

c.def

(pronounced SEE-def)

Macromedia® FlashTM animation language

Language Reference Manual

 Dennis Rakhamimov (dr524@columbia.edu), Group Leader
 Eric Poirier (edp29@columbia.edu)
 Charles Catanach (cnc26@columbia.edu)
 Tecuan Flores (tf180@columbia.edu)

 2

Table of Contents

1 Language Overview 4

2 A Tutorial Introduction 4

3 Lexical Conventions 6

3.1 Keywords 6

3.2 Arithmetic and Comparison Operators 6

3.3 Block Operators 7

3.4 Color Identifiers 7

3.5 Coordinate Identifiers 7

3.6 Range Identifiers 7

3.7 Case Sensitivity 8

3.8 Scoping 8

3.9 Comments 8
a. Block Comments 8
b. Single-line Comments 8

4 Data Types and Attributes 8

4.1 Fundamental Objects 8
a. Document 9
b. Glyph 9
c. Path 9

4.2 Identifiers 10

4.3 Primitive Objects 10
a. point 10
b. line 11
c. circle 11
d. rect 11
e. ellipse 11
f. polygon 11
g. int 11

4.4 color and fillcolor 12
a. Basic Colors 12
b. RGB Colors 13
c. Color Precedence 13

5.1 Render 13

5.2 Rotate 14

 3

5.3 Translate 14

5.4 SetColor 14

5.5 SetFillColor 15

6 Control Flow 15

6.1 Conditional 15

6.2 Iterative 15

7 Compilation and Execution 16

8 Sample Code 17

 4

1 Language Overview

The goal of c.defTM is to create a well-organized, concise, and easy-to-
use language that streamlines the creation of compound scenes and
animations in Macromedia® FlashTM.

A c.def program defines one or more drawing templates, called Glyphs,
and one or more Paths, and then proceeds by rendering the created
templates. Each of these elements can be transformed using scaling,
rotation, or translation. The language supports control flow logic such
as loops and conditions, and is capable of evaluating expressions using
basic mathematic operators. The program author can thus conveniently
use the program to create several drawing templates, and place them
throughout the animation or have them move along a motion path, all
with relatively little amount of code. c.def interpreter handles the task
of creating Flash symbols, layers, and frames corresponding to the
program code.

Since c.def enables creation of Flash animation without using the
proprietary Flash GUI, it thus offers an easy and free solution to
creating effective graphics. A program written in c.def will be
interpreted to Java code, which in turn will leverage Flagstone
Software’s Transform SWF package to create a Flash SWF file.
Transform SWF is a set of Java libraries that provide programmatic
access to elements of the open SWF file format, thus creating an
intermediary between low-level implementation details and the actual
Flash components. The Java file can then be run to generate the actual
SWF file containing the animation.

The resulting SWF file could be viewed in a Macromedia Flash viewer,
or embedded into a webpage using HTML code. In the latter case,
users with the Flash plug-in would be able to view the Flash animation
in their favorite web browser.

2 A Tutorial Introduction

Each c.def program first defines a block called Document. For
example,

 Document myFlash [&(400, 300), #Blue]
 {
 statements
 }

 5

The above statement had defined a Flash movie with a width of 400
pixels, height of 300 pixels, and blue as the background color.

The Document block can then contain declarations for Glyph objects,
Paths, and control flow and iteration statements such as for loops.

 Each Glyph object specifies a template consisting of drawing primitives.
It can then be rendered into the Flash animation using the Render
command, or transformed and altered using commands such as Rotate
or SetColor.

 Following is an example of a Glyph declaration that creates a template

with a circle superimposed on top of a square.

Glyph g []
{
 color[#Red]; // set the stroke color
 rect[&(-10, -10), &(20, 20)];
 circle[&(0, 0), 50];
}

 The Glyph can now be rendered into the Flash movie. It can be placed

either on a particular frame, or animated over a motion guide defined
by a Path. Let’s create a simple linear path.

Path p []
{
 line[&(0, 0), &(100, 100)];
 point[&(0, 0)];
 int[0];
}

 The last two statements specify that the origin of the motion is the

point (0, 0), and that we should start at the beginning of the path (0
percent). As an example, if we wanted to start in the middle of the
path, we would use int[50].

 Now we can Render the Glyph.

 Render [g, ->(1, 30), p];

 This command will then create 30 frames in the Flash movie to

translate the glyph over the path.

 Voila! The cdef source file can now be interpreted and thus converted

to an SWF animation using the steps outlined in Section 7.

 6

3 Lexical Conventions

3.1 Keywords
The c.def language consists of the following keywords. These names
are reserved and thus cannot be used for identifiers.

break
circle
color
continue
Document
ellipse
else
fillcolor

for
Glyph
if
int
line
Path
point
polygon

Rect
Render
Rotate
SetColor
SetFillColor
Translate

3.2 Arithmetic and Comparison Operators
c.def supports all arithmetic and comparison operators, similar to
Java or C. They can be applied to the values of type int. Following
is the table of operators, listed from highest precedence to lowest.

Operator
()
*, /, %
+, -
==, !=, >, <, >=, <=
!
&&, ||

If two operators have the same precedence are used adjacently, the
operator that is parsed first has higher precedence. This means that
the all of these operators are left-associative.

For example, the following code would internally produce the
following syntax tree:

if[a - b - c - d]

b

-

-

-

c

d

a

 7

If an operation evaluates a non-zero value, it is considered to be
logically true. Otherwise, it evaluates to 0 and is logically false.
Thus, an arithmetic expression such as x or n * (z – 5) can be used
as a logical condition.

3.3 Block Operators
Code in c.def is delimited by block operators. They are as follows:

{} /* defines the bounds of a scope */
() /* encloses the parameters for an expression */
[] /* encloses the arguments for a function call
 or an object declaration */
; /* terminates a statement */

3.4 Color Identifiers
The pound (#) operator is used to identify colors. There are two
ways for defining a color, which are described in Section 4.4.

Examples:

#colorname
#(r, g, b)
#Blue
#Green
#(100, 0, 0)

3.5 Coordinate Identifiers
The ampersand (&) operator is used to identify coordinates.
Coordinates are defined by an x- and y- value, indicating their
Cartesian position on the Document relative to the center of the
containing object. The center thus represents the (0, 0) coordinate.

Examples:

&(x, y)
&(30, 70)
&(50,90)

3.6 Range Identifiers
The arrow (->) operator is used to identify ranges of integers. The i
and j values indicate the start- and end-position of the range,
respectively. The optional k value represents the increment that
should be used when iterating over the range.

 8

Note that if i < k, j should be a positive value (or can be omitted if
desired). If i > k, j should be a negative value.

Examples:

->(from, to)
->(from, to, step)
->(1, 10)
->(1, 360, 30)

For uses of range identifiers, please see sections on for loops and
Render statements.

3.7 Case Sensitivity
c.defTM is a case-sensitive language. For example, Glyph and glyph
represent different identifiers.

3.8 Scoping
The language uses lexical scoping, with each level of scope being
defined by curly braces. An identifier defined inside a block will go
out of scope and thus be discarded when the block ends. If an
identifier inside a block has the same name as an identifier in a
parent block, this new identifier will temporarily hide the other one
until the block ends.

3.9 Comments
c.def uses Java-style comments. There are two formats for
comments:

a. Block Comments
/*
 This section of code is commented out.
 This section of code is commented out.
 This section of code is commented out.
*/

b. Single-line Comments
// This single line of code is commented out.

4 Data Types and Attributes

4.1 Fundamental Objects
Each c.defTM document is comprised of a single Document object,
and a collection of Glyph and Path objects.

 9

a. Document
The Document object serves as the container for Glyph and Path
objects and control flow commands such as if and for.

Example:

Document d[&(width, height), #color]
{

statements
...

}

Where width and height specify the size of the Flash movie, and
color specifies the background color.

b. Glyph
A Glyph object is composed of a collection of primitive objects
and can be rendered and moved about a Path object as a single
entity. Since a Glyph can be rendered multiple times along a
Path on a Document, it can be considered a form of a template.

Example:

Glyph g[]
{

statements
...

}

The statements specified become part of the template, with the
more recent statements specifying graphics that will superimpose
the previous graphics. Control flow statements also can be used
within Glyph definitions. Note that the declaration for Glyph
currently takes no arguments.

c. Path
A Path object is the motion layer on which Glyph objects can
traverse. The Path object is composed of multiple elements. The
first element is an object primitive, on which the Glyph object
traverses the perimeter (in the case that the object has more
than 1-dimension) or outline. The second element is a reference
point, in the form &(x, y), at which a Glyph and this Path object
intersect. The third element is an int statement specifying the
percentage of the perimeter that the Glyph should start at on its
traversal of the Path. The object will start the path at the given

 10

percentage relative to the specified reference point, and continue
until the end of path is reached (for non-looping paths) or it has
reached the starting point (for looping paths).

Example:

Path p[]
{

statements
...

}

Note that the declaration for Path currently takes no arguments.

4.2 Identifiers

Fundamental objects in the language are referenced by unique
identifiers. Identifiers must start with a character and can contain
characters, numbers, or underscores.

Examples:

Glyph c1 ...
Glyph myCircle ...
Path line ...
Path another_line ...
Document hello123 ...

4.3 Primitive Objects
Primitive objects can be used inside Glyph and Path objects to
construct the particular shapes. Their coordinates are defined
relative to the containing object, with (0, 0) coordinate being the
center of that container. Note that the order of primitive objects
matters, as the more recent objects will be rendered above the
older ones.

Stroke color and fill color can be set by using the color and
fillcolor commands.

a. point
A point primitive constructs a one-pixel point at the coordinate
specified by the &(x, y) arguments.

Examples:
 point[&(x, y)];

 11

 point[&(10, 30)];

b. line
A line primitive constructs a line that spans between the points that are
specified by the &(x

1
, y

1
) and &(x

2
, y

2
) arguments.

Examples:
 line[&(x1, y1), &(x2, y2)];
 line[&(10, 20), &(40, 50)];

c. circle
A circle primitive constructs a circle with radius rad and is centered at
the point specified by coordinate &(x, y).

Examples:
 circle[&(x, y), rad];
 circle[&(0, 10), 120];

d. rect
The rect primitive constructs a rectangle with the lower-left corner at
(x1, y1) and upper-right corner at (x2, y2).

Examples:
 rect[&(x1, y1), &(x2, y2)];
 rect[&(10, 10), &(100, 130)];

e. ellipse
The ellipse primitive constructs an ellipse with width w and height h,
and is centered at the point specified by coordinate &(x, y).

 ellipse[&(x, y), w, h];

f. polygon
The polygon primitive constructs a polygon that is composed of n-
points, with each i point specified by coordinates &(x

i
, y

i
), and i spans

from 1 to n.

 polygon[&(x1, y1), ... , &(xn, yn)];

g. int
The int primitive represents an integer value between -32,768 and
+32,767. It is currently used to specify a positional parameter in Path
objects. It is also automatically defined within a for statement, having the
name specified in the declaration of the loop.

 12

4.4 color and fillcolor
The outline color and fillcolor can be set explicitly, and apply to
all objects that are defined in the same block. If the color is
changed in the middle of the block, then subsequent objects will
inherit the new color. In the below example, the first rectangle and
line that are defined are color #COLOR1, whereas the third rectangle
is of color #COLOR2:

fillcolor[#COLOR1]
rect [&(0, 0), &(50, 20)];
line [&(0, 10), &(25, 30)];

fillcolor[#COLOR2]
rect [&(15, 20), &(100, 120)];

There are two ways to define colors. We have included sixteen basic
colors for the programmer’s convenience, but colors can also be
defined using the RGB value.

a. Basic Colors
The following table identifies the 16 basic colors that can be
specified as #colorname. The RGB column identifies the red,
green, and blue composition that corresponds to each of the
basic colors.

Color Corresponding RGB Value
Aqua (0,255,255)
Gray (128,128,128)
Navy (0,0,128)
Black (0,0,0)
Green (0,128,0)
Teal (0,128,128)
Olive (128,128,0)
Blue (0,0,255)
Lime (0,255,0)
White (255,255,255)
Purple (128,0,128)
Fuchsia (255,0,255)
Maroon (128,0,0)
Yellow (255,255,0)
Silver (192,192,192)
Red (255,0,0)

Additionally, we defined a #None constant that is interpreted by
Flash as an object with no fill.

 13

Examples:

 color[#Blue];
 fillcolor[#Red];
 fillcolor[#None];

b. RGB Colors
Advanced colors can be defined by their RGB value. To use a
color that is not pre-defined, use the following syntax. Note that
r, g, and b are integers between 0 and 255, specifying the RGB
color composition.

 fillcolor[#(r, g, b)];

Examples:

 fillcolor[#(0, 0, 100)];
 fillcolor[#(255, 0, 37)];

c. Color Precedence
A Glyph is composed from one or many primitive objects, each of
which has a color that is specified in the definition of the Glyph.
These colors can be overridden after the Glyph is created using
the SetColor and SetFillColor actions. These methods
override the color of each embedded primitive.

5 Action Type

5.1 Render
The Render action only applies to the Glyph foundational object. It
draws the Glyph on the Document, on a specified frame. The first
construct illustrates this action, which simply draws Glyph g onto
Frame frameNum. The Render action also has the flexibility to draw
the object on multiple frames, using the second construct below.
The second construct draws Glyph g from startFrame to endFrame,
placing glyph along Path object p. The range parameter can
optionally be specified with a step value if it is desired to render the
object with a lesser frequency.

Note that more recent Render statement will render on top of the
frames rendered by previous statements. Thus, that the order in
which Glyphs are rendered does matter in the resulting SWF movie.

 14

Examples:

Render [g, frameNum];
Render [g, ->(startFrame, endFrame), p];
Render [g, ->(startFrame, endFrame, step), p];
Render [ferrisCar, ->(1, 360), circularPath];

5.2 Rotate
The Rotate action applies to both the Glyph and Path objects. The
first argument for this action specifies the identifier for the Glyph or
Path object to be rotated. The degrees argument specifies the
integer number of degrees by which to rotate the foundational
object. The &(x,y) argument specifies the x- and y- coordinates of
the point around which to rotate the object.

Example:

Rotate [g, degrees, &(x, y)];
Rotate [p, degrees, &(x, y)];
Rotate [mySquare, 45, &(10, 10)];

5.3 Translate
The Translate action applies to both the Glyph and Path objects.
The first argument for this action specifies the identifier for the
Glyph or Path object to be rotated. The second argument specifies
the x- and y- values by which to shift the object from its current
position.

Example:

Translate [g, &(x, y)];
Translate [p, &(x, y)];

5.4 SetColor
The SetColor action only applies to the Glyph object. It allows for
the outline colors of the Glyph (which includes all primitive objects
by which the glyph is constructed) to be changed to the color
specified. The first argument for this action specifies the identifier
for the Glyph object to be colored. The #color argument specifies
the color that should be inherited by all primitive objects contained
within the Glyph.

Example:

SetColor [glyph, #color];

 15

5.5 SetFillColor
The SetFillColor action only applies to the Glyph object. It allows for
the fill colors of the Glyph (which includes all primitive objects by
which the glyph is constructed) to be changed to the color specified.
The first argument for this action specifies the identifier for the
Glyph object to be filled. The #color argument specifies the color
that should fill all primitive objects contained within the Glyph.

Example:

SetFillColor [glyph, #color];

6 Control Flow

6.1 Conditional
Logical expressions can be given using comparison operators such
as == and/or specified as arithmetic expressions. An expression
which evaluates to a non-zero value will be considered true, and one
evaluating to zero will be considered false. The operators that are
supported in a logical statement are included in Section 3.2. Unlike
Java or C, curly braces are required to denote the actions to be
performed.

Example:

if[(x + y) % z == 0)] { ... }

An optional else clause may be specified to denote actions that
should occur if the given condition is false.

Example:

if[condition]
{
 ...
}
else
{
 ...
}

6.2 Iterative
An iterative statement loops over a range of integers. The break
keyword may be used to exit a loop if a specific condition occurs.

 16

Additionally, the continue keyword may be used to step out of a
given iteration of the loop, and begin with the next iteration.

The specified var is automatically declared to be an int primitive
and loses scope when the block ends. The second parameter
specifies the range of iteration, with an optional step value. For
more information on specifying a range, see Section 3.6.
Note that curly braces are required to denote the actions to be
performed.

Example:

for[var : -> (fromValue, toValue)]
{
 statements
 ...
}

7 Compilation and Execution

Programs written in c.def are interpreted to Java code. Executing this
code produces an SWF file. The process can be performed using the
following steps:

1. Write a c.def program.

2. Run the c.def interpreter to convert this program to Java code, by

executing the following command:

 java CDEF filename.cdef

3. Now you will have a file called filename_CDEF.java in the current

working directory. Run this file to produce the resulting SWF.

 java filename_CDEF

 4. The file filename.SWF will now be in the current working directory.

It can be viewed with the Macromedia Flash viewer or embedded
in a webpage as desired.

 17

8 Sample Code
The following sample code produces an animation of a colorful Ferris
wheel with six cars.

/*
 c.def Language Example
 Flash animation of a Ferris Wheel
 Author: Dennis Rakhamimov
 Date: 10/24/2003
 */

/* Create a Flash animation with width=400, height=400 and white
 as the background color */
Document d[&(400, 400), #White]
{
 /* Ferris wheel base */
 Glyph base[]
 {
 line[&(0, 0), &(-100, -100)];
 line[&(0, 0), &(100, -100)];
 line[&(-100, -100), &(100, -100)];
 }

 Render [base, ->(1, 180)];

 /* A wheel's spike */
 Glyph spike[]
 {
 line [&(0, 0), &(0, 120)];
 }

 /* Define the wheel */
 Glyph wheel[]
 {
 for[i: ->(1, 6)]
 {
 //Alternate colors
 if[i + 2 == 0]
 {
 SetColor [spike, #Blue];
 }
 else
 {
 SetColor [spike, #Red];
 }

 Rotate [spike, 60, &(0, 0)];

 spike [];
 }

 18

 color[#Black];
 circle[&(0, 0), 120];

 fillcolor[#Red];
 circle[&(0, 0), 20];

 fillcolor[#None];
 }

 /* Render the rotation of the wheel over 180 frames */
 for[i : -> (1, 180)]
 {
 Render [wheel, i]; /* Place wheel on frame i */
 Rotate [wheel, 2, &(0, 0)]; /* Rotate wheel by

2 degrees */
 }

 /* Define a Ferris wheel car */
 Glyph ferrisCar[]
 {
 fillcolor[#Yellow];
 rect [&(0, 0), &(50, 20)];

 line [&(0, 20), &(25, 30)];
 line [&(50, 20), &(25, 30)];

 fillcolor[#Red];
 circle[&(25, 30), 3];

 fillcolor[#None];
 }

 for[i : ->(1, 6, 1)]
 {
 /* This is a path that ferris wheel cars will follow */
 Path circularPath[]
 {
 circle[&(0, 0), 120];
 point[&(0, 120)];
 int[i * 60]; /* start percentage */
 }

 /* Draw out the animation for this car wheel */
 Render [ferrisCar, ->(1, 180), circularPath];
 }

}

