

Joker
a Card Game Programming Language

 Whitepaper

Design and Development Crew
jge15@columbia.edu Jeffrey Eng Team Leader

jlt93@columbia.edu Jonathan Tse Organizational Leader

hhc42@columbia.edu Howard Chu Team Member
tks21@columbia.edu Timothy SooHoo Team Member

DOCUMENT HISTORY
2003 September 21 - Document Created

Joker: An Overview

Introduction

The goal of our language is to allow programmers to succinctly describe the rules of a
card game and to create a runtime card game engine. The structure and the
rule-driven nature of card games create a ripe domain to construct a language for.
Our language creates a framework for programming any turn-based card game that
uses the standard 52-card deck. Blackjack, big two, and bridge are examples of
turn-based games in this domain. Spit is an example of a card game not in this
domain.

The Language

Joker is a simple, portable language for systematically specifying multiplayer
turn-based card games using the standard 52-card deck.

Simple and Intuitive

Our language is simple and intuitive. The language provides a platform for
programmers to easily define and describe the structure, rules, and game flow of a
card game. Our language abstracts all turn-based card game concepts and
simplifies the programming mechanics involved in coding a card game. For
example, the concept of “cards” and “decks” is embedded into the language as
fundamental data structures. This allows programmers to focus on specifying the
rules and the algorithmic components of the game flow. The syntax is designed to
be programmer-friendly and intuitive. A snippet is given below (see Code Sample).

Portable

Our language can be run on many different platforms. We will be using ANTLR to
interpret and translate syntax, and Joker code will be compiled down to JavaTM
bytecode, which can be run by the Java Virtual Machine, available for virtually any
machine.

Memory Managed

Programmers do not need to worry about the complexity involved with memory
management. Using Java as our underlying foundation, memory allocation and
garbage collection is handled by the system automatically.

Language Features

Custom loops

Inherent in the concept of turn-based card games, is, well, the turn. A “turn” or a

“round” is typically implemented in other generic languages using a while or for loop.
Our language understands the idea of a turn. Such a loop iterates across the
players and stops when a specified special “winning condition” (in addition to other
conditions) is met.

Custom data types

Our language has several specialized (and fundamental) data types unique to the
domain of card games. For example: the “card” and the “deck”. Cards have values
and can be compared to determine dominance. Cards can be grouped, stacked,
given, taken, pushed, and popped. Decks are finite card repositories. Decks can
be shuffled, have cards added to, have cards removed from.

The Runtime

The output of our compiler is a playable game in the form of our runtime: DEALR
(Dynamically-Enabled Abstract Language Runtime), executable by the Java Virtual
Machine.

The core of this executable is a rules engine, determining what actions are
permissible for what player at what time. The user interface for each player will
allow players to perform actions, such as drawing a card from the deck, placing down
cards, taking cards from other players, and so forth. Currently, this interface is a
simple text-based interface and is scalable to allow expansion to other interface
models.

Code Sample

Below is a first glimpse at the Joker programming language. The following snippet
defines a game where two players take turns drawing a card. The first player to
draw a card better than a Jack of Spades wins.

// specify the suit, card hierarchy
<SUIT> := SPADE > HEART > CLUB > DIAMOND;
<CARD> := A > K > Q > J > 10 > 9 > 8 > 7 > 6 > 5 > 4 > 3 > 2;

<DECK> := [SUIT, CARD]; // specify how the deck looks like

/* 1) loop over all the players

2) see if their card is bigger than a Jack of Spade
3) if so, the player wins

*/
loop over @players {
 $player draw <DECK>;
 if ((current_card of $player) > SPADE.J) {
 $player wins;
 }
}

