
 Project Final Report

A Graphic Transformation Language

 May 8, 2003
 COMS W4115, Spring 2003
 Columbia University

2

3

Contents

Chapter 1: Language Overview

1.1 Introduction
1.2 Background
1.3 Related Work
1.4 Major Features
1.5 Primary Goal
1.6 Summary

Chapter 2: Language Tutorial

2.1 Integrated Development Environment
2.2 Basic Non-Graphic Programming
2.3 Graphic Programming

Chapter 3: Language Manual

3.1 Lexicon
3.2 Data Types and Classes
3.3 Language Structure
3.4 Comments
3.5 Data Flow Control: if-then-else
3.6 Iterations: for loop
3.7 Statements

3.7.1 Assignments
3.7.2 Class Functions
3.7.3 System Commands

Chapter 4: Project Plan

4.1 Team Responsibilities
4.2 Timeline
4.3 Development Environment
4.4 Programming Style Guide
4.5 Project Log

Chapter 5: Architectural Design

5.1 Language Components
 5.2 Language Structure and interface
 5.3 Design Feature

4

Chapter 6: Test Plan

6.1 Goal
6.2 Methods

Chapter 7: Lessons Learned

 7.1 Team Member’s Lessons
 7.2 Advice for the future

Appendix

A. Homogeneous Coordinates and Transformation Matrices
B. jGTL Grammar
C. Code Lists
D. Demo

Reference

5

Chapter 1

Language Overview

1.1 Introduction

jGTL is a high-level interpreter language, designed to help the programmer generate 3D
objects and perform transformation on them. jGTL language simplifies the, usually,
difficult task of modeling geometric objects, through integrated routines and methods.
jGTL allows the user access to complex operations, such as object scaling, translation,
rotation, and projection, on 3-D graphical objects, through the use of simple commands
and functions.

1.2 Background

In the context of graphic design, the programmer can use the modeling transformation to
position and orient the geometric object. For instance, you can rotate, translate, or scale
the 3D object and/or perform combinations of two or more of those operations.

Specifying the projection transformation is like choosing a lens for a camera. You can
think of this transformation as determining what the field of view or viewing volume is
and therefore what objects are inside it, and to some extent, the description of their
physical representation. In addition to the field-of-view considerations, the projection
transformation determines how 3D objects are projected onto the 2D screen. There are
two types of projections: perspective and orthographic. Perspective projections match
how you see things in real life, while orthographic projections map objects directly onto
the screen without affecting their relative size.

All those geometric operations on 3D space coordinates can be implemented by
computing 4x4 transformation matrices on homogeneous coordinates in the domain of
(x, y, z, scale). (There are more details in Appendix A)

1.3 Related Work

Most of the graphic related libraries included in some sophisticated popular languages
such as Virtual or Borland C++, Java and Delphi are very large and complicated. There is
no commercial software that provides simple operational commands on geometrical

6

transformation of 3D objects. Furthermore, OpenGL Utility Library (GLU) provides
about 150 distinct commands to specify the objects and operations needed to produce
interactive 3D applications. And there are more complicated the graphical terminology
and definitions in java 3D. jGTL overcomes the complexity of such graphic concepts and
commands. As a basic graphic transformation language, jGTL performs viewing,
modeling, projecting transformations on 3D objects and it manipulates the 4x4 matrix
operations.

1.4 Major Features

The jGTL language is designed to be simple, intuitive, portable, friendly programming
and object-oriented.

Simple

The simple standard basic syntax (similar to Java and C) and transformation functions
help reduce the code problems. The jGTL language implemented the complicated and
tedious matrix operations into the predefined functions, which as a result produces higher
efficiency and simplifies 3D graphics coding.

Intuitive

The jGTL language implements computer graphical transformations of geometric figures
into some intuitive commands. User can see and play those 3D objects in the graphic
interface of jGTL integrated development environment (IDE) directly.

Portable

The jGTL compiler will output code to be embedded in a java class. Therefore the
programmer is guaranteed to have machine-independence.

Friendly Programming

One objective is to minimize the amount of time the programmer takes to learn the
language. Instead, we want to provide a very intuitive environment that will allow the
user to master the language in a matter of hours and hence increase productivity. To that
extent, most of jGTL commands will be specific and intuitive. For instance, if the user
wants to draw a polygon connected by lines, the obvious command will be
“JdrawConfig()”. Also, the graphic integrated development environment (IDE) makes
the coding in jGTL easy and convenience.

7

Object-Oriented

The jGTL language is an object-oriented language, in which each defined geometrical
point is an objects that have such attributes as transforms and matrix operations functions.

1.5 Primary Goals

Besides the basic language elements as mathematic operation, data flow control and
iteration, the jGTL language implemented the following 3D graphic functions: scaling,
translation, rotation and projection. As a high level interpreter, our objective is to
construct a programming language that will focus on handling the following 3D
geometric operations:

• Set of 3D geometric models in any orientation by transformations (3D space).
• Control the location in 3D space from which the model is viewed.
• Transfer the 3D space coordinates of objects to planar coordinates in order to

model the geometric figure into the computer screen.
• Manipulate the appropriate matrix stacks responsible to control the 3D object

model transformation.

1.6 Summary

The jGTL language provides a powerful and simple choice to 3D graphics transfer
programming. With this object-oriented language and its graphic development
environment, user can control the geometrical transformation of 3D objects easily and
quickly. It is good for the user without much computer programming experience and
graphical knowledge to learn and play basic 3D graphic transformation. It is also good
choice for the user who wants to do general graphic transformation calculation or
graphing without learning OpenGL or java 3D.

8

Chapter 2

Tutorial

2.1 Integrated Development Environment

jGTL interpreter was implemented with a friendly and easy-use graphic integrated
development environment (IDE) interface. All the jGTL I/O operations, source code
editing, debugging and running, graphic viewing, and manual referencing can all be done
in this integrated graphic interface.

Using Command $java IDE can active the graphic interface and start programming with
jGTL language. Fig 2.1 is an example of jGTL IDE main window.

 Fig 2.1 jGTL Main Window

The main window is a simple frame contains menus, buttons and text fields to help
programming with jGTL interpreter.

Text field A is the source code edit area. User can input and edit the jGTL source code in
this region. And at the running time, the program will load and parse the source code
from this text area.

9

Text field B is the output area, where printing out all the running time information
including I/O messages, running error reports, and program non-graphic outputs
(specified by the commands like JprintLine() and JprintList(), see chapter 3).

G can clear those text fields.

C and D is the file I/O handling to open and save source code. For example, clicking on
the button “Open Files” a file open dialog could show up as in Fig 2.2.

 Fig 2.2 File Open Dialog in jGTL

E is the “Run” button to control running of the jGTL codes that were showed in the
source code input field (A). Once this button is clicked, the jGTL source code in the input
field will be interpreted and executed line by line. The non-graphic outputs will be
printed in the output text field (B). If there are graphic output commands in the code, a
graphic explore window will popup and show the 3D graphic results of the jGTL source
code that has been executed. F button can turn on and off those graphic windows.

Fig 2.3 Graphic Explorer of jGTL

10

H is the “Help” button witch can popup a simple help documents browser. The user can
use this browser to check the language reference manual, tutorial and demo at the time of
coding. A snap shot of help browser is showed in Fig 2.4.

Fig 2.4 Help Browser of jGTL

The graphic IDE interface offers an easy and friendly coding environment for the jGTL
user.

2.2 Basic Non-Graphic programming

jGTL language try to use a standard grammar as Java or C to make it friendly to user.
The syntax and semantic of value assignments, mathematic, comparing and logic
operations, comments, if-then-else data flow control, for iteration are almost the same as
the standard of Java language. User with some programming experience in modern
language can pick it up easily.

Here is a simple example of jGTL code to calculate the sum of numbers from 1 to 100.

/*******A Example to Calculate 1+..+100 ******/
n_max=100; //Initial the max number
n_result=0; //Initial the result identify
for(ni=1; [ni<=n_max]; ni=ni+1)
{
 n_result=n_result+ni;
} //End of for loop

$JprintLine("The sum of 1 to 100 is: ", n_result); //Print out the result
/***********End *************************/

11

The output of this example code in the output field is as following:

Run Successfully!
The sum of 1 to 100 is: 5050.0

As an object-oriented language, there are six data types or classes are implemented in
jGTL. They are boolean, string, number, point, group and matrix, the last three are
especially for the graphic programming. In jGTL, there are some special rules for the
specific class identify definitions: the identifiers for string should start with ‘s’ or ‘S’; the
identifiers for number should start with ‘n’ or ‘N’; the identifiers for Boolean should start
with ‘b’ or ‘B’; the identifiers for point should start with ‘p’ or ‘P’; the identifiers for
group should start with ‘g’ or ‘G’ and the identifiers for matrix should start with ‘m’ or
‘M’. By this simple way, user easily declares a class by using the first letter of the
identifiers. So in Java, to declare an object of Double contained number 1.2 should use:
Double d = new Double (1.2). While in jGTL, just use n_d =1.2, n_d is start with n, so it
is a number object.

Here is another example to show the usage of the first letter of the ID to declare an
object.

n1=n2=3;
n3=n1-n2+7;
S1= "Welcome";
B1= true;
B2= false;
B3= B1||B2;
m1=[[1,1],[0,0]];
p1={1, 1, 1, 1};
p2={2, 2, 1, 1};
g1=<p1, p2>;
$JprintLine(S1," ", B3," ", n3, " ", "well");
$JprintLine("We are here.");
$JprintList(p1, g1, m1);

And the output would be:

Run Successfully!
Welcome true 7.0 well
We are here.
 1.00 1.00 1.00 1.00 #

 1.00 1.00 1.00 1.00 #
 2.00 2.00 1.00 1.00 #

12

 1.00 1.00 #
 0.00 0.00 #

2.3 Graphic programming

Point, group and matrix classes are especially for the graphic programming in jGTL.
Once an object is declared as one of them, the object could have all the functions of the
class that it is. There are 10 functions in Point class, 12 functions in Group class and 18
functions in matrix class (see chapter 3). By use those functions user can almost handle
any kinds of space transformation as scaling, translating, rotating and projecting easily
and in multiple ways.

There are some commands statements are offered in jGTL to draw the 3D points and
lines in the graphic interface to visualize the cool 3D geometrical objects. They are as
following: $JdrawPoint() could draw a point or group of points into the canvas,
$JdrawLine() could draw a line to link the two parameter points , $JdrawConfig() could
draw the lines to link the group of points in order.

The following is jGTL exampling code to draw a S2 symmetrical space group and link
the three points with lines. The graphical output is as the Fig 2.5

/*******Draw a S2 space group ***********/
//Initial Points
p0={0.0, 0.0, 0.0, 2.0};
p1={-1.0, 0.0, 0.0, 2.0};
p2={ 1.0, 0.0, 0.0, 2.0};
//Rotate around Z-axis to get another two points.
p2:JRotate(60, 0.0, 0.0, 1.0)->p21;
p2:JRotate(-60, 0.0, 0.0, 1.0)->p22;

//Define a group including all points
g1=<p0, p1, p21, p22>;

//Draw the group of points
$JdrawPoint(g1, 0.0, 1.0, 0.0, 0.12);

/**************Draw Lines **************/
$JdrawLine(p0, p1, 1.0, 0.0, 1.0, 0.06);
$JdrawLine(p0, p21, 0.0, 1.0, 1.0, 0.06);
$JdrawLine(p0, p22, 0.0, 1.0, 1.0, 0.06);
/***************END**********************/

13

 Fig 2.5 SP2 Symmetrical Group

Here is another jGTL exampling code to draw a S3 symmetrical space group and link the
points. The graphical output is as the Fig 2.3

/************START***************/
//Initial Points
p0={0.0, 0.0, 0.0, 2.0};
p1={ 0.0, 1.0, 0.0, 2.0};
p1:JRotate(-109.5, 0.0, 0.0, 1.0)->p2;
p2:JRotate(120, 0.0, 1.0, 0.0)->p3;
p3:JRotate(120, 0.0, 1.0, 0.0)->p4;

//Define a group include all points
g1=<p0, p1, p2, p3, p4>;
$JdrawPoint(g1, 0.0, 1.0, 0.0, 0.1);

/**************Draw Lines **************/
g1:JgetSize()->n0;
for(n1=1; [n1<n0] ; n1=n1+1)
{ g1:JgetPoint(n1)->ptemp;
 $JdrawLine(p0, ptemp, 1.0, 0.0, 0.0, 0.04);
}
for(n1=2; [n1<n0] ; n1=n1+1)
{ g1:JgetPoint(n1)->ptemp;
 $JdrawLine(p1, ptemp, 0.0, 1.0, 1.0, 0.04);
}
g3=<p2,p3,p4,p2>;
$JdrawConfig(g3, 0.0, 1.0, 1.0, 0.04);

More examples of jGTL source codes could be found in the Appendix D Demo part.

14

Chapter 3

Reference Manual

The Graphic Transformation Language, jGTL, like many other languages, tries to use a
standard grammar as Java or C to make it easy and friendly to user. The specific language
grammar definitions and usages are described as following.

Notation

The descriptions of lexical analysis and syntax use a BNF grammar notation.

Each rule begins with a name (which is the name defined by the rule) and a colon. A
vertical bar (|) is used to separate alternatives; it is the least binding operator in this
notation. A star (*) means zero or more repetitions of the preceding item; likewise, a plus
(+) means one or more repetitions, and a question mark (?) means zero or one
occurrences (in other words, this phrase is optional). The * and + operators bind as tightly
as possible; parentheses are used for grouping. In lexical definitions, two more
conventions are used: Two literal characters separated by two dots mean a choice of any
single character in the given (inclusive) range of ASCII characters.

3.1 Lexicon

Characters. Character literals are specified just like in C. They may contain octal-escape
characters (e.g., '\377'), and the usual special character escapes ('\b', '\r', '\t',
'\n').
 charVocabulary ='\3'..'\377'

Whitespace. Spaces (‘ ‘), tabs (‘\t’), and newlines (‘\n’) are separators in that they can
separate vocabulary symbols such as identifiers, but are ignored beyond that. For
example, "name1 name2" appears as a sequence of two token references. White space is
only meaningful to separate tokens.

End of line. The end of a logical line is represented by the token NEWLINE, which is
‘\n’, ‘\r’ or ‘\r’‘\n’. Statement can’t cross the logical line boundary.

End of file. The EOF token is automatically generated at the end of the source code.

15

Identifiers. An identifier is a sequence of letters or digits, the first of which must be a
letter. There is no limit on the length of an identifier. Two identifiers are the same if they
have the same character for every letter and digit.

 ID options {testLiterals=true;} : ('a'.. 'z'|'A'..'Z') ('a'..'z'|'A'..'Z'|'_'|'0'..'9')+ ;

In jGTL, there are some special rules for the specific class definition: the identifiers for
string should start with ‘s’ or ‘S’; the identifiers for number should start with ‘n’ or ‘N’;
the identifiers for Boolean should start with ‘b’ or ‘B’; the identifiers for point should
start with ‘p’ or ‘P’; the identifiers for group should start with ‘g’ or ‘G’ and the
identifiers for matrix should start with ‘m’ or ‘M’. By this simple way, user declares a
class by using the first letter of the identifiers.

Keywords. The following identifiers are used as reserved words, or keywords of the
language, and cannot be used as ordinary identifiers. They must be spelled exactly as
written here:

if then else for

false true

sqrt bas sin cos tan
JTranslate JRotate JScale JOrtho JFrustum
JMulti JUnit JAppend JsetScale
JInverse JNegate JsetIdentity JsetElement JsetRow
JsetColumn JsetValue JgetElement JgetRow JgetColumn

JgetPoint JgetSize JaddScale JaddMatrix

JsubScale JsubMatrix JmulMatrix JmulScale

JprintLine JprintList JdrawPoint JdrawLine JdrawConfig

 Table 3.1 jGTL keywords

Operator. An operator is a token that specifies an operation on at least one operand, and
yields some result (a value, side effect, or some combination).

ALL Mathematic operations in jGTL are listed in Table 3.2, their operands are
expressions or constants (a form of expression). The first order operators sqrt(), abs(),
sin(), cos() and tan() can have only one operand. For example: N1=sqrt(2); N2=abs(-4).
+(plus) and –(minus) would have one or two operand. For example: N3= -6; N4=+2.3;
N3 = N1+ 2; other operators must have two operands. For example: N5=2*4; N6=7^2;
N7=5/2; N8=3%2;.

All operators are ranked by precedence, a ranking system determining which operators
are evaluated before others in a statement. In jGTL, operators sqrt(), abs(), sin(), cos()

16

and tan() are the first order operations, ^(power) is in the second order, *(multiple),
/(divide) and %(mod) are the third order operations, +(plus), -(minus) are the last order
operations. As in C and Java, () are used to assign the highest order of all operators, and
all the expressions are left-associated. For example: (2+3)/2.

 expr : (mexpr ((‘+’ | ‘-‘) mexpr)*)| ((‘+’ | ‘-‘) mexpr)+;
 mexpr: pexpr ((‘*’ | ‘/’ | ‘%’) pexpr)*;
 pexpr: mole (‘^’ mole)?;
 mole : (SQRT^|ABS^|SIN^|COS^|TAN^)atom|atom;
 atom : NUMBER|(‘(‘! expr ‘)’!)
 | ID;

Operator Name Order Example

sqrt() Squre root First sqrt(4)=2
abs() Absolute val First abs(-5)=5

sin() sin function First sin(1.57)=1

cos() cos function First cos(3.14)=1

tan() tan function First tan(0.785)=1
^ Power Second 2^3=4
* Multiple Third 2*3=6

/ Divid Third 2/3=0.666
% Mod Third 2%3=2
+ Plus Fourth 2+3=5
- Minus Fourth 2-3=-1

 Table 3.2 jGTL Mathematic Operators

The comparison operations in jGTL are “==”, “!=”, “>=”, “<=”, “>” and “<”, them
have the same priority, which is lower than that of any arithmetic. Each of them must
have two operands at both sides. In jGTL, the operands of a comparison operation is two
arithmetic expressions, and the comparison operation must be encompassed in a pair of [
]. The jGTL compile will evaluate the comparison by return a Boolean “true” or “false”.
Notice that the jGTL comparison operations are very strict about parentheses: every
expression must be enclosed in parentheses.

 condi_comp : ‘[‘ ! (expr)
 (“==”| “!=”| “>=”| “>”| “<=”| “<”)
 (expr) ‘]’ !
 ;

Operator Name Example

17

== Equal [n1==1]
!= Not Equal [n1!=2]

>= Great than or Equal [n1>=2]
<= Less than or Equal [n2<=3]
> Great than [n1>0]
< Less than [n2<0]

 Table 3.3 jGTL Comparison Operators

Relation operations “&&”, “||”, “!” are used in jGTL by control flow statements if-else
and for-loop conditions. Relation operations have the lowest priority of all jGTL
operations, and () could be also used to assign the evaluation order of Relation
operation. The operands of relation operations must be comparison operations. The NOT
has only one operand, AND and OR both has two operands. As in arithmetic operation,
the relation operation is also left-most associated. For example: [n1>2]&&[n2<0] ||
[n3!=2] is as ([n1>2]&&[n2<0]) || [n3!=2].

 condition : (condi_comp|(‘(‘!condition ‘)’!) |ID | TRUE | FASLE)
 (“&&”| “||” | “~”)
 (condi_comp|(‘(‘ !condition ‘)’!)| ID | TRUE | FASLE))*
 ;

Operator Name Example

&& AND [n1==1]&&[n2==0]
| | OR [n1!=2] | | [n2>1]

! NOT ![n1>=2]

 Table 3.4 jGTL Relation Operators

There is an example for relation operation:
 n1= 3;
 n2= 5;
 [(n1+n2)>5]&&(!([n1>1]||[n2>6])) will return false
 [(n1+n2)>5]&&(([n1>1]||[n2>6])) will return true
 [(n1+n2)>9]&&(([n1>1]||[n2>6])) will return false

Punctuators. Some characters in jGTL are used as punctuators, which have their own
syntactic and semantic significance. Punctuators are not operators or identifiers. Table 2
lists the jGTL punctuators.

Punctuators Use Example
{ } compound statement

delimiter for for-loop and
if-else statement; Point
expressions

 for(n1=0; [n1<4];
n1=n1+1) { n2=n2+1;
n3=n2+1;}

18

if-else statement; Point
expressions

n3=n2+1;}

{1.1, 1.2, 1.3, 1.0}
() Function and Command

parameter list delimiter;
also used in operate
expression

P1:JRotate(180, 1,1,0)->P2;
$draw(P1);

2*(1+3);
< > Group expression <p1, p2, p3>
[] Matrix expression;

comparison operation
[[1 2 3], [2 3 1], [3 21]]
[n1>2]

; Statement ends N1=1;
= Identify assignment N1=2; p1={1, 2, 3, 0};
Multiple Identifiers

assignment
N1=N2=2.3;

: and -> Function Assignment P1:JTranslate(1, 2, 3)->P2;
$ System Command $draw(P1);
“ ” String S1= “Hello.”
// and /* , */ Comment //This is a comment.

*, /, +, -, ^, % Arithmetic Operation N1+N2

<, <=, >, >=, != and == Comparison Operation [N1<=2]

&&, | |, ! Relation Operation [N1==2]&&[N3!=2]

 Table 3.5 jGTL punctuators

3.2 Data Type and Classes

There are six data types or classes are implemented in jGTL (Table 3.6), point, group and
matrix data types are special for graphic programming.

Data Type Examples Comments

Boolean true, false, [n>2] The expression must in []
String “This is a “”Test”” string.” Double quote;
Number 12, 12.3, 12e-2, 12.2e1 Include C’s INT and Float
Point {1, n1*2, -3}, {1, n1, 3, 4} 1<=(element number)<= 4
Group <p1, p2, p3> A list of Point
Matrix [[1, 2, 3], [3, 2, 1], [2, 1, 3]] Row number = Column number

 Table 3.6 jGTL Data Types and Classes

19

Boolean. Boolean class is used for the logic operations. It have two values “true” or
“false”, it also could be the logic results of comparison and relation operations. For
example: B1=true; B1=false; B3=[n1>=1]; B4=!(B1||(B2&&B3)).

String. String constants are enclosed in quotes. String constant must be contained on a
single line and may contain double quotes. For example: “This is a constant with
“”double quotes””.”, jGTL compiler will recognize the string as: This is a constant with
“double quotes”.

 String : '"'! (~('"' | '\n') | ('"'!'"'))* '"'! ;

Number. Simply, the number includes the INT and Float that defined in C language.
E.g. the following are the legal number: 12(Integer), 12. , .3 , 12E2 , 12.3 , 12.E2
, .3E2 , 12.3E2 . And others are illegal number expression.

DIGIT : '0'..'9';
INT : (DIGIT)+;
EXPONENT : ('e'|'E')('+'|'-')?(DIGIT)+;

NUMBER : ((INT) ((('.')(((INT)(EXPONENT)?) | (EXPONENT)?))|EXPONENT)?)
 | ('.'(INT)(EXPONENT)?) ;

Negative parts of all the above number definitions are allowed in jGTL. Although it is
defined as an operate expression, For example, -23 will be recognized as 0-23, there is no
difference to user.

Point. Point class is a list of numbers with the format {x, y, z, scale}. For example: a two
dimensional point {1.1, 2.1, 0, 1.0}, and a four-dimensional point {1.1, 1.2, 1.3, 1.0}. In
jGTL, the number of point elements is limited to 4. You could define a point with less
than four elements, and the undefined parts will be set to the default value {0, 0, 0, 1.0}.
For example: input { }, the program will automatically recognize it as {0, 0, 0, 1.0}. The
element of point would be any number, predefined number ID and operate expression.
For example: n1=1.2; n2=2.3; p1={n1, -n2, 3.3, n1*n2}.

Group. Group class is a list of pre-defined point identifiers or point expressions with the
format <p1, p2 …>. For example: p1={1, 2, 3, 0}; g1=<p1, {2, 3, 4, 1}>;. . User can
construct an object by specifying a group of points in that object. In jGTL, the number of
group element—point is unlimited. The empty group can be declared as g1=< >; , while
all functions of Group data type except JAppend() require the current group be
nonempty.

Matrix. The matrix class is a two dimensional list of number with the format [row1,
row2, row3 …] which has the same row number and column number. For example: [
[1.1, 1.2, 1.3], [2.1, 2.2, 2.3], [3.1, 3.2, 3.3]]. In jGTL, the number of elements in each
row is unlimited and must be large than one. A 4x4 matrix is always used for the three-

20

dimensional coordinates transformation operations. The element of matrix would also be
any number, predefined number ID and operate expressions. For example: n1=1.2;
n2=2.3; m1=[[n1, n2], [3.3, n1-n2]].

3.3 Language Structure

The jGTL is a kind of line-interpreted languages. It executes the source code line by line.
There are four basic logic line formats that are listed in Table 3.7, and their format,
grammar and usage will be described in following several parts.

Logic-line

Comment If-Else For-Loop Statement;
Assignment Function System// one line

or
/*
BLOCK*/

IF condition
THEN
{Logic-line}
ELSE
{Logic-line}

For
(initial-
condition)
{Logic-line}

ID =
Element

ID :
Function-
Name (args)
-> ID

$Command
(args)

 Table 3.7 jGTL Language Structure

3.4 Comments

jGTL accepts line and block comments similar to Java-style. For example,

Line comment: A single line start with at least two slashes--‘//’.
// This a line comment start with two slashes. Or
/// This is a line comment start with three slashes.

Block comment: Several continue lines start with ‘/*’ and end with ‘*/’, no extra slash ‘/’
is allowed in block.
/******This is a block comment ********
@Author
@Tile
**********************************/

jGTL use Java-style flow control if-else and iteration for-loop.

3.5 Data Flow Control: If-then-else

The if-else logic line has the following syntax:

21

 if_else : IF condition
 THEN { (logic-line)*}
 (ELSE {(logic-line)*})?
 ;

 condition : (condi_comp|(‘(‘!condition ‘)’!) |ID | TRUE | FASLE)
 (“&&”| “||” | ‘!’)
 (condi_comp|(‘(‘ !condition ‘)’!)| ID | TRUE | FASLE))*
 ; (see Table 3.3)

 condi_comp : ‘[‘ ! (expr)
 (“==”| “!=”| “>=”| “>”| “<=”| “<”)
 (expr) ‘]’ !
 ; (see Table 3.4)

 logic-line : Comment| If-else | For-loop| Statement ; (see Table 3.7)
 expression: is defined as all kinds of arithmetic operation. (see Table 3.2)

For example: if [n_scale >0] then {n_scale= - n_sacle;}
 If [n1<0] then {n2=n2+n1; n3=n2+2;} else {n3=0;}

3.6 Iteration: for loop

The for-loop logic line has the following syntax:
 for_loop : FOR for_init
 { (logic-line)*};

 for_init : ‘(‘ assignment ‘;’condition ‘;’ assignment ‘)’;
 assignment : ID = Element ; (Element is one of data type. See Table 3.6)

For example: for(n1=1; [n1<10]; n1=n1+1) { n_f=n_f*n1; }

The nested If-else and For-loop and the intersection of If-else and for-loop are accepted
in jGTL. For example:

 n1= -1;
 g1=< >;
 if [n1<0] then
 { for (n2=0;[n2<3]; n2=n2+1)
 { p1={n2, n2, -n2,-n2};
 g1:JAppend(p1)->g1; } //End of for
 } //End of if

22

3.7 Statements

A statement is a logic line ended with a semicolon (;), It could be an assignment as
n1=1+2*(3+2);, or a function as p1:Translate(1.1, 1.2, 1.3); or a system command as
$write(“Hello, world.”);.

3.7.1 Assignments

In jGTL, assignment statement is defined as ID = Element; where ID is one following
case: the identifiers for boolean start with ‘b’ or ‘B’; the identifiers for string start with ‘s’
or ‘S’; the identifiers for number start with ‘n’ or ‘N’; the identifiers for point start with
‘p’ or ‘P’; the identifiers for group start with ‘g’ or ‘G’ and the identifiers for matrix start
with ‘m’ or ‘M’. The elements are the corresponding data structure: number, point, group
and matrix as defined in (2) Data Types. Here are some examples.
 B1= true; S1= ”Hello”; N1=2.3+34/2; P1= {1.1, 1.2, 1.3, 0};
 G1=<{1.1, 1.2, 1.3 0}, P1>; M1=[[1, 2, 3], [2, 1, 3], [3, 2, 1]];

The element can be assigned to several identifiers at the same line in jGTL:
 N1=N2=3=2.3; P1=P2=P3= {1.1, 1.2, 1.3, 0};.

The right side of the assignment could be the original corresponding data type or the
corresponding operation results. For example:
N1= 2+3/2; N1= N1-2; B1=true; B2= [N1>=2]&&B1; P1={N1, N2, N1-N2, 1};
G1= <p1, {N1, N2, -N1, -N2}>; M1=[[n1, n2], [3.3, n1-n2]].

Empty assignments for point and group are allowed. If point is assigned as p1={ }; the
compile will automatically assign the default values to p1 as {0, 0, 0, 1}. If a group ID is
assigned as g1=< >;, this group will contain nothing, and it can only use JAppend()
function as a group data type.

3.7.2 Class Functions

In jGTL, function statement of class point, group and matrix is defined as ID:function-
name(args)->ID. The First ID before “:” is the current class object to be operated, and the
second ID after “->” is the return object ID, the result will be stored in the return object,
and it does not need to be predefined. The number and format of arguments of each
function is fixed and will be checked while compiling.

The jGTL function-names and their arguments for Point, Group and Matrix class are
summarized as following.

23

(1) Functions for point class:

Point: Summary

Return
data type

Function Fields

Point JTranslate(number x, number y, number z)
Translate a point by the given x, y, z values

Point JRotate(number angle, number x, number y, number z)
Rotate a point in a counterclockwise direction about the vector from the
original to the point (x, y, z). The angle parameter specifies the angles of
rotation in degrees.

Point JFrustum(number left, number right, number bottom, number
top, number near, number far)
Do a perspective-view frustum projection to a point. The frustum’s view
volume is defined by the parameters: (left, bottom, -near) and (right, top,
-near) specify the (x, y, z) coordinates of the lower-left and upper-right
corners of the near clipping plane; near and far give the distances from
the viewpoint to the near and far clipping planes. They should always be
positive.

Point JOrtho(number left, number right, number bottom, number
top, number near, number far)
Do an orthographic parallel view volume projection to a point. (left,
bottom, -near) and (right, top, -near) are points on the near clipping
plane that are mapped to the lower-left and upper-right corners of the
viewpoint windows, respectively. (left, bottom, -far) and (right, top, -far)
are points on the far clipping plane that are mapped to the same
respective corners of the viewpoint. Both near and far can be positive
and negative.

Point JScale(number x, number y, number z)
Stretch (>1), shrink (<1), or reflect (<0) a point along the axes. The x, y,
z coordinates of point is multiplied by the corresponding arguments x, y,
or z. Scaling with values greater than 1.0 stretches an object and using
values less than 1.0 shrinks it. Scaling with a –1.0 value reflects an object
across an axis.

Point JUnit(number radius)
Move the point towards or backwards the original point (0, 0, 0). The
distance between the current point and the original point is specified by
parameter radius.

Point JMulti(matrix m)
Multiple the current point with the parameter 4x4 matrix m, return a new
point value.

24

Point JsetScale(number scale)
Re-organize the homogeneous coordinates of the current point. Return a
same point with a different scale (the fourth coordinate) as the parameter
scale.

Group JAppend(point p)
This function will append the parameter point p at end of the current
point and combine the two points into group and return the group.

Group JAppend(group g)
This function will append the parameter point group g at end of the
current point and combine those points into a group and return the group.

(2) Functions for group class:

Group: Summary

Return
data type

Function Fields

Group JTranslate(number x, number y, number z)
Translate a group of points by the same given x, y, z values

Group JRotate(number angle, number x, number y, number z)
Rotate a group of points in a counterclockwise direction about the vector
from the original to the point (x, y, z). The angle parameter specifies the
angles of rotation in degrees.

Group JFrustum(number left, number right, number bottom, number
top, number near, number far)
Do a perspective-view frustum projection to a group of points. The
frustum’s view volume is defined by the parameters: (left, bottom, -near)
and (right, top, -near) specify the (x, y, z) coordinates of the lower-left
and upper-right corners of the near clipping plane; near and far give the
distances from the viewpoint to the near and far clipping planes. They
should always be positive.

Group JOrtho(number left, number right, number bottom, number
top, number near, number far)
Do an orthographic parallel view volume projection to a group of points.
(left, bottom, -near) and (right, top, -near) are points on the near
clipping plane that are mapped to the lower-left and upper-right corners
of the viewpoint windows, respectively. (left, bottom, -far) and (right,
top, -far) are points on the far clipping plane that are mapped to the same
respective corners of the viewpoint. Both near and far can be positive
and negative.

Group JScale(number x, number y, number z)
Stretch (>1), shrink (<1), or reflect (<0) a group of points along the axes.
Each x, y, z coordinates of every point in the group is multiplied by the
corresponding arguments x, y, or z. Scaling with values greater than 1.0
stretches an object and using values less than 1.0 shrinks it. Scaling with
a –1.0 value reflects an object across an axis.

25

corresponding arguments x, y, or z. Scaling with values greater than 1.0
stretches an object and using values less than 1.0 shrinks it. Scaling with
a –1.0 value reflects an object across an axis.

Group JUnit(number radius)
Move the point towards or backwards the original point (0, 0, 0). The
distance between the current point and the original point is specified by
parameter radius. By using this function, a group of points can be
constrained on a sphere surface that centered on the original point.

Group Jmulti(matrix m)
Multiple the each of point in the current point with the parameter 4x4
matrix m, return a group of new point values.

Group JsetScale(number scale)
Re-organize the homogeneous coordinates of the current group. Return
the same points with a same scale (the fourth coordinate) as the
parameter scale.

Group JAppend(group g)
This function will append the parameter point group g at end of the
current group and combine those two groups of points into a group and
return the group.

Group JAppend(point p)
This function will append the parameter point p at end of the current
group and return the new group.

Point JgetPoint(number i)
This function will return the point at ith of the current group. If the index
I is out of the array, an empty point {} will be returned.

Number JgetSize()
Return the size of the current group (the number of points in the current
group).

(3) Functions for 4x4 Matrix class: (all the following functions are only for 4x4 matrix,
The 4x4 matrix operations are commonly used in graphic 4D coordinates transfer
operations.)
.

Matrix (4x4): Summary

Return
data type

Function Fields

Matrix(4x4) JInverse()
Get the inverse matrix of current matrix. If current matrix is singular, a
empty 4x4 matrix will be returned. (each element is 0 in an empty matrix
)

Matrix(4x4) JsetIdentity()

26

Set an identity matrix. It will return a 4x4 identity matrix I. (In an identity
matrix, each diagonal element is 1, and all other elements are 0.)

Matrix(4x4) JsetValue(point p1, point p2, point p3, point p4)
Set values to a 4x4 matrix. The rows of the matrix are assigned by the
values of the parameter point p1, p2, p3, p4 in order.

Matrix(4x4) JsetValue(group g)
Set values to a 4x4 matrix. The rows of the matrix are assigned by the
values each point of parameter group g in order. Group g must have four
points.

Matrix(4x4) JsetElement(number row, number column, number value)
Set the specific element of matrix as value value, at the position (row,
column).

Number JgetElement(number row, number column)
Get the specific element value of matrix at the position (row, column).

Matrix(4x4) JsetRow(number row, point p)
Set the specific row of a 4x4 matrix with the values of parameter point p,
the reset row number is given by parameter row.

Point JgetRow(number row)
Get the specific row of current 4x4 matrix. The elements in the row
which is given by parameter row will be returned as a point data type.

Matrix(4x4) JsetColumn(number column, point p)
Set the specific column of a 4x4 matrix with the values of parameter
point p, the reset column number is given by parameter row.

Point JgetColumn(number column)
Get the specific column of current 4x4 matrix. The elements in the
column which is given by parameter column will be returned as a point
data type.

Matrix(4x4) JTranspose()
Return a matrix that is the transposed matrix of current 4x4 matrix.
(Transposition means exchanging the element at (i, j) with the element at
(j,i).)

Matrix(4x4) JNegate()
Return a matrix in which each element is the negative value of
corresponding element of current matrix.

Matrix(4x4) JaddScale(number n)
Add each element of current 4x4 matrix with number n.

Matrix(4x4) JsubScale(number n)
Subtract each element of current 4x4 matrix with number n.

Matrix(4x4) JmulScale(number n)
Multiply each element of current 4x4 matrix with number n.

Matrix(4x4) JaddMatrix(matrix m)
Add the current matrix with the parameter matrix m.

Matrix(4x4) JsubMatrix(matrix m)

27

Subtract the current matrix with the parameter matrix m.

Matrix(4x4) JmulMatrix(matrix m)
Multiply the current matrix with the parameter matrix m.

3.7.3 System Commands

In jGTL language, system command is defined as $command (args);

$JprintLine((string s | number n | Boolean b)*)
Print the corresponding values of the arguments in the same line of the console. There is
no limit on the number of the arguments, and they could be any data type of string,
number or Boolean. If the number of arguments is zero, an empty line will be printed.
$JprintList((point p| group g | matrix m)*)
Print the corresponding values of the argument point p in a row, group g in several rows
with each point in a row or matrix m in the matrix format on the console. If the number of
arguments is zero, an empty line will be printed.
$JdrawPoint(point p, number red, number green, number blue, number
radius)
Draw a point as a sphere with color (red, green, blue) and radius on the graphic canvas.
(Parameters red, green and blue are limited in the range of [0.0, 1.0])
$JdrawPoint(group g, number red, number green, number blue, number
radius)
Draw a group of point as spheres with color (red, green, blue) and radius on the graphic
canvas. (Parameters red, green and blue are limited in the range of [0.0, 1.0])
$JdrawLine(point p1, point p2, number red, number green, number blue, number
radius, number length)
Draw a line between point p1 and p2 with color (red, green, blue) and radius, length on
the graphic canvas. (Parameters red, green and blue are limited in the range of [0.0,
1.0])
$JdrawConfig(group g, number red, number green, number blue, number
radius)
Draw lines to link a group of points in sequence with color (red, green, blue) and radius
on the graphic canvas. (Parameters red, green and blue are limited in the range of [0.0,
1.0])

28

Chapter 4

Project Plan

1.1 Team Responsibilities

As a media software project, each team member was given primary responsibility for the
certain project goals as the table of 4.1. And each member should collaborate with each
other in each software development phase. Every key Feature of the jGTL software was
discussed among the members and decided by the major.

Zhenyu
Zhu

Project Architecture Design, Tree walk, Graphic interface programming,
3D graphic programming, Documentation, Error Handling.

Santiago
Ordonez

Project Organization, Documentation, Regression Testing, Demo.

Corey
Kasten

Lexer and Parser, Compiler back-end, Regression Testing.

 Table 4.1 Team Responsibilities

1.2 Project Timeline

The following timeline for the goals of the jGTL development were set for control the
project process.

Software
Process

Date Software Development Goals

Requirement 01-30-03 Language Design, Topic Specification
02-18-03 White Paper complete.

02-20-03 Development environment, tool, and programming style
guide specification.

02-20-03 Language grammar specification.

Specification

03-27-03 Language reference manual complete.
03-13-03 Lexer complete.
03-15-03 Parser complete.

Implementation

04-08-03 Tree Walker complete.

29

04-17-03 Graphic Interface complete.
Integration 04-22-03 Language Integration.

04-24-03 Error Handling.
05-01-03 Program Optimization.

Maintenance

05-08-03 Demo and Test complete.
Documentation 05-12-03 Final Paper complete.

Complete 05-14-03 Final Presentation and Review

 Table 4.2 Project Timeline

4.3 Development Environment

The overall project was developed by Java SDK 1.4.0 in Windows XP operation system.
Antlr 2.7.2 was used to handle source code scan, parse, and tree walk. The graphic
interface was developed by java swing, and 3D graphic explorer was implemented by
java 3D 1.3.

4.4 Programming Style Guide

The purpose of this document is to provide basic standards for collaborative code
development and improve the readability of the codes. The guidelines contained herein
reflect core best practices in pursuit of making one’s code perspicuous and maintainable.
Team member should try to follow these guidelines as much as possible in their work.

General Principle

Code files should be easy to read and sensibly laid out. Blocks should be intended a
consistent width. Variables should have the names that clearly indicate their purpose.
Non-trivial blocks of code should be accompanied by explanatory comments.

Declaration

One declaration per line is recommended since it encourages commenting. Do not put
different types on the same line. Try to initialize local variables where they're declared.
The only reason not to initialize a variable where it's declared is if the initial value
depends on some computation occurring first.

30

Tabs, Indenting and Wrapping

Always use tab characters for indenting rather than spaces, and always use one tab per
level of nested brackets. Keep line lengths no more than 80 columns (with tabs set to 4
columns). When wrapping a line, use a single additional tab for indenting the wrapped
text.

Comments and Documentation

Use inline comments ("//" lines) to narrate the work being done by the code for any code
blocks longer than a few lines. Indent the inline comment to the same level as the code,
and use a blank line before the comment to emphasize the blocking.

Use JavaDoc comments ("/** ... */" blocks) for all classes, methods, and non-local
variables. The only exception is when a number of static public final definitions are used
to define constants, and the names of the constants describe their purpose.

Always make sure the comments are kept current-- out of date comments are worse than
no comments at all, and code without comments is close to worthless.

4.5 Project Log

Date Notes

01-27-03 Group birthday! First meeting.

01-28-03 Project initiated. Topic decided.
01-30-03 Language Designed. Main functions focus on

graphic transformation.
02-18-03 White Paper complete.

02-20-03 Development environment, tool, and programming
style guide specification.

02-20-03 Language grammar first draft.

02-23-03 Language manual first draft.
02-25-03 Initial lexer and paser with antlr
02-27-03 Test Phase I at the jGTL lexer, parse
03-27-03 Language reference manual complete.
03-13-03 Lexer complete.
03-15-03 Pares complete.

03-20-03 Start Tree walker

31

03-20-03 Solve list tree walk problem
03-25-03 Solve symbol table problem
03-27-03 Start java interface programming.

04-01-03 Test Phase II at the jGTL tree walker.

04-08-03 Tree Walker complete.
04-10-03 A simple Compiler ready without graphic interface.

04-14-03 The main window of interpreter complete.

04-16-03 The graphic explorer complete.
04-17-03 Graphic Interface complete.

04-20-03 Test Phase III at the jGTL graphic tree walker.

04-22-03 Language Integration.
04-28-03 Test Phase IV graphic interface&&overall test.

04-30-03 Error Handling.
05-01-03 Program Optimization.
05-03-03 Grammar Optimization.
05-06-03 Test Phase V program complexity test.
05-08-03 Demo and Test complete.
05-12-03 Final Paper complete.

05-14-03 Final Presentation and Review

 Table 4.3 jGTL Project Log

32

Chapter 5

Architectural Design

5.1 Interpreter Components and interfaces

The major components of jGTL interpreter are lexer (jGTL.g), parser (jGTL.g), error
checking (jGTL.g & jGTL.java), tree walker (jGTL.g & jGTL.java) and outputs control
(IDE.java).

 Fig 5.1 Major Components and interfaces of jGTL

In the format of string stream, the source code would pass through lexer (lexical analysis)
of jGTL to become tokens. The tokens then pass through parser (syntax analysis) of
jGTL to become Abstract Syntax Tree (AST) structures. Those AST’s could go through
the tree walker of jGTL to be executed one by one. At the running time Symbol Table of
current program is created and updated. The error checking is combined with tree walker
execution. Syntax and semantic checking were carried before the execution of each AST.

After tree walkers, there are two kinds of output. One is the non-graphic text output. It
will be appended to the output text fields as buffered string stream. Another one is the
graphic outputs. The jGTL will pass the information of points and lines to the graphic

33

explorer by vector contains. The explorer will read in those vectors and pass the
parameters in them and draw the points and lines on the screen.

Any error during the scanning, parsing and tree walking process will terminate the
running process to report the error messages.

5.2 Language Structure

The jGTL is a kind of line-interpreted languages. It will execute the source code line by
line. There are four basic logic line formats that are listed in Table 5.1. The language will
skip the comment lines. In If-Else case, the language would check the condition first, if it
is true, then block of lines will be examined next; if it is false, else block of lines will be
examined. In For-loop case, the language will iteratively execute the loop blocks until the
condition is failed. In statements case (ended with semiclone ;), it could be assignment
(characterized by = sign), function (characterized by : sign) and system commands
(characterized by $ sign). So the language will execute each logic line in order. The
symbol table will be kept and updated with line execution. Once there is error in the line
execution, the running procedure will be terminated.

Logic-line

Comment If-Else For-Loop Statement;
Assignment Function System// one line

or
/*
BLOCK*/

IF condition
THEN
{Logic-line}
ELSE
{Logic-line}

For
(conditions)
{Logic-line}

ID =
Element

ID :
Function-
Name (args)
-> ID

$Command
(args)

 Table 5.1 jGTL Language Structure

The main modules of tree walker are listed in Table 5.2

Parser Tree walker function

Comment skip
If-Else Line_Walk()

For-Loop Line_Walk()
Statements Line_Walk()
Assignment Assignment_Walk()

Function function()
System command()

 Table 5.2 Main tree walker functions

34

5.3 Design Feature

As a project in Programming and Language Transfer course, jGTL is characterized as a
graphic programming interpreter. There are some special features that have been
implemented in jGTL V2.1 language. Those great features integrated into a friendly,
robust, intuitive, and easy-use object-oriented graphic language – jGTL.

5.3.1 Graphic interface IDE

There is combined graphic development environment with the jGTL compiler. The user
can use this language in a graphic interface. User can open and save source files by just
clicking buttons, the source code could be edited on the text area. All the user should do
to run piece of code is clicking “Run” button, them do not need go to console and handle
javac and java commands. With this feature, the user can easily focus on the language
grammar and graphic programming.

5.3.2 3D Graphic output and text output

In this project, java 3D API was used to produce the wonderful 3D graph on a simple
Applet. And the text output of the jGTL language will be printed in the output fields with
the error message and system information. The user can even turn off the graphic output.
In jGTL v2.1, there are two kinds of outputs specified by the system commands. By using
“JprintLine” or “JprintList”, the program will print the values of the input ID into the
output text fields. And by using one of “JdrawPoint”, “JdrawLine” and “JdrawConfig”,
the program could popup a new window to show the 3D graph of the current
configuration of points and lines. In this window, the user can rotate, zoom and translate
the objects by mouse actions to change the perspective of viewing.

5.3.3 Object-oriented language

jGTL is a kind of object-oriented languages. Once the user initial an object as one of
point, group and matrix classes, all the predefined methods of those classes can be used
directly. This language also simplified the declaration of objects by the figuring the class
name from the first letter of object identities.

5.3.4 Compile error report and handle

The developers of jGTL language spent a lot of time on error handing. In jGTL V2.1,
first of all, if any error occurred, the running of line execution would be terminal to avoid
further serious problems. Second, the compiler could report where is the error by print the
logic line number of the source code. Third, the compiler could report to the user the
reason of the error in most cases. If there is no error at all, a message will be printed to
inform user that the running is succeed. All the error messages will be printed in the
output text field.

35

5.3.5 Simultaneous help document checking

There is a “Help” button in the left side of the main window. Clicking it, a simple
browser could popup to show the documents of jGTL language. The user could check out
demo, tutorial, reference manual and language architecture while programming. This
browser could read html format files, so it is easy to add new documents by future
development.

36

Chapter 6

Test Plan

6.1 Goal

Software testing is a process of analyzing or operating software for the purpose of finding
bugs. No test plan can aspire to catch every bug in a program. It is not realize to test
every possible input to jGTL, here we just try to discover bugs as soon as possible in the
process of software development. With carefully choice of unit tests, regression tests,
white box and black box tests, the development process can evolve smoothly. The goal of
test on jGTL project is to test systematically, to write enough tests to test each module of
jGTL project separately and thoroughly.

6.2 Method

In jGTL project, rapid prototyping software development model was used, because there
is a time limit and we did not know how far we could walk before end of the project. So
there is totally five test phases were set up during the development process to guarantee
the stabilization of out project. In each testing phase, the test will focus on the new
implementations.

Corey
Kasten

Test Phase I lexer, parser

Corey
Kasten

Test Phase II tree walker.

Zhenyu
Zhu

Test Phase III tree walker on graphics.

Zhenyu
Zhu

Test Phase IV Graphic interface.

Santiago
&&
Corey

Test Phase V Overall maintenance.

 Table 6.1 Project Test

37

There are two aspects to testing changes to a product. The first is checking that the
required changes have been implemented correctly. The second aspect is ensuring that, in
the course of making the required changes to the product, no other inadvertent changes
were made. Therefore, once the programmer has determined that the desired changes
have been implemented, the product must be tested against the previous test cases to
make certain that the functionality of the rest of the product has not been compromised.
So in last maintenance test phase, the regression testing method was used. We set up
sixteen test cases, each case focus on some of the language important features. Those test
cases are listed in Table 6.2. Regression testing was carried at each time we modify the
source codes. A batch file was created in Windows to run all of the test cases one by one
automatically and report the output and error message.

Test1.txt Boolean, string, and number
assignment and print

Test2.txt Point, group, and matrix
assignment and print

Test3.txt Mathematic operation on
number

Test4.txt Logic operations on boolean
Test5.txt comment
Test6.txt If-else, for-loop
Test7.txt Nested if-else and for-loop
Test8.txt Point and Group functions
Test9.txt Matrix functions
Test10.txt Print command
Test11txt Point and group drawing
Test12.txt Line and configuration drawing
Test14.txt Point scaling, translation,

rotation and projection
Test15.txt Lexer and parse Erroe handle

Test16.txt Tree walker Error handle

 Table 6.2 Test cases in Overall Testing

Here is an example of Text4.txt to test the logic operation of Boolean data type in jGTL.

n1= (sqrt(4)+2*3)/sqrt(2*2);
n2= abs(-1.5)*sin(3.14159/2);
B1= [n1>2];
B2= [n2==3]&&B1;
B3= B1||B2;
B4= [(n1+n2)>5]&&(!([n1>9]||[n2>1]));
B5= true;
B6= false;

38

if B6 then {n3=3;n4=7;} else {n3=4;}
$JprintLine("n1: ", n1, " n2: ", n2);
$JprintLine("B1: ", B1, " B2: ", B2);
$JprintLine("B3: ", B3, " B4: ", B4);
$JprintLine("B5: ", B5, " B6: ", B6);

If the test past, the out put would be as following:

Run Successfully!
n1: 4.0 n2: 1.4999999999986797
B1: true B2: false
B3: true B4: false
B5: true B6: false

39

Chapter 7

Lessons Learned

7.1 Team Member’s Lessons

<Zhenyu Zhu>

From this “huge” project, I learned a lot new staffs about compiler implementation,
computer graphic and software engineering. I spend a lot spare time on this graphic
transformation language project to make it robust, flexible, standard and friendly to user.

As a project of <Programming and Language Transformation> course, I get great training
on implementing a computer language, especially the scanning, parsing, tree walking
parts of the compiler implementation. In this project, we found that tree walker is more
difficult than scanner and parser. One the language was specify, scanner and parser can
be done quickly. We met two major difficulties in this project. They are list tree walker,
and symbol table setting. Antlr is used as tool in this project. I found that sometimes
using the class of Antlr directly is more easy and efficient than specifying a .g grammar
file, because I am not family with the Antlr grammar. Antlr simplify the work of scanner,
parser and tree walker.

I start to learn computer graphic since this project. I studied the transformation part of the
graphic fields. I found it really interested me. The projection part was the most difficult
of all the transformation to me. I spend a whole evening on figuring out the parameters
that were used in perspective projection. Right those staff could be handled by java 3D
API.

While the implementation of this project, a lot time was spent on the error message
output and software maintenance. I found it is most challenge for a compiler to catch any
syntax and semantic error as early as possible. Sometimes, it an error was not figured out
early and handled could crash the program in the next steps. It is also difficult for a
compiler to tell the user where the error came from.

Another difficult thing in compiler implementation that I learned from the jGTL project
is making the grammar standard as most popular language. We tried to let jGTL language
grammar similar as C/C++ and Java. But there are still some differences between jGTL
language and standard language grammar due to the non-determination LR parsing.

40

As a “large” project, the jGTL required team working with other members. Some
software engineering knowledge is very useful here, like uniform programming style,
interface testing and team organization. Usually, our group would meet right after the
class once a week. We worked together and learned from each other.

< Santiago Ordonez>

The project demanded meticulous planning and devoted collaboration of all the team
members. We started this project with one idea in mind, and that was to develop a
programming language that would facilitated the drawing of points and lines in 3
dimensional space. The fact that we had a clear and distinct idea about our project, gave
us an edge to complete our project. From it’s initial stages we knew what was need and
we starting distributing the project into tasks of manageable size. Through this process
our project at each stage of the developing cycle, started to take shape and form. At each
step we knew what could have been implemented and what has to be taken off the
project. Since we were limited by time constrains we had to be very practical and
implement tools and techniques that would allow us to complete the project.
Improvisation such as replacing OpenGL with Java3D is one example. While the former
is very strong and robust for intensive graphical applications, the latest is almost as strong
and gave us the flexibility to integrate it quickly into the project and thus guarantying the
successful completion of our programming language.

As a program manager I was mostly involved with the team integration and collaboration.
Proper planning was indispensable for the successful completion of the jGTL project. I
learned early in the developing cycle that having the team talking to each other as often
as possible was key for the integration process. It reduced regression time made us more
efficient. Each team member worked in the area in which they felt strongest thus
increasing productivity and efficiency. Managing a project while taking other intense
courses during a semester can be extremely stressful. But there is one thing I learned for
sure out of this assignment; I learned to trust my team members and their work. Without
the participation of even one of them, this project could not have been realized. Zhenyu
Zhu with his keen programming and mathematical skills, Corey with his abstract
visualization for the lexical analyzes and the parsing techniques and myself with my
managerial skills and testing abilities came out to be one solid team. The key to our
success was TEAM WORK.

< Corey Kasten>

Out of the many things I learned from this project, the most helpful are the tricks of
working efficiently in a team. Since this was my first team project in my career, it has
been a great learning experience. Of the many issues of team work, some of the lessons
learned were the stress on modularization, documentation, and version control. I learned
both from the successful use of some of these techniques as well as the failure to use
others.

41

The first lesson is about modularization. The biggest key to succeeding to get a big
project to work, like a compiler, is probably modularization. The whole ideology of the
compiler is split into two phases: the front end, and the back end. The front end consists
of the scanning, translating, and organization of source code into a useful form such as an
abstract syntax tree. Essentially the whole front end was simplified by ANTLR,
providing a notation to capture most functionality of a parser, lexer, and tree walker, with
simple code. The only difficulty we ran into during the front end phase, was a
modularization issue. Instead of learning how to usefully use ANTLR notation, we went
in and hard coded much of the tree walking code manually in our jGTL.java file. Here
we use the ANTLR library functions to explicitly walk the tree during static semantic
analysis. We broke up the static semantic analysis into two parts: one defined in our
jGTL.g file and the other in the jGTL.java file. This was probably a big mistake, since is
brakes the modularization model and would make it difficult to expand the language. On
a good note, we successfully managed to modularize our utility classes, handling the
representation of the objects, defined in the source code, as java objects.

Another big lesson I learned is the importance of documentation. This goes hand in hand
with version control. In order to keep on track of the progress of the project, we needed a
good understanding of the additions and modifications made by any of the members of
the project. This did not come so easily to us, as we did not use any standard version
control tool, such as RCS. Instead we shipped around zipped files containing all the
project work. The progress was not documented, rather orally transmitted among the
members. Luckily there were only four members in our project and the project was not
so massive, and we still were able to get the project together. In future projects, I hope to
take advantage of the tools out there to strengthen team work efficiency.

The last lesson I learned from this project is to make sure you have your goals set. At the
beginning of the semester we were not sure exactly how big we wanted our language to
be and what format would we compile the source code into. I think we made a good
choice to have a language with limited but powerful functionality. Instead of making a
huge language, we have a simple one which extremely easy to learn and to quickly
generate graphics. In the end we decided to compile our code inside an IDE. This makes
it easy for the user to write programs compile them and see the results all in one window.
It also took another step out of the process, namely, the intermediate representation, so
that jGTL runs more like a scripting language.

42

7.2 Advice for the future

In the future, we should make the jGTL language more interesting, robust, flexible,
standard and friendly to user.

We should make jGTL language consist with the most popular language like C/C++ and
Java. The more standard the language is, the more friendly to user and more easy to learn.

Right now, jGTL is only an interpreter depend on Java. Later. If have more time, we
should do the backend of compile implementation to free it from java. Otherwise, we
could let the jGTL output the java source code to be a translator. This could let jGTL be a
graphic tool in Java language. It is more useful, since user can embed jGTL source code
to Java source code and use it with Java.

The jGTL could be extended later, now only sphere (point) and cylinder (line) are
implemented, more other configuration could be created in jGTL. It could be more fun to
play jGTL. And we also considered that let jGTL handle animation. It will be interesting
and complete as a basic graphic language.

More graphic issue could be added to the jGTL language. Right now, jGTL only could
handle graphic transformation. There are other interesting computer graphic topic could
added to it, such as lighting, blending, text mapping.

Now, we have not included error recover. If the interpreter finds an error, it just stops
running. Later, error recovering could be implemented to bypass some trivia errors. More
error message could be implemented in the future to improve the robustness of the
language.

43

Appendix A

Homogeneous Coordinates and Transformation Matrices

Homogeneous Coordinates

jGTL language usually deal with two- and three-dimensional vertices, but in fact all are
treated internally as three-dimensional homogeneous vertices comprising four
coordinates. Every column vector (x, y, z, w) represents a homogeneous vertex if at least
one of its elements is nonzero. If the real number a is nonzero, then (x, y, z, w) and (ax,a
y, az, aw) represent the same homogeneous vertex. A three-dimensional Euclidean space
point (x, y, z) becomes the homogenous vertex with coordinates (x, y, z, 1.0), and the
two-dimensional Euclidean point (x, y) becomes (x, y, 0.0, 1.0).

As long as w is nonzero, the homogeneous vertex (x, y, z, w) corresponds to three-
dimensional point (x/w, y/w, z/w). if w=0.0, it corresponds to no Euclidean point, but
rather to some idealized “point at infinite”.

Transforming Vertices

Vertex transformations (such as rotations, translations, scaling and shearing) and
projections (such as perspective and orthographic projections) can all be represented by
applying an appropriate 4¥4 matrix to the coordinates representing the vertex. If V
represents a homogeneous vertex and M is a 4¥4 transformation matrix, than MV is the
image of V under the transformation by M. (In computer-graphics applications, the
transformations used are usually nonsingular –in other words, the matrix M can be
inverted. This isn’t required, but some problems arise with nonsingular transformations.)

Transformation Matrices

Although any nonsingular matrix M represents a valid projective transformation, a few
special matrices are particularly useful. Those matrices are listed in the following
subsections.

Translation

Translate by a vector (x, y, z).

†

T =

1 0 0 x
0 1 0 y
0 0 1 z
0 0 0 1

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

 and

˙
˙
˙
˙

˚

˘

Í
Í
Í
Í

Î

È

-

-

-

=-

1000

100

010

001

1

z

y

x

T

44

Scaling

Scale a vertex by (x, y, z).

˙
˙
˙
˙

˚

˘

Í
Í
Í
Í

Î

È

=

1000

000

000

000

z

y

x

S and

˙
˙
˙
˙

˚

˘

Í
Í
Í
Í

Î

È

=-

1000

0100

0010

0001

1

z

y

x

S

Notice that S-1 is defined only if x, y, z are all nonzero.

Rotation

Rotate a clockwise around a vector Tzyxv),,(= , and Tzyxvvu)',','(/ == .

Also let

†

S =

0 -z' y '
z' 0 -x '

-y ' x' 0

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

 and SauuuuM TT)(sin)1)((cos +-+= a

Then

˙
˙
˙
˙

˚

˘

Í
Í
Í
Í

Î

È

=

1000

0

0

0

mmm

mmm

mmm

R where m represent elements from M, which is a 3X3 matrix

The R matrix is always defined. If x=y=z=0, then R is the identity matrix. You can obtain
the inverse of R, by substituting -a for a.

Often, you are rotating about one of the coordinate axes, the corresponding matrices are
as following:

˙
˙
˙
˙

˚

˘

Í
Í
Í
Í

Î

È

-
=

1000

0cossin0

0sincos0

0001

aa

aa
Rx

45

˙
˙
˙
˙

˚

˘

Í
Í
Í
Í

Î

È

-
=

1000

0cos0sin

0010

0sin0cos

aa

aa

Ry

˙
˙
˙
˙

˚

˘

Í
Í
Í
Í

Î

È -

=

1000

0100

00cossin

00sincos

aa

aa

Rz

Perspective Projection

Do a perspective-view frustum projection to a vertex. The frustum’s view volume is
defined by the parameters: (l, b, -n) and (r, t, -n) specify the (x, y, z) coordinates of the
lower-left and upper-right corners of the near clipping plane; n and f give the distances
from the viewpoint to the near and far clipping planes. They should always be positive.

†

R =

2n
r - l 0 r + l

r - l 0
0 2n

t - b
t + b

t - b 0

0 0 -(f + n)
f - n

-2 fn
f - n

0 0 -1 0

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

and

˙
˙
˙
˙
˙

˚

˘

Í
Í
Í
Í
Í

Î

È

+--
-

+-

+-

=-

fn
nf

fn
nf

n
bt

n
bt

n
lr

n
lr

R

22
)(00

1000
2020
2002

1

R is defined as long as rl ≠ , bt ≠ and fn ≠ .

Orthographic Projection

Do an orthographic parallel view volume projection to a vertex. (l, b, -n) and (r, t, -n) are
points on the near clipping plane that are mapped to the lower-left and upper-right
corners of the viewpoint windows, respectively. (l, b, -f) and (r, t, -f) are points on the far
clipping plane that are mapped to the same respective corners of the viewpoint. Both n
and f can be positive and negative.

46

†

R =

2
r - l 0 0 r + l

r - l
0 2

t - b 0 t + b
t - b

0 0 -2
f - n

f + n
f - n

0 0 0 1

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

 and

˙
˙
˙
˙
˙

˚

˘

Í
Í
Í
Í
Í

Î

È

+
-

-

+-

+-

=-

1000
2200
2020
2002

1

fnnf

btbt

lrlr

R

47

Appendix B

 jGTL Grammar (BNF Notation)

//Main Structure
exprlist :(sentence)*EOF^
 ;

sentence : Comment
 | if_else
 | for_loop
 | statement
 ;

/************Part I Comment *****************************/

// Comment for a single line

Comment_line
 : DSLASH (~('\n'|'\r'))+ ('\n'|'\r'|('\r''\n'))
 ;
// Comment for a block
Comment_block
 : SSLASH (~'/')+ FSLASH
 ;
//Include the Comment for line and block
Comment
 :Comment_line |Comment_block
 ;

/*************Part II if-else && Part III for loop **************/
block : LCUR^ (sentence)*RCUR!
 ;
// If-else and For-loop condition.

condition : (condi_sing|(LPAREN!condition RPAREN!)|ID_B|TRUE|FALSE)?
 ((AND^|OR^|NOT^)
 (condi_sing|(LPAREN!condition RPAREN!)|ID_B|TRUE|FALSE))*
 ;

condi_sing :LBRA! (expr)

48

 (EQUAL^|NOT_EQUAL^|LTE^|LT^|GTE^|GT^)
 (expr) RBRA!
 ;

if_else : IF^ condition THEN! block
 (ELSE! block)? {System.out.print("****If-Else****");}
 ;

for_init : LPAREN!assign_n SEMI!condition SEMI! assign_n RPAREN!
 ;

for_loop : FOR^ for_init block {System.out.print("****For-Loop****");}
 ;

/******************Part IV. Statement *********************/

statement : (assi_function | system_command)SEMI^
 ;

assi_function: ((ID_P|ID_G|ID_M)FUNC) =>
 (ID_P|ID_G|ID_M)FUNC^ FUNC_NAME
 LPAREN! (
 (expr|ID_M|ID_P|ID_G|matrix|point|group)
 (PERI!(expr|ID_M|ID_P|ID_G|matrix|point|group))*
)? RPAREN!
 RETURN (ID_P|ID_G|ID_M|ID_N)
 | (assign_n| assign_s|assign_p|assign_g|assign_m|assign_b)
 ;

system_command: SYST^ SYST_NAME LPAREN! (
 (ID_S|ID_B|ID_P|ID_G|ID_M
 |StringConstant|point|group|matrix|expr)
 (PERI!(expr|ID_P|ID_B|ID_M|ID_S|ID_G
 |StringConstant|point|group|matrix))*)?
 RPAREN! {System.out.print("**System_Command**");}
 ;

//assign : assign_n| assign_s|assign_p|assign_g|assign_m|assign_l
// ;

assign_n : ID_N ASSI^ (ID_N ASSI!)* expr
 ;

49

assign_s : ID_S ASSI^ (ID_S ASSI!)* StringConstant
 ;

assign_p : ID_P ASSI^ (ID_P ASSI!)* point
 ;

assign_g : ID_G ASSI^ (ID_G ASSI!)* group
 ;

assign_m : ID_M ASSI^ (ID_M ASSI!)* matrix
 ;

assign_b : ID_B ASSI^ (ID_B ASSI!)* condition
 ;

// calculation
expr : (mexpr ((PLUS^|MINUS^) mexpr)*)| ((PLUS^|MINUS^) mexpr)+;
mexpr: pexpr ((STAR^|DIV^|MOD^) pexpr)*;
pexpr: mole (POW^ mole)?;
mole : (SQRT^|ABS^|SIN^|COS^|TAN^)atom|atom;
atom : NUMBER|(LPAREN! expr RPAREN!)
 | ID_N
 ;

//list : LCUR^ (list | NUMBER)* RCUR! {System.out.print("**list**");}
// ;

point: LCUR^ ((expr)(PERI! expr)*)? RCUR!{System.out.print("**point**");}
 ;

group: LT^ ((ID_P|point)(PERI! (ID_P|point))*)? GT!{System.out.print("**group**");}
 ;

matrix : LBRA^((matrix_p)(PERI! matrix_p)+)?RBRA!
{System.out.print("**matrix**");}
 ;

protected
matrix_p: LBRA^ (expr)(PERI! expr)* RBRA!
 ;

//*******************Lexer ********************************

WS: (' ' | '\t' | '\n'{newline();} | '\r''\n' {newline();})
 ;

50

LPAREN: '(';
RPAREN: ')';
LBRA : '[';
RBRA : ']';
LCUR : '{';
RCUR : '}';
STAR : '*';
PLUS : '+';
MINUS : '-';
DIV : '/';
MOD : '%';
POW : '^';
ASSI : '=';
FUNC : ':';
POUND : '#';
SEMI : ';';
SYST : '$';
PERI : ',';
DSLASH : "//" ;
SSLASH : "/*" ;
FSLASH : "*/" ;

EQUAL : "==";
NOT_EQUAL : "!=";
LTE : "<=";
LT : '<';
GTE : ">=";
GT : '>';
IF : "if"|"IF";
THEN : "then"|"THEN";
ELSE : "else"|"ELSE";
FOR : "for"|"FOR";
NOT : '!';
AND : "&&";
OR : "||";
SQRT : "sqrt";
ABS : "abs";
SIN : "sin";
COS : "cos";
TAN : "tan";

51

ID_N options {testLiterals=true;}
 : ('n'|'N')
 ('a'..'z'|'A'..'Z'|'_'|'0'..'9')+
 ;

ID_S options {testLiterals=true;}
 : ('s'|'S')('a'..'h'|'j'..'p'|'r'..'z'|'A'..'Z'|'_'|'0'..'9')
 ('a'..'z'|'A'..'Z'|'_'|'0'..'9')*
 ;

ID_P options {testLiterals=true;}
 : ('p'|'P')
 ('a'..'z'|'A'..'Z'|'_'|'0'..'9')+
 ;

ID_G options {testLiterals=true;}
 : ('g'|'G')
 ('a'..'z'|'A'..'Z'|'_'|'0'..'9')+
 ;

ID_M options {testLiterals=true;}
 : ('m'|'M')
 ('a'..'z'|'A'..'Z'|'_'|'0'..'9')+
 ;

ID_B options {testLiterals=true;}
 : ('b'|'B')
 ('a'..'z'|'A'..'Z'|'_'|'0'..'9')+
 ;

protected
DIGIT : '0'..'9';

protected
INT : (DIGIT)+;

protected
EXPONENT : ('e'|'E')('+'|'-')?(DIGIT)+;

//C like float and integer
NUMBER :
 ((INT) ((('.')(((INT)(EXPONENT)?) | (EXPONENT)?))|EXPONENT)?)
 | ('.'(INT)(EXPONENT)?)
 ;

52

StringConstant
 : '"'!
 (~('"' | '\n') | ('"'!'"'))*
 '"'!
 ;

RETURN : "->";

FUNC_NAME : "JRotate"|"JScale"|"JFrustum"|"JOrtho"|"JTrans"("late"|"pose")
 |"JMulti"|"JUnit"|"JAppend"|"JInverse"|"JNegate"
 |"Jset"("Identity"|"Element"|"Row"|"Column"|"Value"|"Scale")
 |"Jget"("Element"|"Column"|"Row"|"Point"|"Size")
 |("Jadd"|"Jsub"|"Jmul")("Scale"|"Matrix")
 ;

SYST_NAME : "JprintL"("ine"|"ist")|"Jdraw"("Point"|"Line"|"Config")
 ;
TRUE : "true"|"TRUE"
 ;
FALSE : "false"|"FALSE"
 ;

53

Appendix C

Code List

There are totally one antlr grammar file jGTL.g (lexer, parser and tree walker) and nine
jave files jGTL project V2.1(May, 2003). IDE.java is the main code to control the whole
integrated development environment of jGTL language. Browser_Help.java is a help
documents reading frame for IDE and the MyExplore.java offer an 3D explore window
for the graphic output of jGTL language. IDE use jGTL.java to do line execution of the
input source code. There are four auxiliary classes jList, jPoint, jMatrix4D and
jDictionary for the tree walker and execution.

 Fig C.1 Source Codes of jGTL Project

[A. IDE.java]
/* *************************************
*** IDE.java
*** Author: Zhenyu Zhu
*** Date: 04/12/03
*** Main method of jGTL Interpreter
*** IDE control
*** Extend javax.swing.JFrame
*** Use MyExplore.java
*** Use Browser_Help.java
*** Use Antlr 2.7.2
**************************************/
//Initial Frame
initComponents()

//Open a source file
jButton1ActionPerformed(java.awt.event.ActionEvent evt)

54

//Save a source file
jButton2ActionPerformed(java.awt.event.ActionEvent evt)

//Line Execute from the source txt of input field
jButton3ActionPerformed(java.awt.event.ActionEvent evt)

//Control the Graphic Explorer
jButton4ActionPerformed(java.awt.event.ActionEvent evt)
//Clear input text field
jButton5ActionPerformed(java.awt.event.ActionEvent evt)

//Clear text output field
jButton6ActionPerformed(java.awt.event.ActionEvent evt)

//Open the Help browser
jButton7ActionPerformed(java.awt.event.ActionEvent evt)

[B MyExplore.java]
/* *************************************
*** MyExplore.java
*** Author: Zhenyu Zhu
*** Date: 04/16/03
*** Explorer of graphic output
*** Extend javax.swing.JFrame
*** Use Sapplet.java
**************************************/
//Initial Frame
init()

//Open the applet to show the graphic output
open()

[B1 Sapplet.java]
/* *************************************
*** IDE.java
*** Author: Zhenyu Zhu
*** Date: 04/16/03
*** A Applet to show the language’s graphic output
*** Extend java.awt.Applet
*** Use java 3D 1.3 API
**************************************/
//Initial Applet and draw points and lines with the parameters
// java 3D is used to draw the 3D objects
init()

55

//Draw the open graphic interface of jGTL compiler.
//java 3D is used to generate the animation.
open_interface()

[C Browser_Help.java]
/* *************************************
*** Browser_Help.java
*** Author: Zhenyu Zhu
*** Date: 04/27/03
*** Help Files Reader – A simple Browser
*** Extend javax.swing.JFrame
**************************************/
//Initial the Frame
initComponents()

//Show Demo page
jButton1ActionPerformed(java.awt.event.ActionEvent evt)

//Show Tutorial page
jButton1ActionPerformed(java.awt.event.ActionEvent evt)

//Show Manual page
jButton1ActionPerformed(java.awt.event.ActionEvent evt)

//Show Architecture page
jButton1ActionPerformed(java.awt.event.ActionEvent evt)

//Close this Frame
jButton1ActionPerformed(java.awt.event.ActionEvent evt)

[D. jGTL.java]
/* *************************************
*** jGTL.java
*** Author: Zhenyu Zhu
*** Date: 04/01/03
*** Main method of jGTL Line Interpreter
*** Tree Walking control and Error Checking
*** Use jList.java
*** Use jPoint.java
*** Use jMatrix4D.java
*** Use jDictionary.java
*** Use Antlr 2.7.2
**************************************/

56

//Walking on each line of input source code
Line_Walk(AST parse_s)

//Assignment tree walker
Assignment_Walk

//Functions of Class Point, group and matrix tree walker
Function_Execute(jList li_e)

//System command tree walker
System_Command(jList li_e)

//Print a double number with specified digital number
df_print(Object o)

[D1 jList.java]
/* *************************************
*** jList.java
*** Author: Corey Kasten
*** Date: 02/27/03
*** jList interface
*** Extend java.util.Vector
**************************************/
//Add a string, double, float and jList
add()

//Return the element number of this list
dim()

//Check whether the list is a matrix format
isMatrix()

//Print all the elements
print()

[D2 jPoint.java]
/* *************************************
*** jPoint.java
*** Author: zhenyu Zhu
*** Date: 03/10/03
*** jPoint interface
**************************************/
//Assign A point by a jList
list_assign(jList pi)

57

//Return the point as format of jList
jList get_list()

//All kinds of point transformation methods for graphic operations
unit(jList param)
set_scale(jList param)
translate(jList param)
scale(jList param)
rotate(jList param)
frustum(jList param)
ortho(jList param)
multi(jList param)

[D3 jMatrix4D.java]
/* *************************************
*** jMatrix4D.java
*** Author: zhenyu Zhu
*** Date: 03/12/03
*** jMatrix4D interface –Only 4x4 matrix
*** Modify from javax.vetmath
**************************************/
//Assign A Matrix by a jList
list_assign(jList pi)

//Return the Matrix as a jList Type
jList get_list()

//All kinds of Matrix4D methods for graphic operations
setIdentity()
setElement(jList param)
getElement(jList param)
getRow(jList param)
getColumn(jList param)
setRow(jList param)
setColumn(jList param)
add_scale(jList param)
sub_scale(jList param)
mul_scale(jList param)
mul_matrix(jList param)
add_matrix(jList param)
sub_matrix(jList param)
transpose()
invert()
equals(jList param)
negate()

58

[D4 jDictionary.java]
/* *************************************
*** jDictionary.java
*** Author: zhenyu Zhu
*** Date: 03/11/03
*** jDictionary interface
*** For Symbol Table Record
*** Extend java.util.Hashtable
**************************************/
//Assign the dictionary by a jList
jlist_assign(jList assi_list)

//Get element from the dictionary by the key
getElement(Object key)

//Get elements as jList format
getList(Object key)

//Return the size of the dictionary
getSize()

//Add new element
putElement(Object key, Object item)

//print the dictionary
print()

/**************************
***** jGTL.g
***** Author: Corey Kasten
***** Author: zhenyu Zhu
***** Language Lexer, Parser,
***** and Tree Walker
**************************/

59

Appendix D

jGTL Demo

jGTL is a high-level Interpreter graphic language. It is a powerful 3D graphic tool for
implementing high quality 3D graph by simple coding.

1. Drawing Beautiful 3D Graph

1.1 Sphere Ring

jGTL Code:

//Initilization
n_max_x = 0.8; //x direction dimension
n_max_z = 0.4; // z direction dimension
n_max_y = 0.4; //y direction dimension
n_r = 0.05; //Sphere readius

/*********Draw Double Courves**************/
for(ni=-n_max_x; [ni<=(n_max_x+0.05)]; ni=ni+0.05)
{
 n_para=sin(ni*3.1416/n_max_x);
 n_z = n_max_z*n_para;
 n_y= n_max_y*n_para;
 n_cr= 0.5+0.5*n_para;
 n_cg=0.5+0.5*sin((ni/n_max_x+1/3)*3.1416);
 n_cb=0.5+0.5*sin((ni/n_max_x+2/3)*3.1416);

 p1={ni, n_y, -n_z};
 p2={-ni, n_y, n_z};
 $JdrawPoint(p1, 0.0, n_cg, n_cb, n_r);
 $JdrawPoint(p2, n_cr, 0.0, n_cb, n_r);
}

//Draw a color circle
for(ni=0; [ni<=360]; ni=ni+5)
{
 n_cr=0.5+0.5*sin((2*ni/360)*3.1416);
 n_cg=0.5+0.5*sin((2*ni/360+1/3)*3.1416);

 p3={n_max_x*cos(ni*2*3.1416/360), 0.0,
 n_max_x*sin(ni*2*3.1416/360)};
 $JdrawPoint(p3, n_cr, n_cg, 0.0, n_r);

60

 }
//Draw the center point
p0={0.0, 0.0, 0.0};
$JdrawPoint(p0, 1.0, 0.0, 0.0, 0.16);

Graphic output:

 Fig D.1 Sphere Ring

1.2 Colorful Circle

jGTL Code:

//Initial Points
p0={0.0, 0.0, 0.0, 2.0};
p1={-1.0, 0.0, 0.0, 2.0};
p2={ 1.5, 0.0, 0.0, 2.0};
//Rotate around Z-axis
p2:JRotate(60, 0.0, 0.0, 1.0)->p21;
p2:JRotate(-60, 0.0, 0.0, 1.0)->p22;

//Define a group include all points
g1=<p0, p1>;
$JdrawPoint(g1, 1.0, 0.0, 0.0, 0.16);

61

/**************Draw Line**************/
$JdrawLine(p0, p1, 1.0, 0.0, 1.0, 0.06);

/******** rotation ***********/
for(ni=5; [ni<=360]; ni=ni+5) {
 p21:JRotate(ni, 1.0, 0.0, 0.0)->pt1;
 n_cr= 0.5+0.5*sin(3.1416*(ni/180+2/3));
 n_cg= 0.5+0.5*sin(3.1416*ni/180);
 n_cb= 0.5+0.5*sin(3.1416*(ni/180+1/3));
 $JdrawPoint(pt1, n_cr, n_cg, n_cb, 0.06);
 $JdrawLine(p0, pt1, n_cr, n_cg, n_cb, 0.04);
 }

Graphic output:

 Fig D.2 Colorful Circle

2. Drawing Solid State Structure -- Applications in Physics

2.1 Body Center Structure –NaCl

jGTL Code:

//Initilization
n_bond=0.4; //Bond length
n_ra =0.12; // A type Atom radius
n_rb= 0.18; // B type Atom radius

//Initial All A type Points

62

g1= < > ;
for(ni=-n_bond; [ni<= n_bond]; ni=ni+n_bond){
 for(nj=-n_bond; [nj<= n_bond]; nj=nj+n_bond){
 for(nk=-n_bond; [nk<= n_bond]; nk=nk+n_bond){
 p_ijk={ni, nk, nj};
 g1:JAppend(p_ijk)->g1;
 }
 }
} //End of for

//Initial B type Points
g2= < > ;
n0=-n_bond+n_bond/2;
for(ni=n0; [ni<=n_bond]; ni=ni+n_bond){
 for(nj=n0; [nj<=n_bond]; nj=nj+n_bond){
 for(nk=n0; [nk<=n_bond]; nk=nk+n_bond){
 p_b1={ni, nk, nj};
 g2:JAppend(p_b1)->g2;
 }
 }
} //End of for

/*******Draw All Atoms *********************/
 $JdrawPoint(g1, 0.0, 1.0, 0.0, n_ra);
 $JdrawPoint(g2, 1.0, 0.0, 0.0, n_rb);
//End

Graphic output:

 Fig D.3 BCC Structure

63

2.2 Face Center Structure – CsCl

jGTL Code:

//Initilization
n_bond=0.4; //Bond length
n_ra =0.10; // A type Atom radius
n_rb= 0.12; // B type Atom radius

//Initial All A type Points
g1= < > ;
for(ni=-n_bond; [ni<= n_bond]; ni=ni+n_bond){
 for(nj=-n_bond; [nj<= n_bond]; nj=nj+n_bond){
 for(nk=-n_bond; [nk<= n_bond]; nk=nk+n_bond){
 p_ijk={ni, nk, nj};
 g1:JAppend(p_ijk)->g1;
 }
 }
} //End of for

//Initial B type Points
g2= < > ;
n0=-n_bond+n_bond/2;
n1= n_bond+n_bond/2;
for(ni=n0; [ni<=n1]; ni=ni+n_bond){
 for(nj=n0; [nj<=n1]; nj=nj+n_bond){
 for(nk=n0; [nk<=n1]; nk=nk+n_bond){

 if ([ni<=n_bond]&&[nk<=n_bond])
 then { p_b1={ni, nk, nj-n_bond/2}; }

 if ([nk<=n_bond]&&[nj<=n_bond])
 then {p_b2={ni-n_bond/2, nk, nj};}

 if ([ni<=n_bond]&&[nj<=n_bond])
 then {p_b3={ni, nk-n_bond/2, nj};}
 g2:JAppend(p_b1)->g2;
 g2:JAppend(p_b2)->g2;
 g2:JAppend(p_b3)->g2;
 }
 }
} //End of for

/*******Draw All Atoms *********************/

64

 $JdrawPoint(g1, 0.0, 1.0, 0.0, n_ra);
 $JdrawPoint(g2, 1.0, 0.0, 0.0, n_rb);
//End

Graphic output:

 Fig D.4 FCC Structure

2.3 S3 Space Group Structure –Silicon

jGTL Code:

//Initilization
n_bond=0.2; //Bond length
n_r1=0.05; //Atom radius
n_r2=0.02; //Bond radius

//Initial Four Points for each lattice
p0={0.0, 0.0, 0.0};
p1={ 0.0, n_bond, 0.0};
p1:JRotate(-109.5, 0.0, 0.0, 1.0)->p2;
p2:JRotate(120, 0.0, 1.0, 0.0)->p3;
p3:JRotate(120, 0.0, 1.0, 0.0)->p4;

//Calculate the translation displacements
n_angle = (109.5-90.0)*3.1416/180;
n_dy = n_bond*(1+sin(n_angle));
n_dx1 = n_bond*cos(n_angle);
n_dx2 = n_dx1/2;
n_dz2 = n_dx1*sin(3.1516/3);

65

//$JprintLine("n_dx1: ", n_dx1, " n_dx2: ", n_dx2);
//$JprintLine("n_dy: ", n_dy);
//$JprintLine("n_dz2: ", n_dz2);

//Define a group include all points in a lattice
g10=<p0, p1, p2, p3, p4>;

//Get the first layer lattices---Seven lattices
g10:JTranslate(n_dx1+n_dx2, 0.0, n_dz2)->g11;
g10:JTranslate(n_dx1+n_dx2, 0.0, -n_dz2)->g12;
g10:JTranslate(-n_dx1-n_dx2, 0.0, n_dz2)->g13;
g10:JTranslate(-n_dx1-n_dx2, 0.0, -n_dz2)->g14;
g10:JTranslate(0.0, 0.0, 2*n_dz2)->g15;
g10:JTranslate(0.0, 0.0, -2*n_dz2)->g16;

//Orginaze the atoms into a group
g11:JAppend(g12)->g11;
g13:JAppend(g14)->g13;
g15:JAppend(g16)->g15;

g10:JAppend(g11)->g1;
g13:JAppend(g15)->g13;

/***********Get First layer atoms ************/
g1:JAppend(g13)->g1;
/***********Get four layers ****************/
g_total=<>;
g_total:JAppend(g1)->g_total;
for(ni=1; [ni<=3]; ni=ni+1)
{
 g1:JTranslate(ni*n_dx1, -ni*n_dy, 0.0)->g_temp;
 g_total:JAppend(g_temp)->g_total;
}

g_total:JTranslate(-0.2, 0.4, 0.0)->g_total;

/*******Draw All Atoms *********************/
$JdrawPoint(g_total, 0.0, 1.0, 0.0, n_r1);

/***Draw Lines in a lattice ***Double for loop***/
g_total:JgetSize()->n_total;
$JprintLine(n_total);
for(ni=0; [ni<n_total]; ni=ni+5)
{
 g_total:JgetPoint(ni)->p_center;

66

 for(nj=ni+1; [nj<=(ni+4)]; nj=nj+1)
 { g_total:JgetPoint(nj)->ptemp;
 $JdrawLine(p_center, ptemp, 1.0, 0.0, 0.0, n_r2);
 }
}
//End

Graphic output:

 Fig D.5 Silicon Structure

3. Drawing Molecular Structure – Applications on Biology

3.1 Amino Acids –Aspartic acid

jGTL Code:

/Parameters initialization
n_r_c=0.08; // C Atom radius
n_r_o=0.11; // O Atom radius
n_r_n=0.1; // N Atom radius
n_r_h=0.06; // H Atom radius
n_r_bond=0.03; // Basic Bond radius
n_r_bond_s=0.04; // Strong Bond readius
n_r_bond_w=0.02; // Week Bond readius

//Initialization All Atom Coordinates
p_c ={0.49, 0.33, 0.13 };

67

p_o ={0.54, 0.43, 0.35 };
p_n ={0.14, 0.36, -0.21};
p_hn ={0.08, 0.23, -0.35};
p_ca ={0.20, 0.26, 0.06};
p_ha ={0.07, 0.35, 0.17};

p_cb ={0.17, -0.04, 0.09};
p_hb1={0.24, -0.13, -0.06};
p_hb2={0.26, -0.10, 0.25};

p_cg ={-0.12, -0.13, 0.11};
p_od1 ={-0.29, 0.03, 0.21};
p_od2 ={-0.20, -0.35, 0.04};
p_ht ={-0.47, -0.05, 0.21};

//Group the same atom type
g_c=<p_c, p_ca, p_cb, p_cg>;
g_o=<p_o, p_od1, p_od2>;
g_n=<p_n>;
g_h=<p_hn, p_ha, p_hb1, p_hb2, p_ht>;

$JdrawPoint(g_c, 1.0, 1.0, 0.0, n_r_c);//yellow
$JdrawPoint(g_o, 1.0, 0.0, 0.0, n_r_o); //red
$JdrawPoint(g_n, 0.0, 1.0, 0.0, n_r_n); //green
$JdrawPoint(g_h, 0.0, 0.0, 1.0, n_r_h); //blue

//Draw C-C Bond
$JdrawConfig(g_c, 1.0, 1.0, 0.0, n_r_bond); //yellow
///Draw C-N Bond-strong bound
$JdrawLine(p_ca, p_n, 0.0, 1.0, 0.0, n_r_bond_s); //green
///Draw C-O Bond-strong bound
$JdrawLine(p_c, p_o, 1.0, 0.0, 0.0, n_r_bond_s); //red
$JdrawLine(p_cg, p_od1, 1.0, 0.0, 0.0, n_r_bond_s); //red
$JdrawLine(p_cg, p_od2, 1.0, 0.0, 0.0, n_r_bond_s); //red
///Draw H Bond-week bound
$JdrawLine(p_n, p_hn, 0.0, 0.0, 1.0, n_r_bond_w); //blue
$JdrawLine(p_ca, p_ha, 0.0, 0.0, 1.0, n_r_bond_w); //blue
$JdrawLine(p_cb, p_hb1, 0.0, 0.0, 1.0, n_r_bond_w); //blue
$JdrawLine(p_cb, p_hb2, 0.0, 0.0, 1.0, n_r_bond_w); //blue
$JdrawLine(p_od1, p_ht, 0.0, 0.0, 1.0, n_r_bond_w); //blue

Graphic output:

68

 Fig D.6 Aspartic Acid Structure

3.2 Residue Conformation –Aspartic acid

jGTL Code fragments:

/*****************Rotation Start**********/
//Define rotation group
g1=< p_od1, p_od2, p_ht>;
//Find the rotation bond
n_x=-0.12-0.17;
n_y=-0.13+0.04;
n_z= 0.11-0.09;
n_r=sqrt(n_x*n_x+n_y*n_y+n_z*n_z);
n_x=n_x/n_r;
n_y=n_y/n_r;
n_z=n_z/n_r;
//p_r={n_x, n_y, n_z};
//p_0={ 0.0, 0.0, 0.0};
//$JdrawLine(p_0, p_r, 0.0, 0.0, 0.0, 0.04);
//Rotate
g1:JTranslate(-0.17, 0.04, -0.09)->g1;
g1:JRotate(45, n_x, n_y, n_z)->g2;
g1:JRotate(90, n_x, n_y, n_z)->g3;
g1:JRotate(135, n_x, n_y, n_z)->g4;

g2:JAppend(g3)->g2;
g2:JAppend(g4)->g2;

69

g2:JTranslate(0.17, -0.04, 0.09)->g2;

//Group the same atom type
g_c=<p_c, p_ca, p_cb, p_cg>;
g_o=<p_o, p_od1, p_od2>;
g_n=<p_n>;
g_h=<p_hn, p_ha, p_hb1, p_hb2, p_ht>;

//Apend the new Atoms
g2:JgetSize()->n0;
//$JprintLine(n0);
for(ni=0; [ni<n0]; ni=ni+3){
 g2:JgetPoint(ni)->p_temp_o1;
 g_o:JAppend(p_temp_o1)->g_o;
 g2:JgetPoint(ni+1)->p_temp_o2;
 g_o:JAppend(p_temp_o2)->g_o;
 g2:JgetPoint(ni+2)->p_temp_h;
 g_h:JAppend(p_temp_h)->g_h;
 //Draw New Bonds
 $JdrawLine(p_temp_o1, p_temp_h,
 0.0, 0.0, 1.0, n_r_bond_w); //blue
 $JdrawLine(p_cg, p_temp_o1,
 1.0, 0.0, 0.0, n_r_bond_s);//red
 $JdrawLine(p_cg, p_temp_o2,
 1.0, 0.0, 0.0, n_r_bond_s);//red
}
/**************Rotation End *************/

Graphic output:

 Fig D.7 Aspartic acid Conformations

70

3.3 Residue Rotomer –Aspartic acid

Graphic output:

 Fig D.8 Aspartic Acid Rotomer

71

Reference

[1] Christopher Conway, Cheng-Hong Li and Megan Pengelly, Pencil: A Petri Net
Specification Language for Java, December 2002.

[2] Mason Woo, Jackie Neider and Tom Davis, Open GL programming Guide, second
edition, ISBN: 0201461382, 1997.

[3] The Java Language, An Overview , http://java.sun.com/docs/overviews/java/java-
overview-1.html.

[4] Stephen R. Schach, Object-Oriented and Classical Software Engineering, Fifth
Edition, ISBN: 0072395591, 2002.

[jGTL Group member:]

zhenyu zhu zz2103@columbia.edu
Santiago Ordonez rso2003@columbia.edu
Corey Kasten crk2009@columbia.edu

