
Getting started with CVS

Stephen A. Edwards, Columbia University

A version control system such as CVS or RCS provides a mech-
anism for managing multiple revisions of files, most often pro-
gram source files, but any type of files can be used. Although
version control systems were primarily designed to handle mul-
tiple developers on a single software project, I personally use
CVS to track changes to every program, presentation, proposal,
and paper I write. I also use CVS’s ability to work remotely to
keep versions of these files up-to-date on multiple machines.

1 Creating a repository

The first step in using CVS is to create a repository: a directory
that will contain the revision history of every file along with
other meta-data. Many people and projects can use the same
repository. I suggest giving the directory a long name such as
“repository” and putting it in your home directory:

% cd
% cvs -d ˜/repository init
% ls repository
CVSROOT/
%

2 Adding an empty subdirectory to the repository

A repository starts out empty; the first thing to put into it is
an empty directory that you will later fill with your files. Use
the cvs “import” command to do this (import can bring a whole
directory tree into the repository; we aren’t using that feature
here). Let’s create a directory called “project1” (you can name
it as you like).

% mkdir ˜/project1
% cd ˜/project1
% cvs -d ˜/repository import \

-m "Initial Version" project1 myself one
% ls ˜/repository
CVSROOT/ project1/
%

“myself” and “one” are the vendor and release tags respec-
tively. Their values are normally irrelevant, but you must list
them here.4 The -m option specifies a log message; if you omit
it, you’ll be asked to add a message in a text editor.

3 Creating a working directory

Once one member of your development group has set up a repos-
itory and put at least one subdirectory in it, you don’t need to
repeat the process; you can start from this step.

Files stored in the repository contain version information; you
shouldn’t edit them directly. Instead, set up a different directory
where you “check out” the master files to edit. I like to call this
directory “cvs,” also in my home directory. Create this directory
and check out the directory we created in the last step:

% mkdir ˜/cvs
% cd ˜/cvs
% cvs -d ˜/repository checkout project1
cvs checkout: Updating project1
% ls
project1/
% ls project1
CVS/
%

4 Adding files

Once you have a working directory, you can add files and direc-
tories to it and place them in the repository.

‘

% cd ˜/cvs/project1
% cat > Hello.java
public class Hello {

public static void main(String[] args) {
System.out.println("Hello.");

}
}
% cvs add Hello.java
cvs add: scheduling file ‘Hello.java’ for addition
cvs add: use ’cvs commit’ to add this file permanently
%

At this point, we’ve told CVS that we want to add the Hello.java
file to the repository, but we haven’t actually done it yet. It’s
only when a file is committed that it actually enters the reposi-
tory:

% cvs commit -m "Initial version" Hello.java
RCS file: /home/sedwards/repository/project1/Hello.java,v
done
Checking in Hello.java;
/home/sedwards/repository/project1/Hello.java,v

<-- Hello.java
initial revision: 1.1
done
% ls ˜/repository/project1
Hello.java,v
%

One a file has been added and committed, anybody who checks
out or updates the same directory from the repository will get
the new version of the file. For example, say someone created
another working directory:

% mkdir ˜/othercvs
cd ˜/othercvs
% cvs -d ˜/repository checkout project1
cvs checkout: Updating project1
U project1/Hello.java
% ls
project1/
% ls project1
Hello.java
%

1



5 Modifying files and getting the changes

If someone modified the Hello.java file in the “othercvs” work-
ing directory and committed the changes, this would place a dif-
ferent version in the repository.

% cd ˜/othercvs/project1
% cat > Hello.java
public class Hello {

public static void main(String[] args) {
System.out.println("Hello World.");

}
}
% cvs commit -m "Added World" Hello.java
Checking in Hello.java;
/home/sedwards/repository/project1/Hello.java,v

<-- Hello.java
new revision: 1.2; previous revision: 1.1
done
%

The new version is now in the repository, but not in the first
working directory. Use “cvs update” to get the newest versions:

% cd ˜/cvs/project1
% cat Hello.java
public class Hello {

public static void main(String[] args) {
System.out.println("Hello.");

}
}
% cvs update
cvs update: Updating .
U Hello.java
% cat Hello.java
public class Hello {

public static void main(String[] args) {
System.out.println("Hello World.");

}
}
%

6 Adding and updating directories

Directories are added just like normal files; CVS is smart enough
to know the difference:

% cd ˜/cvs/project1
% mkdir tests
% cvs add tests
Directory /home/sedwards/repository/project1/tests

added to the repository
%

What’s nice is that you don’t have to run cvs commit after
adding a directory.

Unfortunately (or fortunately), to get a copy of an added di-
rectory, you can’t simply run cvs update, since by itself it only
updates files in the current directory. You need to give update
the -d flag:

% cd ˜/othercvs/project1
% cvs update
cvs update: Updating .
% ls
CVS/ Hello.java
% cvs update -d
cvs update: Updating .
cvs update: Updating tests
% ls
CVS/ Hello.java tests/
%

7 Adding binary files

Most of the time, you’ll be adding text source files to your repos-
itory (in particular, don’t add a generated file such as a .class
or .o file to the repository, it will just confuse things), but oc-
casionally you’ll want to add a binary file such as a .jpeg or
.pdf file. So that CVS’s version storage system doesn’t get
confused (it normally only stores diffs), it’s best to tell CVS a
file is binary with the -kb flag when you first add it to the repos-
itory:

% cd ˜/cvs/project1
% cvs add -kb foo.pdf
% cvs commit -m "Initial version"
cvs commit: Examining .
cvs commit: Examining tests
RCS file: /home/sedwards/repository/project1/foo.pdf,v
done
Checking in foo.pdf;
/home/sedwards/repository/project1/foo.pdf,v <-- foo.pdf
initial revision: 1.1
done
%

(Note that you don’t always need to specify the name of the
file you’re committing; if you don’t specify one, CVS will com-
mit all added or modified files.)

8 Removing files

Sometimes, a file has outlived its useful life and needs to be re-
moved from the repository. The remove command does this, but
only after you’ve removed the file from your working directory:

% cd ˜/cvs/project1
% rm foo.pdf
% cvs remove foo.pdf
cvs remove: scheduling ‘foo.pdf’ for removal
cvs remove: use ’cvs commit’ to remove this file permanently
% cvs commit -m "didn’t like foo.pdf"
cvs commit: Examining .
cvs commit: Examining tests
Removing foo.pdf;
/home/sedwards/repository/project1/foo.pdf,v <-- foo.pdf
new revision: delete; previous revision: 1.1
done
%

2


