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INTRODUCTION 
 
Polynomial equations are mathematical representations of both theoretical and practical 
problems and are used in a variety of professional fields. These mathematical expressions 
are written as the sum of the products of numbers and variables. A few practical 
applications which rely heavily on polynomial expressions are: missile trajectory, 
weather forecasting, spacecraft re-entry, building construction, and financial market 
calculations.  
 
One example of a real world problem where polynomial functions are applied is testing 
the effectiveness of a new drug. The quantity of medication given to a person under 
testing can be varied and the improvement or degradation can be noted. There may be 
other variables, which can be applied to the same problem, like the patient’s age, weight, 
and other existing medical conditions, if any.  
 
Regardless of the situation, the use of polynomials can provide an individual better 
insight into a problem. Although polynomials are extremely important components of 
algebra, solving these problems manually can be a time-consuming and tedious process. 
It is because of this, there is a need for a system, which will perform computations in a 
methodical way irrespective of the problem at hand.  
 
The polynomial manipulation language (PML) tool is a programming language built for 
flexible manipulation of polynomial expressions. With its extensive set of built in 
operations and functions, PML can be used to specify an algorithm involving 
polynomials. In addition, this language is easy to understand, allowing this to be a user-
friendly language for programmers to enjoy. 
 
PML is designed for manipulating symbolic mathematical computations. In contrast to 
numerical computation, PML emphasizes computing with symbols representing 
mathematical concepts. The input to algorithms will be expressions or polynomial 
equations, while the output of the translations will be returned in algebraic form. From 
such an expression, one can deduce how the change in parameters will affect the result of 
computation. Although PML will be able to handle numbers and symbols with equal 
capacity, the primary role of this application is to facilitate symbolic computational 
programs. 



 
Background 
Given below is a brief description about types of polynomials and equations supported by 
PML. 
 
 
Polynomials 
 
A polynomial is a mathematical expression involving a sum of powers multiplied by 
coefficients. Broadly classified, there are two types of polynomials depending on the 
number of unique variables within the equations. These types are called univariate and 
multivariate polynomials. 
 
 
Univariate Polynomial 
 
A polynomial expressed in one variable is known as a univariate polynomial. An example 
of a univariate polynomial can be found below in Eq. 1. 
 
    cix

i + ci-1x(i-1) + …c0   (Eq. 1)  
 
In the aforementioned expression ci, ci-1,… terms each represent coefficients, while the 
superscripts represent the degree of each term.  This polynomial has only one variable, 
which is represented by ‘x’. 
 
 
Multivariate Polynomial  
 
A polynomial expressed in more than one variable is known as a multivariate polynomial. 
An example of a multivariate polynomial can be found below in Equation 2. 
 
   cix

iyi + ci-1x
(i-1)y(i-1) + …ci  (Eq. 2)  

 
This equation is expressed using two variables ‘x’ and ‘y’. 
 
 
Linear Equations 
 
Polynomials equations of the form  
 
     ax + b = c      (Eq. 3) 
 
are called linear equations, having only one variable whose degree is one. All other 
equations not in the form mentioned by Eq. 3 are non-liner equations.  
 
Quadratic Equations 
 
All polynomial equations of the form 



 
      ax2 + bx + c = 0    (Eq. 4) 
 
are called quadratic equations. Quadratic equations are second order degree equations and 
the roots of the equation can be determined using the quadratic formula. 
 
Roots and Factoring 
 
A root of a polynomial P(z) is a number zi such that P(zi) = 0. A polynomial of n degrees 
has n roots. 
 
A factor is any number that divides a given number evenly (without a remainder). If r is a 
root of a polynomial equation f(x) = 0, then (x-r) is a factor of the polynomial f(x). 
 
PML supports all of the above-mentioned types of polynomials and equations, and more. 
 
 
LANGUAGE FEATURES 
 
PML contains several features, enabling it to be viewed as one of the most powerful 
symbolic equation language tools. Brief descriptions of these features are listed below: 
 
Symbolic Interpretation 
Unlike several applications on the market, PML provides a symbolic representation of 
polynomial equations. This symbolism allows the user to gain a more theoretical 
perspective of the function being performed, maintaining the likeness of which most 
polynomials are represented in algebra. 

 
Most of the existing languages do not have the capability to accept a polynomial in its 
natural form and then manipulate it. This deficiency implies that users must create self-
devised methods to enter polynomials to the program. Below is an example of feeding 
programs into a language other than PML: 
 
  (User Enters)> 2 4 -3 3 5 0  (Program Interprets)> 2x4 -3x3 + 5x 

  
This input does not represent the actual polynomial representation. There can be many 
more of such creative input sequence. With PML the user will be able to directly enter 
the equation listed below.   

 
     2x4 -3x3 + 5x     (Eq. 5) 
 
Language Commands 
Functions and keywords provided by PML are similar to the standard mathematics 
terminology; this makes PML easy and intuitive to use. Individuals with a working 
knowledge of symbolic mathematics and some programming background can easily start 
coding useful programs in PML.  
 



Function Performance  
Through the use of a very intuitive language, users will be able to perform operations 
such as addition, subtraction, multiplication, division, factorization, simplification, and 
differentiation of polynomials. 
 
Equation Evaluation 
PML will be equipped to handle a few numerical evaluations. The language will have the 
capability to solve for the numerical roots of an expression. Also, expressions will be able 
to be evaluated, provided that the user enters a number, which will be substituted for a 
variable.  
 
User Customization  
In addition to built-in functions, users will also be able to enter a polynomial and provide 
the program with steps on how to manipulate the equation.  
 
Elimination of Error 
 PML does not have pointers. As a result it is not possible to write programs that can 
corrupt memories and cause systems to crash, making PML a stable language. 
 
 
LANGUAGE IMPLEMENTATION 
 
Functional Language 
As opposed to an object-oriented language, this language will be implemented as a 
traditional functional language. One primary reason for this decision is that a functional 
language is much easier for the user to understand. Also, object-oriented concepts are not 
necessary in our domain. 
 
The user can invoke operations through function calls as well as create their own 
functions. Recursive functions are also supported in the language. Many standard 
functions addition, subtraction, multiplication, division, and differentiation will be stored 
in standard libraries. However, the users will not be restricted to use the standard 
functions, and they can choose to write their own functions to perform the above-
mentioned operations. Users will also be permitted to create their own libraries that can 
be linked together with many other programs.  
 
Interpreted  
The lexical scanner and parser will be created using ANTLR. The ANTLR system will 
produce the necessary information for the PML interpreter to execute the user's program. 
One convenience of an interpreted language is that it does not have to be compiled into 
machine code. This enables the language to be ported to many different platforms and 
architectures. The users can run a PML interpreter that was designed for a specific 
platform without the need to recompile their existing source code. The interpreter will 
then interpret the source code on the fly. A user can also share source code among a 
group of peers and be rest-assured that there will not be any problems running it. This is 
because the PML interpreter will work the same on all platforms and environments. 
 



 
EXAMPLES OF PML 
 
PML provides features that are easy to learn and use.  Below are a few samples of the 
PML language and how it can be used to implement easy and efficient code.  
 
term() - Function which takes a polynomial and returns an array that contains the 
individual terms of the polynomial. This function can be used in a program that adds two 
polynomials on n-degree.  
 
Consider the PML code below in Figure 1. 
 

 
                                             >  p1 = 2x3 + 3x2 + 4x + 5x5 

                                             >  polyTemp = term(p1) ; 
 

          Figure 1.  PML Input Statements using the term() function 
 
After the above statement is executed, the variable polyTemp will contain four elements: 
 

  
                                         > polyTemp[1] = 2x3 
                                                  > polyTemp[2] = 3x2 
                                                  > polyTemp[3] = 4x 
                                                  > polyTemp[4] = 5x5 

          Figure 2. PML Output from term() function 
 
The term() function enables the user to access each polynomial term and operate and 
access them when necessary. 
 
order - Operator which can be applied to the array polyTemp, located in Figure 1, to 
order the terms according to its degree. Terms will be arranged, within the array, in either 
ascending or descending order, depending on the parameter. 
 

 
> order desc polyTemp; 
> 5x5 2x3 3x2 4x  
> order asc polyTemp; 
> 4x 3x2 2x3 5x5 

 
           Figure 3. PML Statement using the order operator 
 
The first line in Figure 3 will cause PML to rearrange the elements in polyTemp 
according to the degree of each term, from highest to lowest degree. The call in the third 
line will arrange the elements of polyTemp, from lowest to highest order of the degrees 
of each term. 
 
PML also includes the use of more traditional operators. The ‘+’ operator is used to add 
two terms of a polynomial. The code in Figure 4 is an example using the ‘+’ operator. 



 
 
                                                    > a = 2x2  
                                                    > b= 4x2 

                                                    > a + b = c  
                                                    >c = 6x2 
 

          Figure 4. PML Code using the ‘+’ operator 
 
invert() – Function used to change the magnitude of a term use the invert(). This function 
can be used to simulate the effect of moving a term to the other side of an equation. It can 
also be a very useful tool to implement subtraction of polynomials. 
 

 
                                                 > invert(2x2)  

      > -2x2  
      > invert(-4x)  
      > 4x 

          Figure 5. PML Code using the invert() function 
 
NOTE: We have indicated indices as superscripts in the above examples. This has been 
done for clarity and ease of understanding. However, while typing inputs to PML, the 
user will have to indicate the indices with a ‘^’ symbol, e.g; 2x^2. This is because PML 
takes its inputs from the standard console. Similarly, PML outputs will also indicate 
powers with the ‘^’ symbol. 
 
 
PML SCOPE AND LIMITATION 
 
PML is a preliminary venture in providing a language specifically built for symbolic 
mathematics. As such, the introductory version of PML is not aimed at handling the 
entire gamut of polynomial operations. PML will handle addition, subtraction, 
multiplication, division, factorization and differentiation of polynomials. No features or 
language support will be provided for higher operations like partial differentiation or 
integration.  
 


