

The BATS Language
Reference Manual

Behrooz Badii(Team Leader) Aleksandr Borovinskiy
 Tanya Shtemberg Sui Sum Wong

October 28, 2003

Introduction:

 The BATS language, a geometric figure drawing language, was designed to be
simple to use. Through its simplicity, complex figures can be drawn using complex
algorithms. The language also includes loops, conditional statements, and functions to
modularize a programmer’s language. These pieces of block structured programming are
essential for effectively representing geometric algorithms in an understandable format.
And since this is a drawing language the choice of declaring, assigning, and using lines,
as will be seen, will make drawing vastly easier. BATS will use an interpreter that
interprets BATS code into the target language Java.

Syntax (Grammar) notation:

 This language reference manual uses a pseudo-ANTLR language to represent the
grammar of BATS. Grammars are clearly divided from paragraphing and text to show
the grammar exactly. Alternatives are separated by the ‘|’ character. Nonterminals can
be placed in an optional set of parentheses, but they are also always italicized. Literals or
terminals are placed in single quotes (i.e. ‘1’, ‘e’). A set of literals, such as the alphabetic
set, can be placed in parentheses, where the first quoted literal is followed by two periods,
which is followed by the last literal of the set in single quotes. Optional expressions are
placed in parentheses followed by the questions mark character ‘?’. Iteration is placed in
parentheses followed by either the kleene star ‘*’, which means that the parenthesized
literals and/or syntactic categories can be matched zero or more times, or the plus
character ‘+’, which means that the parenthesized literals and/or syntactic categories must
be matched at least once. Epsilon is represented as /*nothing*/. So in the grammar:

 Yourname:
 Name (‘A’ . . ‘Z’)? (Name)?

 Name:
 (‘A’ .. ‘Z’) (‘a’..’z’)*

 Yourname is the starting symbol. The first name, or Name, is a syntactic
subcategory that expands to one uppercase letter followed by any number of lowercase
letters. After Name the middle initial is just an optional single uppercase letter. The last
name is just Name reiterated to match a last name.

Lexical conventions:

 The following are the tokens found in this language: identifiers, keywords,
constants, operators, and separators.

Separators:

Blanks (the whitespace), tabs, new lines, carriage returns, and comments are
ignored in token creation other than to serve the purpose of separating tokens. The input
stream, which is a file containing BATS programs, is parsed so that each token is taken to
include the longest string of characters which could possibly constitute a token. This
means the parser will keep adding to the token until it hits a whitespace, a tab, a new line,
a carriage return, or a comment.

Comments:
The question mark character # introduces a comment, which terminates

with a new line. Another convention for comments is starting a comment with the
characters #% and ending the comment with %#.

Identifiers (Names)

An identifier is a sequence of letters and digits where the first character must be
alphabetic. The underscore ‘‘_’’ is counted as a letter. Upper and lower case letters are
considered different. The following is the grammar for an identifier:

 Identifier:
 (‘A’..’Z’|’a’..’z’|’_’) (‘A’..’Z’|’a’..’z’|’0’..’9’|’_’)*

These are some examples of identifier names:

hello, hello1, _hi3, I_AM_A_VARIABLE

The following cannot be identifiers:

1joe, thr?ee, b|leach

Keywords

 Keywords are reserved words that aid the programmer in creating an
understandable program that the compiler will accept. These keywords are used for
things such as looping, conditional statements, and type declarations. To make them
easier to see in a BATS text, they all start with a capital letter. No identifier can have a
name identical to the following keywords:

Double Int Boolean Line Point From
To Draw Call Function Begin End
Start Terminate While For If Else
WhileEnd ForEnd IfEnd True False Do
Color Then

Constants

 There are three different types of constants in the BATS language: integer
constants, double constants, and Boolean constants. These three are defined as follows:

Integers:

An integer consists of a sequence of ASCII character ‘1’ to ‘9’, and that sequence

of ASCII characters represents its real number value. For example, the real number value
equivalent of the sequence “123” is 123 or one hundred twenty three. The following is
the grammar composing an integer constant:

Integer:
 (Digit)+

Digit:
 (‘0’ . . ’9’)

Doubles:

A double constant is a sequence of digits, followed by a mandatory ASCII

decimal or dot ‘.’, which is then followed by another sequence of digits, which is then
followed by an optional exponent. The exponent part of a double constant consists of an
upper or lower case ‘e’, followed by an optional positive or negative sign, followed by
another sequence of digits. The following is the grammar composing a double constant:

Double:
 (Digit)+ ’.’ (Digit)+ (Exponent)?

Exponent:
 (‘e’|’E’) (‘+’|’-‘)? [Digit]+

Notice the mandatory digit in front of the decimal. This makes the double

constant found in the BATS language similar to the double values in a regular hand-held
calculator. For example, the number .067 is represented as 0.067 in the BATS language,
which is similar to the representation of that number in a calculator. The following are
examples double constants:

145.167 145.167 E+26 0.12 e-13

The following are examples of input that can’t be a double constant:
145. .167 145. e+12

Booleans:

There are only two Boolean constants in the BATS language, and they are “True”
and “False”, representing the logical values of true and false, respectively. The following
is the grammar for a Boolean constant:

Boolean:
 ‘True’|’False’

What an Identifier Stands For

 An identifier can stand for another identifier, a constant, or a more complex set of
constants. The attributes of an identifier are the storage class and its type. The storage
class of an identifier defines the scope of an identifier, that is to say, how long and where
the identifier exists through the running of a program. Its type is the type of constant or
complex set of constants it stands for.
 Currently, there are two storage classes an identifier can choose from to have.
The first storage class is global. The identifier exists inside and outside all functions until
the program has terminated. A global identifier is declared outside all functions, in the
global arena. The second storage class is functional. Here, the identifier exists inside
only a specific function, and disappears when the function returns to its caller.
 The type of an identifier can be of the following simple constants:

• Integer:
Integers (Int) are represented by an actual integer value in the target

language of BATS, Java. Integers can have any value from –2147483648 to
2147483647, inclusive.

• Double:

Doubles (Double) are represented a double-precision floating point
variables found in Java. Doubles can have magnitude in the range of
approximately 10±38 or 0. The precision of a double is 17 decimal digits.

• Boolean:

Booleans (Boolean) are represented as the string “true” or “false” in Java.
Booleans are primarily used for conditional statements.

The type of a identifier can be a complex set of constants, which are:
• Point

Points (Point) are a set of two double identifiers. These are essentially
used for drawing and geometric figures. The following is the grammar of
a point:

Point:
 ‘(‘ Double ‘)’ ‘,’ ‘(‘ Double ‘)’

• Line

Lines (Line) are a set of two or more points. These are the building blocks
of BATS and they are important enough to be given a separate section
further down in this reference manual.

• Array
Arrays (Array) are a set of one type of identifier. One can have an array
of points, doubles, integers, Booleans, points, lines, or even arrays. An
identifier can also be an array with an index following it. For example, if
we have array a, a[0] would be the index of the first array. Array grammar
is described in its own section.

• Functions calls

Functions (Function) calls return an object of a given type. They can
return integers, doubles, Booleans, points, or lines. Function definitions
are described in its own section.

 An Identifier must be one of these, and nothing else.

Conversions between identifiers

 This section deals with the automatic conversions of identifiers in places where
one can be used for another:

 Integer to Double

Wherever a double can be used, an integer can also be used. The
conversion from an integer to a double does not create any information loss.

 Double to Integer

When doubles are converted to integers, there is information loss. Also,
doubles cannot be used in the place of integers. For example, array indexes are
based on integer values. It makes sense to look for the value at an array index of
2, but it does not make sense to look for a value at an array index of 2.56.

Variables

 Variables are expressions that stand for another expression. Expressions are
defined below. Some operators yield variables or expect them, and that detail will be
described for each operator.

Expressions

 The precedence of expression operators will be in descending order through their
explanation in this section. Operators in subsections have equal precedence. Note: 1st

level precedence is the highest precedence, 2nd level precedence is second highest, and so
on.

1st level precedence

 Expressions in the highest precedence are grouped right to left.

 Identifiers

 Identifiers are in this level. An identifier is an expression if it has been
properly declared and it has a variable of the proper type assigned to it. The
identifier in an expression gives that type.

Array indices

 Obtaining information from an array index or indices (in case of a multi-
dimensional array) has first level precedence. This is discussed in more detail in
the Arrays section

 Constants

 Constants (Integers, Doubles, Booleans) are in this level.

 Parenthetical expression

 (expression)

An expression with parentheses around it, (expression), is at this level.
The value of the parenthesized expression is equal to that of the expression inside
the parentheses.

 Function call

 A function call is an expression followed by parentheses containing a list,
possibly empty, of expressions that are the arguments of the function. These
arguments can be expressions that have to evaluate to the correct type of value in
the function definition (discussed in further detail in the Functions section).
Arguments are passed by value in function calls, since a copy is made of each
actual parameter. Recursive function calls are possible. The following is the
grammar for a function call:

 Funccall:

 ‘Call’ expression ‘(‘ Arglist ’)’

 Arglist:
 Expression | Moreargs

 Moreargs:
 ‘,’ expression | /*nothing*/

 Note: the expression after ‘Call’ has to be the name of a function.

2nd level precedence

Unary operators are in this level of precedence, and they are grouped
right-to-left.

Number Negation

To negate a number, which an integer or double, the following grammar is

needed:

Negate:
 ‘-‘ expression

This turns 25 into –25 and –45.7 into 45.7.

Boolean Negation

To negate a Boolean, the following grammar is needed:

NegateBool:
 ‘!’ expression

This turns False into True and True into False

Incrementing

To increment a variable, the variable must first be an integer. The type

stays intact, and the value of the integer is one higher than what it previously was.
The grammar is:

Increment:

variable’+’’+’

Decrementing

To decrement a variable, the variable must first be an integer. The type

stays intact, and the value of the integer is one lower than what it previously was.
The grammar is:

Decrement:

variable’-’’-’

3rd level precedence

Multiplicative operators, *,/, and %, are in this level of precedence, and

they are grouped left to right.

 Multiplication

Only two numbers can be multiplied. If two integers are multiplied, then
the product is an integer. If two doubles are multiplied, then the product is a
double. If an integer and a double are multiplied, the product is a double. No
other combinations are possible. The grammar is:

 Multiply:
 expression ‘*’ expression

 Division

Only two numbers can be divided. If two integers are multiplied, then the
product is an integer. If two doubles are multiplied, then the product is a double.
If an integer and a double are multiplied, the product is a double. No other
combinations are possible. The grammar is:

 Divide:
 expression ‘/’ expression

 Modular division

Only two integers can be used in modular division. It yields the remainder
from the division of the first integer by the second. The grammar is:

 ModDivide:
 expression ‘%’ expression

4th level precedence

Additive operators, + and -, are in this level of precedence, and they are
grouped left to right.

 Addition

Only two numbers can be added. If two integers are multiplied, then the
sum is an integer. If two doubles are multiplied, then the sum is a double. If an
integer and a double are multiplied, the sum is a double. No other combinations
are possible. The grammar is:

 Addition:
 expression ‘+’ expression

 Subtraction

Only two numbers can be subtracted. If two integers are subtracted, then
the subtraction result is an integer. If two doubles are subtracted, then the
subtraction result is a double. If an integer and a double are subtracted, the
subtraction result is a double. No other combinations are possible. The grammar
is:

 Subtraction:
 expression ‘-’ expression

5th level precedence
 Relational operators are in this level. They are grouped right to left.

 Less than
 Greater than
 Less than or equal

Greater than or equal

The operators <, >, <=, and >= evaluate to true if expression on the left
operator is less than, greater than, less than or equal to, and greater than or equal
to the expression on the right of the operator, respectively. The expression returns
false otherwise. The following are the respective grammars for the operators:

 Less:
 expression ‘<’ expression

 Greater:
 expression ‘>’ expression

 LessEqual:
 expression ‘<’’=’ expression

 GreaterEqual:
 expression ‘>’’=’ expression

6th level precedence
The equality operators are in this level of precedence, and they are grouped right

to left. So True == False != False has a result of False.

 EqualsEquals
 NotEquals

The equalsequals operator ‘==’ and notequals ‘!=’ return true when the

value of the expression on the left is equal and not equal to the value of the
expression on the right, respectively. It returns false otherwise. The grammars
are:

 EqualsEquals:
 expression ‘=’’=’ expression

 Notequals:
 expression ‘!’’=’ expression

7th level precedence
 And

The And operator is in this level of precedence. It is used to connect Boolean
expressions together. It is grouped right to left. The following is the grammar

 And:
 expression ‘&’&’ expression

 Both expressions must be Boolean. If both sub-expressions return true, the And
expression returns true, and it returns false otherwise.

8th level precedence
 Or

The Or operator is in this level of precedence. It is used to connect Boolean
expressions together. It is grouped right to left. The following is the grammar

 And:
 expression ‘|’|’ expression

 Both expressions must be Boolean. If both sub-expressions return false, the Or
expression returns false, and it returns true otherwise.

9th level precedence
 Assignment operators, which are found in this level, are grouped right to left. All
of them require a variable as their left operand, and the type of that variable being the
result of the expression on the right.

 Equals

In the Equals expression, the value of the right expression replaces that of
the object referred to by the variable in the grammar below. Both the variable

type and the expression result on the right must be of the same type (Int, Line,
Point, Double, Array, Boolean). The following is the grammar:

 Equals:
 variable ‘<’’-‘ expression

 EqualPlus
 EqualMinus
 EqualMultiply
 EqualDivision
 EqualModDivision

In the above expressions, the value of the variable plus, minus, multiplied
by, divided by, and modularly divided by the expression on the right replaced that
of the objected referred to by the variable in the grammar below, respectively.
The variable and expression can either both be of type integer, of type double, or
the variable can be of type double while the expression is of type integer. No
other combinations are allowed. The following are the grammars:

 EqualPlus:
 variable ‘+’‘<’’-’expression
 EqualMinus
 variable ‘-‘’<’’-’ expression
 EqualMultiply
 variable ‘*’’<’’-’ expression
 EqualDivision
 variable ‘/’’<’’-’ expression
 EqualModDivision
 variable ‘%’’<’’-’ expression

Declarations

 Declarations, specifically declaration lists, are used in the global scope (outside of
functions) to declare global variables, in function definitions, and in the first part of a
function to declare temporary function variables. However, the BATS programming
language has two kind of declaration lists, one specific for global variables, and another
for local variables. The following is the grammar for the global declaration list and the
local declaration list.

 DeclarationsGlobal:
 ‘Global’ type-specify identifier identifier-list ‘;’ (Declarations)?

 type-specify:

‘Int’|’Boolean’|’Double’|’Line’|’Point’|
’Array’ (‘[‘Integer’]’)+ typeforarray

 typeforarray:
 ‘Int’|’Boolean’|’Double’|’Line’|’Point’

 identifier-list:
 ‘,’ identifer (identifier-list)?

 The following is the grammar used for a declaration list as found in a function
body.

 Declarations:
 type-specify identifier identifier-list ‘;’ (Declarations)?

 type-specify:

‘Int’|’Boolean’|’Double’|’Line’|’Point’|
’Array’ (‘[‘Integer’]’)+ typeforarray

 typeforarray:
 ‘Int’|’Boolean’|’Double’|’Line’|’Point’

 identifier-list:
 ‘,’ identifer (identifier-list)?

 How Declared identifiers work

 Identifiers that are declared become variables. Each variable that has been
declared will yield its type and value or object. So if we have Int x. The type of variable
x is Int, which is an integer. Using an assignment operator, we can assign an integer to
the variable x. After that assignment, any usage of x will yield that assigned integer.

Statements

 Statements are executed in sequence unless a conditional, loop, or function is
used. Most statements are expressions with the following grammar:

 expression ‘;’

A statement can be a list of statements, or statement-list to be executed:

 statement-list:
 statement (statement-list)?

 Conditional Statements

 The grammar of a conditional statement is:

 IfBlock:

 ‘If’ expression Then statement (‘else’ statement)? ‘IfEnd‘

 If the evaluation of the expression in parentheses is true, then the first statement is
evaluated. If it is false, then if the optional else clause exists, it is evaluated. After this,
the ‘IfEnd’ keyword is matched and the program leaves the if block.

 Loops

 There are two loops used in BATS: the while loop and for loop.
 The while loop’s grammar is the following:

 WhileBlock:

‘While’ expression ‘Do’ statement ‘WhileEnd’

 While the Boolean value of the expression is true, then the statement is executed.
When the expression value is false, the WhileEnd keyword is found and the program
leaves the while block.
 The for loop has the following grammar:

 ForBlock:

‘For’ (expression)? ‘;’ (expression) ‘;’ (expression)? ‘Do’ statement
‘ForEnd’

 The first and last expressions are optional. The first expression is typically
initialization of a variable, like x = 0. The second expression is a test before iteration,
similar to the expression found in WhileBlock. The last expression is usually used to
increment or decrement of the variable initialized in the first expression. If the first and
last expressions are not present, then the for loop just becomes a while loop.

 Lack of a break statement

 To create cleaner and more of a block structured language, a break
statement found in Java and C is not found in the BATS language.

 Return statement

 A return statement is what a function uses to return to its caller. Each function
must return in the BATS language, even if what is returned by the function is not
assigned to anything. For example, a function can just return true and not assign the true
value to anything. The grammar for return is the following:
 Returnstmt:
 ‘Return’ expression ‘;’

Functions

 A major part of the BATS language is the use of functions. To be used, they first
must be defined in the following manner:

 FunctionDecl:

type-specify FunctionDeclarator FunctionBody

 FunctionDeclarator:
 Identifier ‘(‘ (Parameters)? ‘)’

 Parameters:
 type-specify Identifier Parameter-list

 Parameter-list
 ‘,’ Parameters | /*nothing*/

 FunctionBody
 ‘{‘ (Declarations)? Statement ‘}’

 If, in Parameters, a Double is stated, but an integer is passed to that function, the
integer is automatically converted to a double. The reverse does not occur. Functions
cannot be nested; functions are only declared outside other functions in the global scope.

Arrays

 Now we must realize how to get to a specific index of an array. The number of
bracket sets must be of the same number of brackets when the Array was declared. The
following is the grammar that is used to obtain information from an array.

 ArrayUse:
 Identifier (‘[‘ Integer ‘]’)+

 All one has to do to use an array is use ArrayUse after declaring an array and
assigning the correct type of variables to the array. Arrayuse is an expression, which
would evaluate the type and the value at the specified index. It has the same precedence
as identifiers, that is, first level precedence.

Lines

 Lines are special type of Variables, which can be compared to a single array of
type Point. However, there is a special syntax for Lines. In fact, there are many ways for
assigning a Line to a Line Variable, as is seen in the following grammar:

 AssignLine:
 ‘From’ Point (‘to’ Point)+
 | ‘(‘ Point (Point)+ ‘)’

 Of course, the Point can be expanded to two Double variables or constants that
have a comma between them. So that means these two Line assignment statements can
each both expand to various lexical notations. The following are example of how Lines
can be assigned to Line J (P1 and P2 are points, x1, x2, y1, and y2 are doubles or
integers):

 J <- From x1, y1 to x2, y2;
 J <- (x1, y1 to x2, y2);
 J <- From P1 to P2 to x1, y1 to x2, y2;
 J <- (P1 P2);
 J <- (15.0, 11.6 17.5,7);

Scope
 Global variables and functions, which are declared outside any other functions,
have scope over the entire program; in other words, they have global scope. They can be
used or called anywhere within the program. Any variables in a function have a local or
lexical scope limited to the function. After there is a return from the function, the
variables are thrown away.

Built-In Functions
 This section discusses two important functions that are usable in BATS: Color
and Draw.

 Color

The Color function is used to specify the color of the next Line to be
drawn (with the built-in function Draw). It takes in three double values (the Red,
Green, and Blue value that constitute the RGB value) for the next lines until Color
is called again. The default color for a line is black. The following is the
grammar for Color

 Color:
 ‘Color’ expression ’,’ expression ‘,’ expression

Calling the built-in function is an expression. Therefore, when it’s a
statement, a semicolon is added to the end to create something like the following
example:

 Color .05, .05, .05;

 This makes the next lines gray.

 Draw

This is the most important function in BATS, and it’s built-in, ready to be
used. Draw takes in a Line and produces it graphically on the screen in the
viewer. The following is the grammar for Draw:

Draw
 ‘Draw’ Line

So you can have the following examples of drawing using Draw.

Draw From x1, y1 to x2, y2;
 Draw (x1, y1 to x2, y2);
 J <- From P1 to P2 to x1, y1 to x2, y2; #if J is a Line
 Draw J;
 Draw (P1 P2); #if p1 and p2 are points
 Draw (15.0, 11.6 17.5,7);

BATS, an example:

Start #Start beings every BATS file
Global Line Xshape, Yshape, temp;
GlobalPoint x, y;
Boolean Begin #%This is the main file of a BATS program, the

compiler seeks this out and starts running code from
here%#

Int w, z;
w <- 100;
z <- 10;
x <- 100,0;
y <- 0,-100;
Xshape <- From –100,0 to x; #making x and y axes
Yshape<- From y to 0,100;
Draw Xshape; #drawing x and y axes
Draw Yshape;

While w > 0 Do
 temp <- (z,0 0,w);

 Draw temp; #draw top right quadrant
 temp <- (z,0 0,-w);

 Draw temp; #draw bottom right quadrant
 temp <- (-z,0 0,w);
 Draw temp; #draw top left quadrant
 temp <- (-z,0 0,-w);
 Draw temp; #draw bottom left quadrant
 w -<- 10
 z +<- 10
WhileEnd #note, indentation is not required

Return True;
End #ends Begin function
Terminate #This ends every BATS file

	Lexical conventions:
	Separators:
	Comments:
	What an Identifier Stands For
	Conversions between identifiers
	Variables
	Expressions
	Number Negation
	Boolean Negation
	Incrementing
	Decrementing

	Declarations

	Statements
	Functions
	Arrays
	Lines
	Scope
	Built-In Functions
	Draw

