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Abstract 
Producing efficient circuits from a high-level language 
such as Esterel remains a problem. Sparse state coding 
requires many more latches used than minimum and 
waste of reachable state space, while tight state 
encoding produces slow circuits due to the cost of 
encoding and decoding. 
  This paper presents an algorithm to generate small 
and fast circuitry for Esterel. There are three main 
parts of the algorithm: state assignment, hardware 
synthesis, and circuit optimization. The technique is 
based on Program Dependence Graph. It uses heuristic 
search in coding space, computes the cost and adjusts 
until finding a compromise point on latch/logic 
tradeoff. 
  The algorithm will be used to compile Esterel into 
small circuits that meet a timing constraint. 
 
1 Introduction 
Esterel is a high-level language designed for real-time 
systems. It supports high-level control constructs such 
as concurrent composition, preemption, and exceptions. 
This aspect makes Esterel a more challenging language 
to translate into circuitry, but also enable aggressive 
optimizations because the compiler is able to gain a 
better understanding of the program�s behavior. 

State assignment to Esterel is based on the Program 
Dependence Graph (PDG) of Esterel. Baxter and 
Bauer present it in [9]. It is based on the concept of 
control flow, and preserves all information of an 
original Esterel program. Esterel supports implicit state 
machines through explicit and implicit pause 
statements that delay for a cycle, such as the await 
statement. States sustain and transfer only between 
these statements. So we assign states for each of them. 
Figure 1 gives an example for PDG. 

Heuristic search is used in the algorithm to find an 
efficient state coding. Three main kinds of coding are 
used in the searching space. First is Berry�s [1] one-hot 
encoding. It produces fast circuits while gives much 
redundant state space. Second is Edwards�s [2,4] 
group-hot-by-level encoding. It shares latches between 
those decision nodes whose parents are in the same 
level but not parallel. Third is some variant of the 
former two encodings. It shares latches between the 
decision nodes in some levels, but not for all levels 
where sharing is possible. In other levels, it still keeps 
one-hot encoding for the nodes. 

We use heuristic search in the state encoding space 

until we find a resolution with the fewest latches under 
the requirement, or until the search space is exhausted. 
We start from one-hot encoding. If it can�t meet the 
requirement given, we fail and return. Else, we�ll try 
variant coding means to delete sharable latches. Every 
time after re-encoding, the cost of the circuit is 
re-evaluated. If it is higher than required, the new 
coding will be thrown away and the former code will 
be returned. Or we�ll repeat the process until we 
exhaust the searching space. Thus we find the most 
efficient coding that meets the cost requirement. 

The Esterel hardware synthesis is straightforward 
when the coding has been chosen. 

There are two parts of circuit optimization: 
combinational optimization and sequential 
optimization. This paper is concentrate on the 
sequential optimization. And in fact, the sequential 
optimization has been done at the stage of state 
encoding before generate real circuits. SIS, the 
standard public-domain optimizer, will be used to for 
the combinational optimization after generating 
circuits. 
   
2 Related Work 
The classic state assignment is based on Finite State 
Machine. Hachtel and Somenzi [6] described synthesis 
of finite state machines. It uses minimization of 
incomplete specified machines to get reduced 
reachable states. 

Villa and Sangiovanni-Vincentelli [7] present 
algorithms used in NOVA for optimal state assignment 
of FSMs. It is based on the state code adjacency 
concept but more efficient and flexible. NOVA 
represents constraint satisfaction as a graph-embedding 
problem. It uses heuristic search to resolve this 
problem. Its best strategy is �iohybrid_code�, which 
produces results with quality comparable to the results 
of the maximum adjacent method. Its core algorithm is 
�ihybrid_code�. The set of input constrains is 
partitioned into satisfied constrain set (SIC) and 
rejected constrain set (RIC) at the beginning. The 
algorithm first gives the coding with minimum length 
under the satisfied constrains. Then it increases the 
embedding cube to satisfy the RIC within the encoding 
space that is specified by the user. The iohybrid_code 
strategy takes similar steps as in ihybrid_code but also 
takes the output constrains into consider. Generally 
speaking, output constrains are in lower priority to 
input ones in this strategy. 
  Devadas, Ma, Newton, and Sangiovanni-Vincentelli 



[8] present a method called MUSTANG that is one of 
the earliest multi-level state assignment methods. It 
used the state code adjacency concept to reach the aim 
of maximizing the size of number of common cubes. It 
build an attraction graph with weighted edges. An 
edge�s weight is increased if it links to the common 
fanout and fanin states. MUSTANG was used to help 
MIS logic synthesis system reducing the number of 
product terms or literals needed to implement the 
next-state and output functions. 
  Berry first outlined the translation of Esterel into 
circuitry in 1992 [1], refined later to cover 
reincarnation. It generates a sub-circuit for each 
statement, and registers only for pause - the kernel 
unit-delay statement. So each leaf state is encoded by 
one-hot coding. In that case, encoding and decoding 
circuits are trivial. But it uses many latches and results 
reachable state space redundancy. Later, Sentovich, 
Toma and Berry [3,5] described the technique for 
reducing the number of latches. They rely on 
computing the reachable state set implicitly using 
BDDs, then re-synthesizing the circuit using this 
knowledge to remove sequential redundancies. The 
whole program is taken as one state machine. 

In the compiler we are building, more than one state 
machine are assigned in different level. It is necessary 
especially for parallel branches. We can share latches 
between sequential branches but need to avoid parallel 
ones. 
  Edwards [2] proposed three key means to advance 
Esterel hardware synthesis. First is the CFG. It takes a 
totally new structural translation to Esterel. Calculating 
control dependence in the graph, it removes the 
redundant circuit. That is much more efficient than 
removing by analyzing the circuit. 

Second is a better state encoding. That technique he 
proposed chooses states encoding at a high level, 
providing much greater flexibility and larger encoding 
space to choose from. 

Third is to use the don�t-care information in logic 
synthesis. It gives more flexibility to the 
implementation and helps to generate high-quality 
circuits. 
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Figure 1 PDG for an example program 

abort 
[ 
 await A; await B 
|| 
 await C 
] 

when D; 
pause; 
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