

eaddy@cs.columbia.edu

Gaurav Khandpur
gaurav k@cs.columbia.edu

Sangho Shin
ss2020@cs.columbia.edu

September 23, 2003

1team leader



Chapter 1

Introduction

1.1 Background

SPINNER is a general motion control language designed to control SPIN: a performance art
installation. Slowly revolving orange wheels are projected onto a hanging grid of translucent
Plexiglas circles. The wheels act individually and in groups, joining forces and breaking
away in an evolving dance of whole and parts, synchrony and disorder. In SPIN, sounds are
produced as if each disc were a phonograph record. As each disc spins fast or slow, backwards
or forwards, speeding up or slowing down, its sound follows accordingly. SPIN was created by
sound designer and multimedia artist Ben Rubin and presented at the Bumbershoot Visual
Arts Exhibition in Seattle, Washington from August 26th to September 1st, 2003.

SPIN is built in the MAX/MSP programming environment; a graphical environment for
music, audio, and multimedia. The basic environment that includes MIDI, control, user
interface, and timing objects is called Max. Built on top of Max are MSP, a set of audio
processing objects that do everything from interactive filter design to hard disk recording,
and Jitter, a set of matrix data processing objects optimized for video and 3-D graphics.

To originally control and coordinate the movement of each of SPIN’s six discs, a simple,
asynchronous, linear scripting language - SPINscript - was created. This language is com-
prised of a number of initialization parameters and three simple primitive functions: wait,
line and speed. The initialization parameters setup audio (gain, assign sound samples to each
disc, etc) and define the physics of the system (for example, disc acceleration and decelera-
tion). The primitives are used in concert to control and coordinate the motion of each disc.
Line tells a particular disc to rotate to a particular angle within a specific timeframe. Speed
changes the linear acceleration of a disc. By using the wait command, a programmer can
set discs in motion and then wait a specific time period before issuing the next set of com-

1



Figure 1.1: SPIN component diagram. SPINNER program read by SPINNER compiler.
SPINNER compiler outputs SPINscript which is read by SPIN to control projection of discs.

2



mands; allowing the discs to move in space according to the direction of the line and speed
commands. SPINscript is asynchronous. Without the wait command, a script attempting
to coordinate disc movement by issuing a series of specific motions would in actuality set a
disc into one motion which is exactly the additive result of all the commands issued in the
script for a disc.

SPINNER is a new language for SPIN. SPINNER is intended to replace SPINscript as
the primary interface for expressiveness in SPIN and to solve many of the problems that
are inherent in the existing language (see below). SPINNER will generate a file that is
compatible with the existing SPINscript language and is subsequently used to control SPIN.

1.2 The Problem

The original SPINscript language has a number of deficiencies that inevitably limit the
expressiveness of individual disc motion and the potential complexity of disc interaction.

1.2.1 Primitive programming model

SPINscript has a strictly sequential control flow. It does not support looping, function calls
or jumps. If the user wants to gradually increase the speed of a disc or play the same
sequence several times they have to laboriously duplicate the scripting code by hand.

Another problem is that SPINscript does not support variables or constants. This leads
to a proliferation of “magic numbers” throughout the script whose intent is impossible to
discern. If the artist wants to increase the speed of an entire sequence by a factor of two,
she has to calculate and modify each number by hand. This is one area which makes the
language very brittle.

1.2.2 Syntax is non-intuitive

SPINscript lines follow the following format:

<number>, [disc-]<cmd> <args>;

<number>, --wait-- <ms>;

<number>, --[comment];

Here are some examples:

1, 6-speed .50 10000;

1, --wait-- 14000;

1, ---------------straight up now;

3



There are several problems with this syntax:

1. The first value (1,) is unnecessary. The script language designer has indicated that the
<number>, portion isn’t used.

2. The disc number that a command operates on is prefixed to the command’s name (eg.
6-speed). This syntax is limiting; it does not allow actions on multiple discs, and it is
unintuitive.

3. Arguments to functions are not bound to the function name.

4. The wait command does not have the same syntax as other SPINscript commands. It
almost looks like a comment.

5. Comments implicitly indicated by the lack of a keyword after “- -” rather than explicitly
stated through their own syntax.

1.2.3 Modeling limitations

SPINscript models changing the angles of six independent discs over time. However, this
only models part of what the artist is trying to achieve. In many of the “scenes” the artist
requires that the behavior of the discs be dependent on each other. For example, a scene
might start out with all discs rotating at different speeds. This goes on for several seconds.
Then when two discs happen to both be at 0 degrees rotation, the artist wants both discs to
synchronize their rotation speed.

Unfortunately, SPINscript does not have a built-in mechanism to perform this synchro-
nization. The artist has to do this calculation manually which is tedious and prone to error.
Because of the manual labor involved, scripts must be kept small and simple. This ultimately
limits the artist’s expressiveness.

1.3 Our Goals

1.3.1 Improved programming model

We will support various methods for control flow; loops, iteration, non-recursive function
calls. We will support integer and floating point variables. Additionally, SPINNER provides
some built-in functions and operations and the ability to define new functions and procedures
using these primitives. For example, we are considering supporting sine, cosine, and tangent

4



functions in addition to the basic math operations of addition, subtraction, multiplication,
and division. Here is an example1:

; Start all the discs spinning at different speeds based on sine function

for i := 1 to 6

revolve(i 1 sine(i * 1000));

In addition to the for-loop, function call, and variable use, this example also shows how
the disc number will become an argument to the function instead of being part of the function
name.

1.3.2 Intuitive language syntax

The programmer must be able to transform concepts of the motion of images in space into
the language easily. SPINNER supports disc referencing in a consistent manner. Inline
comments are handled in a manner more consistent with existing programming languges like
C and Java. Use of procedural language constructs provide a natural mechanism for control
flow and reference.

1.3.3 Natural high-level semantics

For SPINNER to be successful, it must closely model the problem domain. The programmer
must be able to transform concepts of the motion of images in space into the language easily.
We will provide a mechanism for synchronizing discs based on different conditions, queriying
disc state (angle, speed), etc. For the first time the artist will be able to use the language
to define behavior dependencies between discs.

For example, let us say that the artist wants to start two discs rotating at different speeds:

1, --Start Disc 1 rotating at 2 revolutions per second--;

1, 1-line 2 1000;

1, --Start Disc 2 rotating at 1 revolution per second--;

1, 2-line 1 1000;

The artist wants them to rotate like this for 2 seconds:

1, --Wait 2 seconds--;

1, --wait-- 2000;

1The final syntax may be different. We are working closely with the end-user to determine what functions

and operations would be most useful

5



Now she wants synchronize the speed of Disc 2 with Disc 1 when both are at 0 degrees.
How does she do this? Previously, she would need to calculate the exact time this condition
would occur. In this example, it would take an additional 1 second before both discs are at
0 degrees. She would then create a wait statement for this amount of time:

1, --Wait until both discs are at 0 degrees--;

1, --wait-- 1000;

1, --Now make the speeds the same--;

1, 2-line 2 1000;

The synchronization problems centers around the 1,−−wait−−1000; statement. Cur-
rently this requires the artist to know the current speeds and starting times of each disc
in order to determine their angles at any point during the scene. Our goal is to have our
compiler determine this number and allow the artist to specify a conditional that closely
models the problem domain.

Here’s a pseudocode example2 of a synchronization statement that the artist could specify
in SPINNER:

// Wait until both discs are at 0 degrees

WaitUntil (disc 1 position = 0) =(disc 2 position = 0);

// Now make disc 2 speed equal to disc 1

disc 2 speed == disc 1 speed

In order to support a WaitUntil-like command, it is necessary for our compiler to keep
track of the speeds of each of the discs as it is outputting the SPINscript. We may also have
to take into account the time it takes the scripting commands themselves to execute. This is
analogous to the amount of clock cycles needed to execute an assembly language instruction.

2We are still designing the synchronization command syntax to make sure it is expressive and flexible.

Because of this the syntax will likely change.

6


