
WinARM - Simulating Advanced RISC Machine Architecture  
 

Shuqiang Zhang  
 

Department of Computer Science  
Columbia University  

New York, NY  
sz184@columbia.edu 

 
 
Abstract  
 

This paper discusses the design and imple-
mentation of the WinARM, a simulator imple-
mented in C for the Advanced RISC Machine 
(ARM) processor. The intended users of this tool 
are those individuals interested in learning com-
puter architecture, particularly those with an inter-
est in the Advanced RISC Machine processor fam-
ily.  

WinARM facilitates the learning of computer 
architecture by offering a hands-on approach to 
those who have no access to the actual hardware. 
The core of the simulator is implemented in C with 
and models a fetch-decode-execute paradigm; a 
Visual Basic GUI is included to give users an in-
teractive environment to observe different stages 
of the simulation process.  

 
1. Introduction:  
 

This paper describes how to simulate an 
ARM processor using the C programming lan-
guage. In the course of this discussion, the reader 
is introduced to the details of the ARM processor 
architecture and discovers how the hardware 
specifications are simulated in software using 
execution-driven simulation. Execution driven 
simulation is also know as instruction-level simu-
lation, register-cycle simulation or cycle-by-cycle 
simulation [3]. Instruction level simulation con-
sists of fetch, decode and execution phases [4].  

ARM processors were first designed and 
manufactured by Acorn Computer Group in the 
mid 1980’s [1]. Due to its high performance and 
power efficiency, ARM processors can be found 
on wide range of electronic devices, such as Sony 
Playstation, Nintendo Game Boy Advance and 
Compaq iPAQs. The 32-bit microprocessor was 
designed using RISC architecture with data proc-
essing operations occurring in registers instead of 
memory. The processor has 16 visible 32 bit regis-
ters and a reduced instruction set that is 32-bits 

wide. The details on the registers and instructions 
can be obtained from the ARM Architectural Ref-
erence Manual [2].  

 
2. Related Works:  
 

This section discusses different types of 
simulators available today and their different ap-
proaches in design and implementation. Most 
simulation tools can be classified as user level 
simulators: these simulate the execution of a proc-
ess and emulate any system calls made on the tar-
get computer using the operating system of the 
host computer [5]. WinARM is an example of this 
type of simulator; it executes ARM instructions on 
a host Pentium x86 processor using a 
fetch-decode-execute paradigm. KScalar Simulator 
[Moure 6], PPS suite [7], CPU Sim3.1 [8] and OA-
Mulator [9] are simulators best suited for educa-
tional purposes. They show the basic ideas of com-
puter organization with relatively few details and 
complexity. They are specifically designed for stu-
dents who have little or no background in com-
puter architecture and who need a simple introduc-
tion [6]. WinARM also belongs in this category 
because it provides a concise and straightforward 
introduction to the ARM architecture. On the other 
extreme of the spectrum is the SPARC V9 Com-
plete Machine Simulator, one of the many 
well-know complete machine simulators devel-
oped to date. These simulate the target computer 
from the boot stage, including all codes executed 
by the PROM, the OS that is loaded by the PROM, 
and any processes subsequently created [5]. An-
other approach to processor simulation can be seen 
in the Simx86 simulator. The Simx86 abandons 
the traditional simulator implementation approach 
of pre-decoding instructions and cross compilation. 
Instead, Simx86 favors an object oriented ap-
proach to improve extensibility of the simulator at 
the cost of increased execution time. The Simx86 
provides a straightforward way to build a simulator 
for a processor by allowing each component 



    
Figure 1. ARM Architecture 

 
of the processor to be represented directly in the 
simulator by an object. The simulator can easily be 
extended by adding new classes of instructions 
without the daunting task of constructing a new 
simulator [10]. WinARM, on the other hand, re-
tains the traditional approach for building simula-
tors, and is composed of fetch, decoding and exe-
cution phases [4]. This approach tends to favor 
execution speed of the simulators [10].  
 
3. Designing and Building WinARM 
 

The basic approach in designing WinARM is 
to simulate all the necessary components of the 
ARM architecture in C code.  This includes the 
register bank, instruction decoder, the 32-bit ALU 
and all other components.  Figure 1 shows a de-
tailed view of the major components in the ARM 
architecture and how they interact with each other.  

The sixteen 32-bit user level registers, stack 
space, and memory of the ARM architecture are all 
modeled using arrays of unsigned long types.  
The fetch-decode-execute paradigm of the ARM 
instruction set is simulated via several C functions 

that get passed the 32-bit instructions.  The de-
code function determines the type of the instruc-
tion based on its bit pattern and calls the appropri-
ate instruction execution function.  See Figure 2 
for details on the instruction set of the ARM proc-
essor. 

The traditional approach of building simula-
tors which focuses on pre-decoding instructions to 
an intermediate representation and cross compila-
tion [10] is also used for building the WinARM 
simulator,.  Therefore, a cross compiler is re-
quired to generate ARM machine code to run on 
the host Pentium x86 machine. 

Finally, a visual basic GUI is included in the 
simulator to provide users of WinARM an interac-
tive environment to work in. 
 
3.1 Cross Compilation 
 

The idea behind simulation is to be able to 
‘execute’ non-native code on a host machine.    
In order to obtain non-native machine code, a cross 
compiler is required.  Many free versions of the 
ARM cross compiler are readily available on the 



 
Figure 2. ARM instruction Set 

 
world wide web.  The one used for this simulator 
was created by Jason Wilkins (fenix@ io.com). 
 
3.2 Instruction Fetching 
 

Once ARM machine code has been obtained 
using a cross compiler, the instruction fetching 
process begins.  The object file generated by the 
assembler is read 32 bits at a time since all ARM 
instructions are 32-bits wide.  The header and 
footer sections of the object file, which contains 
ARM system information, are discarded because 
they are not used by the simulator.  All the 
fetched instructions are then stored in the Program 
Memory space, which is modeled by a fixed size 
array of unsigned long type.  After all the instruc-
tions are fetched and stored, the Decoding stage 

begins.   
 
3.3 Instruction Decoding 
 

All of the ARM instructions are 32-bits wide, 
with a predefined and distinct bit pattern.  Wi-
nARM uses these bit patterns to determine the type 
of the instruction being decoded, and calls ap-
propriate execution functions to execute each spe-
cific instruction. See figure 2 for the bit patterns of 
each type of ARM instruction.  The decoding 
process isolates the bit pattern of each incoming 
instruction and compares it to the set of predefined 
bit pattern, if there is a match, the instruction is 
sent to the target Execution function to be exe-
cuted. 

 

 
Figure 3. CPSR Register 

 
Figure 4. Instruction Condition Field 

 
 



 
 

Figure 5. Data Processing Instruction 
 

3.4 Instruction Execution  
The main working unit of the simulator con-

sists of the execution functions for each different 
type of ARM instruction.  These functions do the 
actual arithmetic computations, move data be-
tween simulated registers and memory, update the 
CPSR register, and keep track of the program 
counter and stack pointer. 

In addition to the predefined bit pattern of 
each instruction type, there are many variable bits 
in each instruction.  Depending on the state of 
these variable bits, each instruction could be exe-
cuted in many different ways.  For example, a 
Data Processing Instruction has the ‘I’ bit which 
determines if the second operand is a register or an 
immediate value.  If the second operand is a reg-
ister, the instruction also contains a shift field, 
which can specify different types of shifts.  The 
shift amount can either be a register or an immedi-
ate value.  The OpCode field may specify sixteen 
different kinds of operations the Data Processing 
instruction may perform.  See Figure 5 for details 
on Data Processing Instructions. 
Another important aspect of WinARM is the 
simulation of CPSR (Program Status Register) and 
the condition flag of each ARM instruction.  
These two, in combination, determine whether the 
current decoded instruction should be executed or 
ignored, which is of utmost importance when run-
ning branch instructions.  The CPSR register has 

a four bit Condition Code that consists of  N, Z, C 
and V flags (see Figure 3).  These flags are up-
dated and latched each time any instruction is exe-
cuted with the S bit field set to 1 [2]. Every ARM 
instruction contains a Condition field of four bits, 
but each individual bit of the instruction condition 
field has no direct correlation with each of the 
condition flags in the CPSR register.  Instead, 
there are sixteen possible instruction conditions; 
each condition requires the system to check the 
state of one or more CPSR condition flags. See 
Figure 4 for details on each of the condition field 
requirements.  If the requirements were met, the 
current instruction gets executed, otherwise, it is 
ignored and the PC (program counter) gets incre-
mented by one and points to the next instruction to 
be executed. 

The PC (Program Counter), which is register 
r15, points to the next ARM instruction to be exe-
cuted.  The value of the PC can be updated or 
moved just like any other ARM register, for in-
stance, a branch instruction would update the PC 
with its offset so the execution path can jump to 
somewhere else in the Program Space.  In con-
junction with register r14, the link register, the PC 
can simulate a return from a called function: the 
old PC value is copied into r14 before branching 
occurs, upon returning from the called function, 
the value in r14 is copied back into the PC, so the 



 
Figure 6. WinARM GUI 

 
PC would point to the instruction before the 
branch occurred. The WinARM stack, similar to 
the Program Space and memory space, is simu-
lated with an array of type unsigned long. There 
are no pop and push methods implemented explic-
itly for the stack.  Instead, block data transfer in-
structions stm and ldm are used to simulate stack 
pop and push, which updates register r13,  the 
stack pointer.   
 
3.5 Simulator GUI 
 
A WinARM GUI was built using Microsoft Visual 
Basic, which gives WinARM users a more interac-
tive environment to learn about simulators.  Users 
can type in C code in the Enter C Code text 
area.Upon clicking the execute button, the simula-
tor would compile the C code and display the re-
sulting ARM assembly code in the ARM Assem-
bly Code text area.  The machine code generated 
and the decoded version of the machine code 
would be displayed in the Machine Code text area 
and the Decoded Instructions text area respectively.  
The sixteen user registers would also be updated 
with their final state. See Figure 6. 
 
4. Future Work 

 
The current version of WinARM has only 

simulated the mostly commonly used instruction 
types, such as Data Processing, Multiply, Single 
and Block Data Transfer and Branch.  More work 

will be done to simulate the remaining instruction 
types.  Instruction pipelining also need to be im-
plemented along with clock cycles to make the 
simulator more complete.  Currently, WinARM 
can only handle integer arithmetic, future versions 
would also to incorporate floating point arithmetic. 
 
5. Conclusion 
 

The WinARM simulator was developed to 
target audiences interested in learning the inner 
workings of a processor simulator and to gain 
some insight into the ARM architecture.  Wi-
nARM uses a traditional fetch-decode-execute 
paradigm to execute non-native machine code on a 
host processor in favor of execution speed [4].  
The fetch-decode-execute phases of the simulator 
were built using C for efficiency reasons, and a 
GUI built in Microsoft Visual Basic was supplied 
so users can see the different steps taken in the 
simulation process and the final state of each regis-
ter. 
 
References:  
 
[1]funkysh, “Into my ARMs” 

www.phrack.org/show.php?p=58&a=10  
[2] ARM Architectural Reference Manual – Issue 

D, 2000 Advanced RISC Machines LTD  
[3] D. A. Sykes, B.A. Malloy, The Design of an 

Efficient Simulator for the Pentium Pro Proc-
essor, In Proceedings of the 1996 Winter 



Simulation Conference, pp. 840-847, 1996.  
[4] I. Barbieri, M. Bariani, M. Raggio, A VLIW 

Architecture Simulator Innovative Approach 
for HW-SW Co-Design, 2000 IEEE interna-
tional Conference on Multimedia and Expo, 
Vol. 3. pp1375-1378, 2000.  

[5] B. Clarke, A. Czezowski, P. Strazdins, Imple-
mentation Aspects of a SPARC V9 Complete 
Machine Simulator, In Conferences in Re-
search in Information Technology, Vol. 4. 
Australian Computer Society, pp. 23-32, 
2001.  

[6] J. C. Moure, D. I. Rexachs, E. Luque, The 
KScalar Simulator, ACM Journal of Educa-
tional Resources in Computing, Vol. 2, No. 1, 
pp. 73-116 March, 2002.  

[7] B. K. Gunther, Facilitating Learning in Ad-
vanced Computer Architecture through Ap-

propriate Simulation, ACSC 23rd Australasian 
Computer Science Conference, 2000. pp. 
104-112, 1999.  

[8] D. Skrien, CPU Sim3.1: A Tool for Simulating 
Computer Architectures for Computer Or-
ganization Classes, ACM Journal of Educa-
tional Resources in Computing, Vol. 1, No. 4 , 
pp. 46-59, December, 2001.  

[9] F. Menczer, A. M. Segre, OAMulator: A 
Teaching Resource to Introduce Computer Ar-
chitecture Concepts, Journal of Educational 
Resources in Computing, Vol. 1, No. 4, 
pp18-30, December, 2001.  

[10] A. R. Shealy, B. A. Malloy, Simx86: An Ex-
tensible Simulator for the Intel 80x86 Proces-
sor Family, In Proceedings of the 30th Annual 
Simulation Symposium, pp. 157-166, 1997.  

 
 
 


