
String Searching Language 

 
 
 
 

SSL: 
 
String Searching Language 
 
 
 
 
 
 
 
 
 
 
 
 
 
Authors: 
 
Meera Ganesan (meera.ganesan@intel.com) 
Dennis Kim (dkim@harris.com) 
Sandy MacDonald (sandymac@att.com) 
Satheesha Rangegowda (satheesha_rangegowda_923@agilent.com) 

SSL Page 1 05/12/2003 

mailto:meera.ganesan@intel.com
mailto:dkim@harris.com
mailto:sandymac@att.com
mailto:satheesha_rangegowda_923@agilent.com


String Searching Language 

Table of Contents  
 
An Introduction to SSL....................................................................................................... 3 

Background..................................................................................................................... 3 
Voila – SSL! ................................................................................................................... 3 
Where would this be useful?........................................................................................... 4 
Goals of the Language .................................................................................................... 4 

Quick Startup .............................................................................................................. 4 
Powerful...................................................................................................................... 5 
Productive ................................................................................................................... 5 
Portable ....................................................................................................................... 5 
Performance-Oriented................................................................................................. 5 

Summary ......................................................................................................................... 5 
Tutorial................................................................................................................................ 6 

Hello World in SSL ........................................................................................................ 6 
Compiling a Program in SSL.......................................................................................... 6 
More Examples ............................................................................................................... 6 

Language Reference Manual .............................................................................................. 8 
Introduction .................................................................................................................... 8 
Lexical conventions ........................................................................................................ 8 

Comments ................................................................................................................... 8 
Keywords .................................................................................................................... 8 
White Space ................................................................................................................ 9 
Separators.................................................................................................................... 9 
Block Identifiers.......................................................................................................... 9 
Identifiers .................................................................................................................. 10 

Additional Language Specifications ............................................................................. 11 
Model of Computation.............................................................................................. 11 
Storage Classes ......................................................................................................... 11 
Type Conversion....................................................................................................... 11 
Operators................................................................................................................... 11 
Statements ................................................................................................................. 11 
Scope......................................................................................................................... 12 

String Operations .......................................................................................................... 12 
Find ........................................................................................................................... 14 
Replace...................................................................................................................... 16 

SSL Compiler Architecture............................................................................................... 19 
Assignments and Approach .............................................................................................. 21 

Roles ............................................................................................................................. 21 
Project Plan ................................................................................................................... 21 

Testing Strategy ................................................................................................................ 22 
Lessons Learned................................................................................................................ 22 
Caveats and Defects.......................................................................................................... 22 
Appendix A: End to End Test Cases................................................................................. 23 

SSL Page 2 05/12/2003 



String Searching Language 

An Introduction to SSL 
 
 
SSL, which stands for String Searching Language, is intended to be an intuitive 
string searching and manipulation language.  The straightforward, but powerful 
commands enable users to quickly create programs to perform string 
manipulation on files. 
 
Programmers will enjoy the compactness of SSL that allows them in several lines 
of code to perform functions that would have taken many lines of C, C++, or 
Java.  The succinct, but natural character of the language allows users to 
become productive quickly and to easily debug their SSL code.  
  
In addition to the ability to run SSL programs in a standalone manner, the 
compiled output of SSL programs can also be called from an existing C, C++, or 
Java program.  The result is comparable to extending those languages to include 
the string searching and manipulation functions so often required by the serious 
programmer. 
 

Background 
 
Many forms of computer processing require the searching of text strings in files.  
Unfortunately, powerful  programming languages such as  C, C++, and Java are 
designed to build data structures & algorithms from the scratch, starting from 
primitive computer elements like bytes & words. String searching in these 
languages is time consuming and code intensive. 
 
While scripting languages often provide the powerful string manipulation facilities 
desired, they are generally designed for domain specific, rapid application 
development.  They are not intended for writing applications from scratch and as 
such often lack the flexibility and function of their more verbose cousins (e.g. C, 
C++, Java).   
 
The thought is that combining the power and flexibility of these programming 
languages with the concise, productive abilities of the scripting facilities would be 
a powerful, productive combination.  The opportunity exists for a language 
capable of filling this void.  
 

Voila – SSL!  
 
SSL is designed to provide an easy to use, concise language for string searching 
and manipulation that can be used in a stand-alone mode or called from an 
existing program. 

SSL Page 3 05/12/2003 



String Searching Language 

 
Since useful programs can be created with only a few lines of code, SSL 
programming is easy to learn.  New users will appreciate the intuitive, English-
language-like format of the language commands.  Capable string manipulation 
functions of the language include search, replace, output, and print options.  The 
succinct nature of the language facilitates debugging.   
 
SSL allows the user to search for particular string or string concatenation in a 
specified file, directory, or directory and all subdirectories.  When found, the 
indicated line can be printed or written to a temporary file for further processing.  
The string replace feature allows the user to look for a particular string in a given 
document and replace with another string.  The programmer has access to the 
matched string, the portion of the line before and after the string, the line number, 
and the entire line value.  
 

Where would this be useful?  
 
If you haven’t encountered a need to perform complicated string searching and 
manipulation, consider yourself fortunate and somewhat unique!  There are many 
applications for this function.  
 
One area where such a facility would prove extremely useful is for Natural 
Language Processing where the  need to create programs that identify, extract, 
and manipulate strings are a regular occurrence.  Other potential user of “SSL 
include system programmers, technical writers, e-book editors, library 
maintenance system administrators, and many others. 
  

Goals of the Language 
 
The goals of SSL are to provide an intuitive language for string processing which 
can be incorporated into existing programs. The language is intended to support 
both new and experienced users, and to be  powerful, productive, portable, and 
performance oriented.   
 

Quick Startup  
Since SSL commands are designed to be natural and intuitive, new programmers 
can quickly establish adequate knowledge of the language and become 
productive.  The concise format of the language allows short programs of a few 
lines to perform useful functions.  These programs can be implemented quickly 
and debugged easily. 

SSL Page 4 05/12/2003 



String Searching Language 

 

Powerful 
SSL provides the ability to perform string identification, manipulation, and 
retrieval with a very succinct programming structure.  Many possible 
permutations can be expressed in a compact statement.  The result is that 
programs consisting of just a handful of lines can simulate functions that would 
have taken many lines of C, C++, or Java code.    
 

Productive 
Since SSL programs can be run as standalone programs or called from inside a 
C, C++, or Java program, it enables these programs to perform process whole 
files with a small set of instructions that can be fully tested outside of the calling 
program.  The reduced number of lines of code and associated quality of the 
resulting code will support significant productivity gains for programmers in these 
targeted languages.   
 

Portable 
Since the compiled output of SSL is standard C++, programs written in this 
language can be compiled and run on a variety of platforms (any of which run 
standard C++) including Sun Solaris, HP Unix, and IBM AIX.  Care has been 
taken with the language to eliminate the use of processor specific C/C++  code. 
 

Performance-Oriented 
Rather than generating interpretive or byte code results, the SSL compiler 
generates a C++ language program.  Since C++ programs compile on each 
processor to among the most efficient of possible machine languages, the 
resulting SSL code runs quickly and without undue impact of system resources.  
Further optimization of the C++ code by the local optimizing compiler ensures a 
performance-oriented implementation of the desired string functions.    
 

Summary 
 
In summary, the String Searching Language SSL is intended to fill the void left by 
otherwise powerful programming languages where the lack of flexible string 
searching and manipulation facilities that can be implemented easily, tested 
quickly, and run in any environment requires the developer to create and test 
many lines of code unique to the particular problem.  We believe that 
programmers will appreciate the benefits of this language and find it useful in 
many real world coding situations. 
 

SSL Page 5 05/12/2003 



String Searching Language 

Tutorial 
 

Hello World in SSL 
 
Getting started with the SSL language is fun and easy!  Lets start with the classic 
“Hello World” program.  In SSL, this can be a single line program as follows: 
 
Example: Print “Hello World”;  
 

Compiling a Program in SSL 
 
Lets call our program “Hello”.  This program would be saved with a .ssl file 
extension and compiled using the SSL compiler using the program “sslc”.   
 
Example: sslc Hello.ssl  
 
 
The result of main would be the Hello.cpp file.  The Hello.cpp file is compiled 
using g++ and linked with SSLLib.cpp to produce an executable C++ program. 
 

More Interesting Examples 
 
To find the string “Hello World” in an input file (input.txt) and print the line number 
for each line on which it was found, create the following SSL program:        
 
Example: String string1 = “Hello World”; 
 

Find string1 in “input.txt” { 
  Print LineNum; 
}; 
 

To send the output to a file called “output.txt” and show the whole line, we would 
alter the program slightly as follows:        
 
Example: String string1 = “Hello World”; 
  File fileo = “output.txt”;  
 

Find string1 in “input.txt” { 
  Output to fileo LineValue ; 
}; 

 

SSL Page 6 05/12/2003 



String Searching Language 

Now we’ll try something a little fancier.  The following program searchs for “Hello 
World” in directory “C:/temp” and creates an output file indicating the file name, 
line number, and the text of each line including “Hello World.  The search is 
performed with no case sensitivity:        
 
Example: String string1 = “Hello World”; 
  Directory mydir = “C:/temp”; 
  File fileo = “output.txt”;  
 

Find string1 in mydir using CaseOff { 
  Output to fileo FileName ‘ ‘ LineNum ‘ ‘ LineValue; 
}; 

 
To  replace the phrase  “Hello World” with “Greetings Earth” and print the lines on 
which we made the replacement: 
   
Example: String string1 = “Hello World”; 
  String string2 = “Greetings Earth”; 
 
  File filei = “input.txt”; 
  File fileo = “output.txt”;  
 

Replace string1 in filei with string2 using CaseOff { 
  Print LineValue; 
}; 
 

For our last example, we will create a program that combines both the find and 
the replace operators.  
 
Example: String string1 = “Hello World”; 
  String string2 = “Greetings Earth”; 
  File filei = “input.txt”; 
 
  Find string1 in filei using CaseOn, SubDirectoryOff { 
    Print LineValue; 
    Output to “result.txt”  LineValue; 
  } 
 

Replace string1 in filei with string2  { 
  Print LineValue 
  Output to “result.txt” LineValue; 
 }; 

 
Congratulations!  You are now an SSL expert! 
 

SSL Page 7 05/12/2003 



String Searching Language 

Language Reference Manual 
 

Introduction 
 
SSL, String Searching Language is designed to do basic string operations, string 
manipulation and mainly string searching. This Manual discusses the primary 
characteristics of SSL. 
 
Note: Syntax is indicated in italics with keywords in bold.  The vertical bar 
indicates multiple choices.   
 

Lexical conventions 
 
SSL has the following tokens: comments, identifiers, keywords, strings, 
constants, and separators.  In general, tokens are greedy in that the longest 
string of characters that constitutes a valid token is the one selected.  Tokens are 
also case sensitive unless specifically noted. 
   

Comments 
 
SSL supports both C (/* */) and C++ (//) style comments like many other 
contemporary languages.   
 
C style comments begin with the character sequence /* and end with the 
opposite sequence */.  Multiple such sequences may appear on a single line.  
Alternatively, this sequence may span multiple lines.  The SSL compiler removes 
all comments prior to processing the SSL program input. 
 
C++ style comments begin with // and terminate at the end of the line as 
identified by the appropriate end of line characters for the machine (e.g. \r \n, \n, 
or \r).  Again, the SSL compiler removes all comments prior to processing the 
SSL program input. 
 

Keywords     
 
Keywords are reserved and include the following case sensitive values: 
 
AfterPattern  BeforePattern 
CaseOn  CaseOff  Char   
Directory  DirectoryName 
File   FileName  Find 

SSL Page 8 05/12/2003 



String Searching Language 

in   Int 
LineNum  LineValue 
Output 
Pattern  Print 
Replace  ReplaceLine 
String   SubDirectoryOn SubDirectoryOff 
using   with 
 
 

White Space 
 
The following characters are denoted as white space by SSL: 
 
     blank 
\n                        newline 
\t                         tab 
\r                        carriage return 
 
White space is mainly ignored by SSL except in the case of comments where it is 
used to terminate C++ style (//) comments.   However, there are certain 
situations in which it is significant.  Specifically, white space is of interest when 
included as part of a string (e.g. one which includes blanks) or when its 
placement results in the termination of a token (e.g. results in the end of an 
identifier or an integer).      
 

Separators 
 
The following separators are recognized by SSL:  ,  ; 
(comma, semicolon). 
    

Block Identifiers 
 
The following identify the beginning and end, respectively, of blocks in SSL: {  }   
(Open braces, Close braces) 
  
 
Constants 
 
The following are the constants supported by SSL. 
 

Integer constants  
 
Integer constants consist of a sequence of one or more consecutive digits.   

SSL Page 9 05/12/2003 



String Searching Language 

 

Character constants 
 
Character constants consist of one alphabetic (a – z, A – Z), numeric (0 – 9), or 
printable special character (e.g. #  * + ? !) enclosed in single quotes (‘ ‘).  These 
characters must fall in the ASCII range of \33 to \126 
 
Limited unprintable characters are also supported including: 
 
    blank 
    tab 
 

String constants 
 
A string constant is a sequence of one or more characters surrounded by double 
quotes (“”).  These characters may include alphabetic (a – z, A – Z), numeric (0 – 
9), and printable special characters from the ASCII range of \3 to \377.  A double 
quote may appear within a string but must be accompanied by another double 
quote (e.g. “”).  SSL will remove the second double quote and process the double 
quote as part of the string.       
 

Identifiers   
 
Identifiers consist of a sequence of letters (a - z, A - Z) and digits (0 – 9) where 
the first character must be a letter.  Note that SSL is case sensitive so identifiers 
created with the same sequence of letters and digits but differing in case, will not 
be recognized as the same identifier.    
 
Various specific types of identifiers are supported including the following: 
  

String Identifiers  
 
SSL allows a string constant to be identified and referred to in later processing.   
 
Syntax :        String string1 = “abcde”; 

 Find string1 in “file1.txt” {…}; 
  

File Identifiers  
 
SSL allows a file to be identified and referred to in later processing. 
 
Syntax:        File file1 = “test2.txt”; 

SSL Page 10 05/12/2003 



String Searching Language 

Find string1 in file1 {…}; 
 

Directory Identifiers  
 
SSL allows a directory or files of a particular type in a directory to be identified 
and referred to in later processing.  Files of a particular type in a directory can be 
identified by including the  
 
Syntax :        Directory mydir = “c:\temp”; 

         Find string1 in mydir {…}; 
 
 

Additional Language Specifications 

Model of Computation 
 
SSL’s model of computation assumes that files in one or more directories are 
sequential read and processed one after another. 
 

Storage Classes 
 
SSL supports static and automatic storage types since tokens can have a life 
associated with the entire program or with the processing of a single complex 
function. 
 

Type Conversion 
 
SSL will automatically convert to a string any combination of strings, characters, 
and integers appearing sequentially separated only by spaces.   
 

Operators 
 
SSL supports the assignment operator (=) in select places in the language.  
Please refer to the Basic and Complex String Operations for examples. 
 
Example: string  =  expression ;   
 

Statements 
 
SSL programs can consist of multiple expressions separated by a semicolon (;). 
 

SSL Page 11 05/12/2003 



String Searching Language 

Example: string  =  expression ;  
  expression ; 
  expression ;  
 

Scope 
 
SSL identifiers and constants are statically scoped.  Expressions are processed 
sequentially by SSL.  Files created as the result of one expression can be used 
as input by a subsequent expression.  Values associated with a block (e.g. 
values generated by a particular Find or Replace operation are valid only until the 
end of that block.   
 
Example: Find string_a in dir1 { 

  Print DirectoryName ‘/’ FileName ‘ ‘ LineNum ‘:’ LineValue; 
  }; 

 
 

String Operations  
 
 
Concatenation    
 
This command will concatenate an unlimited combination of string constants, 
string identifiers, integer constants, integer identifiers, character constants, and 
character identifiers (including white space characters) into a single string. 
 
 
Syntax:        value1  value2  value3 …; 
 
Where values can be any combination of strings, string variables, integers, integer 
variables, characters, and character variables including white space characters and 
character variables with white space values.  
 
 
Example:     String string1 = ‘a’ ‘b’ ‘c’; 
 
Will assign the value “abc” to string1. 
 
 
Example:     String test1 = “String Searching”; 
                     String test2 = “ Language”; 
 
           String test3 = test1 test2;  
 

SSL Page 12 05/12/2003 



String Searching Language 

test3 will contain “String Searching Language” 
 
 
Example:     Print “String” ‘ ‘ “Searching” ‘ ‘  3 ‘ ‘ “Way” ‘s’;  
 
Will print “String Searching 3 Ways” with blanks separating the first 4 values. 
 
 
Print    
 
This command will print a string or concatenation (see Concatenation) to the 
console. 
 
 
Syntax:        Print value1  value2  value3 …; 
 
Where values can be any combination of string constants, string variables, integer 
constants, integer variables, character constants, and character variables.   
 
 
Example:     String test1 = “String Searching”; 
                     String test2 = “ Language”; 
 
           Print test1 test2;  
 
Will print “String Searching Language” 
 
 
Output    
 
This command will write a string or concatenation (see Concatenation) to the 
indicated file. 
 
 
Syntax:        Output to file value1  value2  value3 …; 
 
Where file can be a file constant or file identifier and values can be any combination of 
string constants, string variables, integer constants, integer variables, character 
constants, and character variables.   
 
 
Example:     String test1 = “String Searching”; 
                     String test2 = “ Language”; 
 
           Output to “file1.txt” test1 test2;  
 

SSL Page 13 05/12/2003 



String Searching Language 

Will write “String Searching Language” to file1.txt. 
  
 
 ReplaceLine    
 
This command is only valid within the scope of a Replace statement.  It causes 
the line with the matching pattern to be completely replaced with the indicated 
string value.   
 
 
Syntax:        ReplaceLine value1  value2  value3 …; 
 
Where values can be any combination of string constants, string variables, integer 
constants, integer variables, character constants, and character variables. 
 
 
Example: Replace string_a in file1 with string_b { 

   ReplaceLine BeforePattern ‘*’ Pattern ‘*’ AfterPattern; 
}; 

 
Will replace any file line containing the search pattern with the same line but with ‘*’s 
before and after the matching pattern. 
 

Find 
 
This command will find each instance of the given string in a given file and allow 
the directory name (if directory search), file name, line number, and line value 
associated with each to be utilized within the block of statements associated with 
the find request. 
 
 
Find has the following required and optional parameters as follows: 
 
 
Syntax:  Find string in file|directory using optionalkeyword(s) { 
   (statements) 
  }; 
 
Required: 

1. The Find keyword. 
2. The string being searched for.  This can be specified statically as a string 

(e.g. “abc”) or using a previously defined string identifier (e.g. string2). 
3. The in keyword. 
4. The file or directory to be searched.  The file or directory can be specified 

statically as a string (e.g. “file1.txt” or “c:\temp\test1.txt” or 

SSL Page 14 05/12/2003 



String Searching Language 

“c:\project\*.cgi”) or using a previously defined file or directory identifier 
(e.g. file1, directory_abc). 

 
Optional: 

5. The using keyword. 
6. An optional parameter indicating whether the search should be case 

sensitive CaseOn or not (CaseOff).  Note: the default is case sensitive. 
7. An optional parameter indicating whether a directory search should be 

confined to the current directory (SubDirectoryOff) or inclusive of all sub 
directories (SubDirectoryOn).  Note: the default is to search all 
subdirectories.  Note that this keyword has no meaning for file searches 
and is ignored. 

8. If both CaseOn|CaseOff and SubDirectoryOn| SubDirectoryOff are 
included, they may appear in any sequence, but must be separated by a 
comma.    

 
Required: 

9. The block initiator  { 
10. One or more statements each followed by a semicolon.  These statements 

may utilize keywords created by SSL for the find operation in progress 
including: 

a. LineNum – the line number in which the search string appears 
b. LineValue – the text of the line in which the search string appears 
c. FileName – the name of the file in which the search string appears 
d. DirectoryName -  the name of the directory in which the search 

string appears (only populated when searching a directory) 
e. BeforePattern – the portion of the line which appeared before the 

pattern matched 
f. AfterPattern – the portion of the line which appeared after the 

pattern matched 
g. Pattern – the pattern matched 

11. The block terminator  } 
 
 
 
Syntax1:  Find string in file { 
    Statement(s)  
  }; 
 
 
Syntax2:  Find string in directory { 
    Statement(s)  
  }; 
 
 
Syntax3:  Find string in file using CaseOff { 

SSL Page 15 05/12/2003 



String Searching Language 

    Statement(s)  
  }; 
 
 
Syntax4:  Find string in directory using SubDirectoryOff { 
    Statement(s)  
   }; 
 
 
Syntax5:  Find string in directory using CaseOff, SubDirectoryOff { 
    Statement(s)  
  }; 
 
 
 
The following examples demonstrate possible syntax variations: 
 
In this example, both the file name and string value are constant values.  The 
search will be for the string abc (case sensitive by default) in the file file1.txt.   
 
Example:  Find “abc” in “file1.txt” { 
    Print LineNum; 
  }; 
 
 
In the following example, both the file name and string value are identifiers.  Note 
that CaseOff will result in a non-case sensitive search. 
 
 
Example: Find string_a in file1 using CaseOff { 

   Print LineValue; 
}; 
 

Replace 
 
This command will find and replace each instance of the given string in a given 
file and allow the directory name (if directory search), file name, line number, and 
line value associated with each to be utilized within the block of statements 
associated with the find request. 
 
 
Replace has the following required and optional parameters as follows: 
 
 
Syntax:  Replace string in file|directory with string using optionalkeyword(s) { 

SSL Page 16 05/12/2003 



String Searching Language 

   (statements) 
  }; 
 
Required: 

1. The Replace keyword.  
2. The string being searched for.  This can be specified statically as a string 

(e.g. “abc”) or using a previously defined string identifier (e.g. string2). 
3. The in keyword. 
4. The file or directory to be searched.  The file or directory can be specified 

statically as a string (e.g. “file1.txt” or “c:\temp\test1.txt” or 
“c:\project\*.cgi”) or using a previously defined file or directory identifier 
(e.g. file1, directory_abc). 

5. The with keyword 
6. The target string that will replace the search string. 

 
Optional: 

7. The using keyword. 
8. An optional parameter indicating whether the search should be case 

sensitive CaseOn or not (CaseOff).  Note: the default is case sensitive. 
9. An optional parameter indicating whether a directory search should be 

confined to the current directory (SubDirectoryOff) or inclusive of all sub 
directories (SubDirectoryOn).  Note: the default is to search all 
subdirectories.  Note that this keyword has no meaning for file searches 
and is ignored. 

10. If both CaseOn|CaseOff and SubDirectoryOn| SubDirectoryOff are 
included, they may appear in any sequence, but must be separated by a 
comma.   

 
Required: 

11. The block initiator  { 
12. One or more statements followed by a semicolon.  These statements may 

utilize keywords created by SSL for the replace operation in progress 
including: 

a. LineNum – the line number in which the search string appears 
b. LineValue – the text of the line in which the search string appears 
c. FileName – the name of the file in which the search string appears 
d. DirectoryName -  the name of the directory in which the search 

string appears (only populated when searching a directory).  
e. BeforePattern – the portion of the line which appeared before the 

pattern matched 
f. AfterPattern – the portion of the line which appeared after the 

pattern matched 
g. Pattern – the pattern matched 

13. The block terminator  } 
 
 

SSL Page 17 05/12/2003 



String Searching Language 

 
Syntax1:  Replace string in file with string { 
    Statement(s)  
  }; 
 
 
Syntax2:  Replace string in directory with string { 
    Statement(s)  
  }; 
 
 
Syntax3:  Replace string in file with string using CaseOff { 
    Statement(s)  
  }; 
 
 
Syntax4:  Replace string in directory with string using SubDirectoryOff { 
    Statement(s)  
  }; 
 
 
Syntax5:  Replace string in directory with string using CaseOff, SubDirectoryOff { 
    Statement(s)  
  }; 
 
 
The following examples demonstrate possible syntax variations: 
 
In this example, the file name and both strings are constant values.  The search 
will be for the string abc (case sensitive by default) in the file file1.txt and for each 
instance of the search string to be replaced with the target string.   
 
Example:  Replace “abc” in “file1.txt” with “xyz” { 
    Print LineNum; 
  }; 
 
 
In the following example, both the file name and string value are identifiers.  Note 
that CaseOff will result in a non-case sensitive search, followed by each instance 
of the search string being replaced by the target string. 
 
 
Example: Replace string_a in file1 with string_b using CaseOff { 

   Print LineValue; 
}; 

 

SSL Page 18 05/12/2003 



String Searching Language 

SSL Compiler Architecture 
 
The SSL Compiler translates the SSL source file into C++ Source files.   
 
As shown in Figure 1, the Lexical Analyzer reads a stream of characters from the 
SSL Source file and creates valid tokens based on the SSL language syntax. If 
the token is not valid in SSL Syntax, the Lexical Analyzer will generate compiler 
errors.   
 
The Parser processes the sequence of tokens generated by the Lexical Analyzer 
and generates an AST (Abstract Syntax Tree) used by later components for 
processing the SSL program. The Parser generates errors if syntax errors are 
encountered. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Lexical 
Analyzer 

SSL Source 
File

  

Figure 1: 
 
 
The Semantic A
properties of the
identifiers and e
error messages 
 
The Code Gene
program (<file>.
 
The SSL Lexer a
upon SSL gramm
by the ANTLR to
one Symbol Tab

SSL 
Toke

Parser 

S
T

nalyzer takes the AST
 SSL Language.  It ge
nsures that previously
if the program is reco

rator utilizes C++ libra
h and two <file>.cpp fi

nd Parser programs 
ar rules.  The AST is

ol.  The Symbol Table
le is created for each 

P

AST
ymbol 
able 

Semantic 
Analyzer 

 as input and checks fo
nerates entries in the S
 defined identifiers exis
gnized to be semantica

ries to transform the AS
les).  

were generated using A
 the standard tree gene
 is a custom coded C+
SSL program, hence a

age 19 
AST

Code 
Generator 

Target C 
Source File 

r semantic 
ymbol table for new 
t.  It will generate 
lly incorrect. 

T into a C++ 

NTLR V7.2.1 based 
rated automatically 
+ program.  Only 
ll variables exist in a 

05/12/2003 



String Searching Language 

common name space.  The ANTLR Tree Walker was used to generate both the 
Semantic Analyzer and the Code Generator since they walk the AST to perform 
their functions.  (See figure 2).   
 
 
 

Semantic 
Analyzer 

Code 
Generator 

 
ANTLR 

Tool 

Parser 

Lexer 

SSL.g 

 
 
 
 
 
 
 
 
 
 
 
Figure 2: 
 
 
The source files include the .h and .cpp files necessary to run the program in a 
stand-alone mode or called from another program.  These programs are 
compiled on the target processor using the standard C++ compiler.   
 
 
 
 
 

SSL Page 20 05/12/2003 



String Searching Language 

Assignments and Approach 
 
The team approach was to create and test the find function end to end, then to 
implement the remainder of the functions as independently as possible.  The 
compiler work was divided into the following components with the structure of the 
AST driving the design interface for the front-end components and tying the front 
and back ends together.  The C++ libraries drove the design interfaces for the 
back end components. 
 

• Front end: Lexer and Parser  
• Front end: Semantic Analysis 
• Front end: Symbol Table 
• Back end: Code Generation – Tree Walker  
• Back end: Code Generation – C++ Libraries 

 

Roles 
 
Project roles and assignments were as follows: 
 

• White Paper – Sandy and Sateesha 
• LRM – Meera and Dennis 
• Compiler Architecture/Design - Sateesha 
• Lexer and Parser – Sandy 
• Semantic Analysis – Sateesha 
• Symbol Table – Meera 
• Code Generation Tree Walker – Sateesha, Meera 
• C++ Libraries – Dennis 
• Testing – Meera 
• Final Report – Sandy   

 

Project Plan 
 
Key project dates:  
 

• 02/20/03 White Paper 
• 03/18/03 Compiler Architecture 
• 03/27/03 LRM 
• 04/17/03 First function 
• 04/30/03 Revised first function 
• 05/10/03 Full function and Testing  
• 05/11/03 Test on Columbia machines 

SSL Page 21 05/12/2003 



String Searching Language 

 

Testing Strategy 
 

• Unit tests were performed by team members for individual deliverables.   
• Integration tests were performed by the back-end team during final stages 

and were necessary to implement language features. 
• End to end Function tests were performed and documented.  See 

appendix A for actual documentation. 
 

Lessons Learned 
 

• Nothing could have made this more difficult to work in a teaming 
environment than to never be able to meet face to face.  We met weekly 
throughout the semester and spent most of the time trying to ensure 
common understanding.   

• The time difference was a significant difficulty since we had team 
members on both coasts.  It made it impossible to communicate during the 
week except via emails.  

• The LRM was an indispensable tool for communications and, in effect, our 
contract for content.  That deliverable helped force many decisions and 
discussions during the development process not only within the team, but 
also between the team, the T.A., and the professor.     

• The lack of a common code platform that was familiar and comfortable for 
all team members was a significant impact.  It impacted our productivity 
and eroded our ability to communicate effectively.     

 
 

Caveats and Defects 
 

• Concatenation function could not be implemented in time for our release. 
 

• ReplaceLine function could not be implemented in time for our release. 
 

• If Print and Output are used in the same Find or Replace block, they will 
be forced to use the same format. 

 
• A Print or Output within the scope of a Find or Replace block will not 

support pure string text (e.g. text which does not include any of the system 
provided values documented in the LRM). 

 
• Compile errors on Columbia Unix machine.  More work needed to make 

compiler portable.   

SSL Page 22 05/12/2003 



String Searching Language 

 

Appendix A: End to End Test Cases 
 
Syntax Error checking 
 
Following are the tests done to find the syntax error from SSL 
 
1.  Input: test_syn.txt 
// This is  for testing the SSL Comments 
/* this is C++ Style testing */ 
String myname = “abc”; 
 
Output: test_syn.cpp 
#include "SSLLib.h" 
void main() 
{ 
Result: we do not have closing bracket in main if we just the comments in the source file 
 
2. Input: test_syn.txt 
// This is  for testing the SSL Comments 
/* this is C++ Style testing 
String myname = “abc”; 
 
Output:   
exception: expecting '*', found 'EOF' 
 
3.Input:test_syn.txt 
// This is  for testing the SSL Comments 
/* this is C++ Style testing  */ 
String myname = "abc"; 
Print  myname; 
 
Output: 
#include "SSLLib.h" 
 
void main() 
{ 
 
         std::cout << "abc"<< endl; 
 
} 
  
4.Input: test_syn_txt 
// This is  for testing the SSL Comments 
/* this is C++ Style testing  */ 

SSL Page 23 05/12/2003 



String Searching Language 

String myname = "abc"; 
Print  myname myname1; 
 
Output: 
unexpected AST node: ConcatValue 
 
5.Input: test_syn_txt 
// This is  for testing the SSL Comments 
/* this is C++ Style testing  */ 
String myname = "abc"; 
Print  myname1; 
 
Output: 
identifier myname1 not defined 
 
6.Input: test_syn_txt 
// This is  for testing the SSL Comments 
/* this is C++ Style testing  */ 
String myname = "abc"; 
Print1  myname1; 
 
Output 
line 4: expecting EOF, found 'Print1' 
 
7.Input:test_syn.txt 
// This is  for testing the SSL Comments 
/* this is C++ Style testing  */ 
String myname = "abc"; 
File = "test.txt; 
Print  myname; 
 
Output:  
line 4: expecting ID, found '=' 
exception: expecting '"', found 'EOF' 
 
8.Input:test_syn.txt 
// This is  for testing the SSL Comments 
/* this is C++ Style testing  */ 
String myname = "abc"; 
File = "test.txt"; 
Output myname; 
 
Output: 
line 4: expecting ID, found '=' 
line 5: expecting "to", found 'myname' 
 

SSL Page 24 05/12/2003 



String Searching Language 

9. Input:test_syn.txt 
// This is  for testing the SSL Comments 
/* this is C++ Style testing  */ 
String myname = "abc"; 
File "test.txt"; 
Output to myname; 
 
Output 
line 4: expecting ID, found 'test.txt' 
line 5: unexpected token: ; 
line 6: expecting SEMI, found '' 
 
10. Input: test_syn.txt 
// This is  for testing the SSL Comments 
/* this is C++ Style testing  */ 
String myname = "abc"; 
File file1 = "test.txt"; 
Output to file1 myname; 
 
Output 
#include "SSLLib.h" 
 
void main() 
{ 
 
         ofstream outputFile; 
         outputFile.open("test.txt",ios:app); 
         outputFile << "abc"<< endl; 
         outputFile.close(); 
 
} 
 
11. Input: test_syn.txt 
// This is  for testing the SSL Comments 
/* this is C++ Style testing  */ 
String myname = "abc"; 
File file1 = "test.txt"; 
Directory dir1 = "C\temp"; 
Output to file1 myname; 
 
Output 
#include "SSLLib.h" 
 
void main() 
{ 
 

SSL Page 25 05/12/2003 



String Searching Language 

         ofstream outputFile; 
         outputFile.open("test.txt",ios:app); 
         outputFile << "abc"<< endl; 
         outputFile.close(); 
 
} 
 
12. Input: test_syn.txt 
// This is  for testing the SSL Comments 
/* this is C++ Style testing  */ 
String myname = "abc"; 
File file1 = "test.txt"; 
Directory dir1 = "C\temp"; 
Output to file1 myname; 
ReplaceLine  myname "kzt" "next"; 
 
Output 
line 7: expecting EOF, found 'ReplaceLine' 
 
13.Input: test_syn.txt 
// This is  for testing the SSL Comments 
/* this is C++ Style testing  */ 
String myname = "abc"; 
File file1 = "test.txt"; 
Directory dir1 = "C\temp"; 
Output to file1 myname; 
 
Find myname in file1 using CaseOn, SubDirectoryOff ; 
 
Output 
line 8: expecting RBRACE, found ';' 
line 9: expecting SEMI, found '' 
 
14. Input: test_syn.txt 
// This is  for testing the SSL Comments 
/* this is C++ Style testing  */ 
String myname = "abc"; 
File file1 = "test.txt"; 
Directory dir1 = "C\temp”; 
 
Find myname in file1 using CaseOn, SubDirectoryOff { 
Output to file1 myname; 
 
Output 
 line 12: expecting LBRACE, found '' 
line 12: expecting SEMI, found '' 

SSL Page 26 05/12/2003 



String Searching Language 

 
15. Input 
// This is  for testing the SSL Comments 
/* this is C++ Style testing  */ 
String myname = "abc"; 
File file1 = "test.txt"; 
Directory dir1 = "C\temp”; 
 
Find myname in file1 using CaseOn, SubDirectoryOff { 
        Output to file1 myname; 
} 
 
Output 
line 12: expecting SEMI, found '' 
 
16. Input 
// This is  for testing the SSL Comments 
/* this is C++ Style testing  */ 
String myname = "abc"; 
File file1 = "test.txt"; 
Directory dir1 = "C\temp”; 
 
Find myname in file1 using CaseOn, SubDirectoryOff { 
        Output to file1 LineNum; 
}; 
 
Output 
#include "SSLLib.h" 
 
void main() 
{ 
 
 
} 
 
17. Input 
// This is  for testing the SSL Comments 
/* this is C++ Style testing  */ 
String myname = "abc"; 
File file1 = "test.txt"; 
Directory dir1 = "C\temp”; 
 
Find myname in file1 using CaseOn, SubDirectoryOff { 
        Print LineValue; 
} 
 

SSL Page 27 05/12/2003 



String Searching Language 

Output 
#include "SSLLib.h" 
 
void main() 
{ 
 
 
PrnRec tempPrnRec1 = {false, "", true, true, true, true, true} 
 
FindStr("abc", "test.txt", true, false, &tempPrnRec1); 
 
} 
 
18. Input 
// This is  for testing the SSL Comments 
/* this is C++ Style testing  */ 
String myname = "abc"; 
File file1 = "test.txt"; 
Directory dir1 = "C\temp”; 
 
Find myname in file1 using CaseOn, SubDirectoryOff { 
        Print Linevalue; 
} 
 
Output: 
identifier Linevalue not defined 
 
 
19. Input 
// This is  for testing the SSL Comments 
/* this is C++ Style testing  */ 
String myname = "abc"; 
File file1 = "test.txt"; 
Directory dir1 = "C\temp"; 
 
Find myname in file1 using CaseOn, SubDirectoryOff { 
        Print Linevalue; 
        Output to "result.txt" LineNum; 
}; 
 
Output: 
identifier Linevalue not defined 
identifier LineNum not defined 
 
 
20 Input 

SSL Page 28 05/12/2003 



String Searching Language 

// This is  for testing the SSL Comments 
/* this is C++ Style testing  */ 
String myname = "abc"; 
File file1 = "test.txt"; 
Directory dir1 = "C\temp"; 
 
Find myname in file1 using CaseOn, SubDirectoryOff { 
        Print Linevalue; 
        Output to "result.txt" LineNum; 
}; 
 
 
Output: 
#include "SSLLib.h" 
 
void main() 
{ 
 
 
PrnRec tempPrnRec1 = {true, "result.txt", true, true, true, true, true} 
 
FindStr("abc", "test.txt", true, false, &tempPrnRec1); 
 
} 
 
22. Input: 
// This is  for testing the SSL Comments 
/* this is C++ Style testing  */ 
String myname = "abc"; 
File file1 = "test.txt"; 
Directory dir1 = "C\temp"; 
 
Find myname in file1 using CaseOn, SubDirectoryOff { 
        Print LineValue; 
        Output to "result.txt" LineValue; 
}; 
 
 
Replace myname in file1 using CaseOn, SubDirectoryOff { 
        Print LineValue; 
        Output to "result.txt" LineValue; 
}; 
 
Output: 
line 13: expecting "with", found 'using' 
line 16: expecting EOF, found '}' 

SSL Page 29 05/12/2003 



String Searching Language 

 
23.Input 
 
// This is  for testing the SSL Comments 
/* this is C++ Style testing  */ 
String myname = "abc"; 
File file1 = "test.txt"; 
Directory dir1 = "C\temp"; 
 
Find myname in file1 using CaseOn, SubDirectoryOff { 
        Print LineValue; 
        Output to "result.txt" LineValue; 
}; 
 
 
Replace myname in file1 with CaseOn, SubDirectoryOff { 
        Print LineValue; 
        Output to "result.txt" LineValue; 
}; 
 
Output 
line 13: unexpected token: CaseOn 
line 16: expecting EOF, found '}' 
 
24. Input 
// This is  for testing the SSL Comments 
/* this is C++ Style testing  */ 
String myname = "abc"; 
File file1 = "test.txt"; 
Directory dir1 = "C\temp"; 
 
Find myname in file1 using CaseOn, SubDirectoryOff { 
        Print LineValue; 
        Output to "result.txt" LineValue; 
}; 
 
 
Replace myname in file1 with "abc" CaseOn, SubDirectoryOff { 
        Print LineValue; 
        Output to "result.txt" LineValue; 
}; 
 
Output 
line 13: unexpected token: abc 
line 16: expecting EOF, found '}' 
 

SSL Page 30 05/12/2003 



String Searching Language 

25. Input 
// This is  for testing the SSL Comments 
/* this is C++ Style testing  */ 
String myname = "abc"; 
File file1 = "test.txt"; 
Directory dir1 = "C\temp"; 
String newname = "ghk"; 
 
Find myname in file1 using CaseOn, SubDirectoryOff { 
        Print LineValue; 
        Output to "result.txt" LineValue; 
}; 
 
 
Replace myname in file1 with newname { 
        Print LineValue; 
}; 
 
Output: 
#include "SSLLib.h" 
 
void main() 
{ 
 
 
PrnRec tempPrnRec1 = {true, "result.txt", true, true, true, true, true} 
 
FindStr("abc", "test.txt", true, false, &tempPrnRec1); 
 
PrnRec tempPrnRec2 = {false, "", true, true, true, true, true} 
 
ReplaceStr("abc", "test.txt", ghk", true, true, &tempPrnRec2); 
 
} 
 
26. Input  
// This is  for testing the SSL Comments 
/* this is C++ Style testing  */ 
String myname = "abc"; 
File file1 = "test.txt"; 
Directory dir1 = "C\temp"; 
String newname = "ghk"; 
 
Find myname in file1 using CaseOn, SubDirectoryOff { 
        Print LineValue; 
        Output to "result.txt" LineValue; 

SSL Page 31 05/12/2003 



String Searching Language 

}; 
 
 
Replace myname in file1 with newname using CaseOff{ 
        Print LineValue; 
        Output to "result.txt" LineValue; 
}; 
 
Output: 
 
#include "SSLLib.h" 
 
void main() 
{ 
 
 
PrnRec tempPrnRec1 = {true, "result.txt", true, true, true, true, true} 
 
FindStr("abc", "test.txt", true, false, &tempPrnRec1); 
 
PrnRec tempPrnRec2 = {true, "result.txt", true, true, true, true, true} 
 
ReplaceStr("abc", "test.txt", ghk", false, true, &tempPrnRec2); 
 
} 
 
 
28. Input 
// This is  for testing the SSL Comments 
/* this is C++ Style testing  */ 
String myname = "abc"; 
File file1 = "test.txt"; 
Directory dir1 = "C\temp"; 
String newname = "ghk"; 
 
Find myname in file1 using CaseOn, SubDirectoryOff { 
        Print LineValue; 
        Output to "result.txt" LineValue; 
}; 
 
 
Replace myname in file1 with newname using CaseOff, SubDirectoryOff{ 
        Print LineValue; 
        Output to "result.txt" LineValue; 
}; 
 

SSL Page 32 05/12/2003 



String Searching Language 

Output 
#include "SSLLib.h" 
 
void main() 
{ 
 
 
PrnRec tempPrnRec1 = {true, "result.txt", true, true, true, true, true} 
 
FindStr("abc", "test.txt", true, false, &tempPrnRec1); 
 
PrnRec tempPrnRec2 = {true, "result.txt", true, true, true, true, true} 
 
ReplaceStr("abc", "test.txt", ghk", false, false, &tempPrnRec2); 
 
} 
 
29. Input 
// This is  for testing the SSL Comments 
/* this is C++ Style testing  */ 
String myname = "abc"; 
File file1 = "test.txt"; 
Directory dir1 = "C\temp"; 
String newname = "ghk"; 
 
Find myname in file1 using CaseOn, SubDirectoryOff { 
        Print LineValue; 
        Output to "result.txt" LineValue; 
}; 
 
 
Replace myname in file1 with newname using SubDirectoryOff{ 
        Print LineValue; 
        Output to "result.txt" LineValue; 
}; 
 
Output: 
#include "SSLLib.h" 
 
void main() 
{ 
 
 
PrnRec tempPrnRec1 = {true, "result.txt", true, true, true, true, true} 
 
FindStr("abc", "test.txt", true, false, &tempPrnRec1); 

SSL Page 33 05/12/2003 



String Searching Language 

SSL Page 34 05/12/2003 

 
PrnRec tempPrnRec2 = {true, "result.txt", true, true, true, true, true} 
 
ReplaceStr("abc", "test.txt", ghk", true, false, &tempPrnRec2); 
 
} 
 
30. Input 
// This is  for testing the SSL Comments 
/* this is C++ Style testing  */ 
String myname = "abc"; 
File file1 = "test.txt"; 
Directory dir1 = "C\temp"; 
String newname = "ghk"; 
 
Find myname in file1 using CaseOn, SubDirectoryOff { 
        Print LineValue; 
        Output to "result.txt" LineValue; 
}; 
 
 
Replace myname in file1 with newname using SubDirectoryOff, CaseOn{ 
        Print LineValue; 
        Output to "result.txt" LineValue; 
}; 
 
Output: 
#include "SSLLib.h" 
 
void main() 
{ 
 
 
PrnRec tempPrnRec1 = {true, "result.txt", true, true, true, true, true} 
 
FindStr("abc", "test.txt", true, false, &tempPrnRec1); 
 
PrnRec tempPrnRec2 = {false, "", false, true, true, false, false}; 
 
ReplaceStr("abc", "test.txt", ghk", true, false, &tempPrnRec2); 
 
} 

  


	String Searching Language
	Table of Contents An Introduction to SSL3Backgrou
	Background
	Voila – SSL!
	Where would this be useful?
	Goals of the Language
	Quick Startup
	Powerful
	Productive
	Portable
	Performance-Oriented

	Summary

	Tutorial
	Hello World in SSL
	Compiling a Program in SSL
	More Interesting Examples

	Language Reference Manual
	Introduction
	Lexical conventions
	Comments
	Keywords
	White Space
	Separators
	Block Identifiers
	Integer constants
	Character constants
	String constants

	Identifiers
	String Identifiers
	File Identifiers
	Directory Identifiers


	Additional Language Specifications
	Model of Computation
	Storage Classes
	Type Conversion
	Operators
	Statements
	Scope

	String Operations
	Find
	Replace


	SSL Compiler Architecture
	Assignments and Approach
	Roles
	Project Plan

	Testing Strategy
	Lessons Learned
	Caveats and Defects
	Appendix A: End to End Test Cases

