A C++ Active Library Device Driver Development

Russell Yanofsky —r ey4@ol unbi a. edu
Department of Computer Science, Columbia University

Abstract — This report presents a C++
library that can assist in the development of
device drivers. The library provides
mechanisms to replace low-level bit
manipulation code used to control a piece of
hardware through its registers with calls to
higher level routines that the library
generates from a hardware description. The
paper describes the use and implementation
of the library and compares it to other tools
which provide similar functionality.

I. INTRODUCTION

Device drivers act essentially as glue code that
pass instructions and data between a hardware
and a software interface. Drivers tend to have a
lot of code in common. On a given operating
system, device drivers of the same type will be
given similar structures in order to conform to
their host’s API. On a more fundamental level
though, all hardware device drivers use similar
bit-manipulation techniques, primarily for
sending and receiving information from
hardware registers. Unfortunately, this code that
nearly all device drivers have in common, cannot
be expressed in a generic way in C, the language
in which most device drivers are written. A
generic approach is desirable because it can
make code more uniform. Many drivers define
their own sets of C macros for accessing their
registers in a high level way. This can make
writing code easier because it eliminates
redundancies, but it can make reading and
extending code more difficult because there is an
additional driver-specific layer of abstraction to
understand. Another problem with writing driver
code in C is it is harder to provide the compile
time and run time checking that is possible when
other languages when used.

These drawbacks have spurred the creation of
tools that work outside of C to make driver

development easier. For dealing with the
problem of providing generic access to registers,
various Domain Specific Lanugages (DSLs)
have been proposed and implemented. DSLs
allow driver writers to write high level code in a
specialized language that can be wused to
automatically generate C code that users can
invoke in their drivers to handle low level tasks.
Currently though, none of the DSL created for
this purpose are widely used. DSLs suffer from
the inherent drawback that they require
developers to learn a new syntax or GUIL They
also normally do not offer general purpose
imperative language features, so they can be
difficult to extend. And because they must be
executed, they introduce another dependency in
the build process.

This paper will describe an alternate
approach, in which domain-specific code
generation is implemented in a C++ library. C++
is a general purpose programming language
which has some meta-programming facilities
which allow it to mimic features of many DSLs.
The first part of this paper describes the features
offered by existing DSLs, and the second
describes the use and implementation of the
library.

II. RELATED WORK

Consel et al [1] designed an implemented a
language called Devil (DEVice Interface
Language) which generates low level driver code
for use in Linux and SunOS. With the Devil
language, a programmer specifies how to access
hardware registers for a device, and identifies bit
ranges within those registers which can be
treated as distinct variables. The Devil compiler
then generates a series of C macros which read
and write to the variables, and the driver code
can call these macros to receive status
information and send commands to hardware.

Since reads and writes to hardware registers
have side-effects, Devil allows the programmer
to specify conditions under which variables
should be cached. And, to allow for cases when
many variables need to be read of written at the
same time, Devil allows variables to be grouped
into structures, and generates functions to read
and write entire structures at once.

To deal with complicated hardware schemes
for accessing registers, the driver writer may
specify actions that must occur before and after
register reads and writes. The more complicated
access schemes can make use of private variables
in actions, virtual registers, which map to other
registers, and parameterized registers that take
integral parameters for use in pre and post
actions.

One of the major goals of Devil, aside from
making driver code easier to read and write, is to
provide safety. FEach variable that the
programmer declares can be constrained by a
series of enumerated constants or by a bitmask.
When a value is read or written which does not
satisfy the constraints an error message can be
printed at runtime. (Due to C’s weak type
system, Devil cannot always ensure that C code
accessing variables is correct)

Devil is partially based on the Graphics
Adapter Language (GAL) by Thibault et al [2]
which was created a year earlier by the same
research group. GAL provides similar means of
accessing hardware registers as well as a number
of other features specific to video drivers.

Manolitzas [3] describes a DSL for
implementing Linux network drivers. His
language is essentially to be a superset of Devil.
But instead of being an interface language which
generates C helper functions, it is an imperative
language which can be used to generate an entire
driver. The language requires the driver writer to
specify at least 5 functions: init, open, transmit,
receive, and stop as well as an interrupt handler.
The functions and the handler are written in a
Pascal-like imperative language that has special
features for reading and writing to hardware
variables, managing memory, and performing
synchronizations.

DSLs need not be text based. Compuware
Driverworks provides a set of GUIs that can
generate driver stub code for Windows
platforms. Unlike, the DSLs described above
though, the purpose of this product is to simplify
the portions of driver code that interact with the
operating system, rather than the parts that
interact with the hardware.

In some sense, solving a problem with C++ is
the exact opposite of solving a problem with a
DSL. DSLs are small, limited purpose languages
while C++ is a huge general purpose one. But
while these differences may mean a lot to the
people implementing domain specific solutions
(since developing a C++ library is a different
process than writing a compiler), the end goal is
nearly the same. The ultimate goal is to allow the
end user to write a small amount of expressive
code to replace large amounts of repetitive or
complicated code.

/| devi ce
devi ce BusMbuse (base :
port @{0..3})

bi t[8]

/1 index register
register index_reg = wite base @ 2,
bit[8];

/] index variable

vari abl e i ndex = index_reg[6..5] int(2);

/1 registers for low and high bits

register y low = read base @0, pre
{index = 2} : bit[8];

register y_high = read base @0, pre
{index = 3} : bit[8];

/1 dy vari abl e
variable dy =y _high[3..0] # y_low[3..0],
vol atile : signed int(8);

/1l index register
typedef Regi ster<8, PortlO<2> > |ndexReg;

/1 index variable
typedef Vari abl e<At Regi ster<lndexReg, 6, 5> >
| ndex;

/1 registers for low and high bits
typedef Regi ster<8, | ndexl O<
Portl O<0>, Index, 2> > Y_Low

/1 registers for low and high bits
typedef Regi ster<8, | ndexl O<
Portl O<0>, Index, 3> > Y_Hi gh

typedef Vari abl e<list <At Register<Y_Low, 3, 0>,
At Regi ster<Y_H gh, 3, 0> > > DY;

struct BusMuse: public Device<l|ist<I|ndexReg,
Y_Hi gh, Y_Low>, BusMuse >

{ ... 5

Figure 1. The left column shows the Devil hardware description for a Logitech mouse driver. The right column shows the
same description as a series of C++ type definitions. Example based on [1]

The use of C++ Libraries to implement
domain specific solutions is nothing new.
Blitz++ and POOMA', two pioneering C++
numeric libraries that perform domain specific
optimizations on high level numeric code are
now more than 5 years old. Other code-
generating C++ libraries like parser generators
and finite state machine emulators are being
actively developed. In comparison, this library,
which generates instructions to access registers
from variable accesses, is simple, and even
straightforward. Past efforts at building DSL-like
libraries in C++ have led to the discovery of
generally useful techniques for code generation.
Czarnecki and Eisenecker [4] describe many of
these techniques in detail, and specifically how
they can be used to emulate features in real
DSLs. These will described later in this paper in
the context of this library’s implementation.

III. LIBRARY DESIGN

The C++ library described in this paper
attempts to provide developers with simpler
ways of accessing the hardware in the same way
that Devil does.

Registers and hardware variables which are
described using language constructs in Devil are
described with type declarations in C++. Figure

" http://oonumerics.org/blitz/
T http://www.acl.lanl.gov/pooma/

1 shows some of these the C++ type declarations
and the equivalent Devil statements which
partially describe the hardware interface to a
Logitech mouse.

Each variable and register that is used to
interact with the hardware corresponds to C++
type which is specified by the user by
parameterizing generic Variable and
Regi st er template classes. Users never need
to instantiate these types directly, they can just
use them as parameters to the Devi ce template
class and the methods it provides. The Devi ce
template class is meant to be inherited from. It
provides four template methods to the derived
class: get <X>(), set<X>(int),
read<xX>(),andwite<X>(). The get and
set methods are used to access cached values of
registers. The write and read methods
respectively copy the cached value into the
hardware register, and copy the current value of
the hardware register into the cache. All four
methods take a template member X. The get
and set methods require X to be a variable type.
The read and wite methods let X be a
variable, a register, or a list of variables or
registers.

A class that inherits from the Device
template class provides its parent with a list of
registers and its own type as parameters.
Devi ce takes the list of registers and

instantiates each one as a member (registers need
to be instantiated because as objects they hold
the cached register values). Devi ce takes the
type of its subclass so its read and write methods
can access information stored in the subclass, for
example a base address or an operating system
handle. Passing the type of a subclass as a
parameter to the parent, is part of a generally
useful technique called the curiously recursive
template pattern, which will be described in the
next section.

This library is designed to be very extensible.
The place where extensibility is most needed is
in allowing the user to provide methods for
reading and writing registers. The user can do
this by writing a simple I/O class with two static
methods called read and write. The methods take
a reference to a Driver class and a reference to a
Register class as parameters, and can use the
interfaces provided by those objects and
operating system APIs to perform whatever
actions are needed. The library comes with a few
of these classes built in. PortlO and IndexIO and
are demonstrated in Figure 1. Also provided are
MemorylO, DebuglO, and NolO. Some of these
classes allow chaining. For example, IndexIO
sets a device variable to a constant value before
reading or writing a register through some
another I/O type passed in as its first parameter.
DebuglO is another chaining type that prints the
values of registers as they are read and written.
Each register takes an I/O class as a parameter.

Other types of extensibility can be achieved by
writing drop in replacements for Variable and
Register types. Types passed in to the device
interface as variables and registers need not be
instances of Var i abl e or Regi st er template
classes. They only need to provide the same
methods.

IV. C++ TECHNIQUES

This section describes three generally
applicable C++ techniques wused in the
implementation of the library: Typelists and the
curiously recursive template pattern, and static
checking.

Many of the parameters for the Variable and
Register Templates are lists of arbitrary length,
instead of individual values. These lists are
called as typelists. The most comprehensive and
easy to understand description of typelists was
written by Alexandrescu in [5], but typelists are
also mentioned in [1]. Typelists are made up of a
chain of Node types where each Node type
contains an arbitrary type and the type of the a
successor Node. The last node has a successor
type of Nul |, where Null is just a special
placeholder class. Figure 2 shows the specific
definition for the Nul | type and the Node
template class. Figure 3 shows how to declare a
list of three types (int, signed int, unsigned int)
using Node and Null classes. This notation is
verbose and cumbersome, because it requires
that template parameters be deeply nested. It is
possible to provide a shorthand syntax using a
template class that accepts a variable number of
parameters. This shorthand is also demonstrated
in Figure 3.

struct Null;

tenpl at e<t ypenane T, typenane NEXT>
struct Node
{

typedef T type;

typedef NEXT next;

Figure 2. Node template class and Null types are
used to make typelists.

Direct typelist declaration:

typedef Node<int, Node<signed int,
Node<unsigned int, Null> > >

MyLi st ;
Shorthand typelist declaration

typedef List<int, signed int,
unsi gned int> MList;

Figure 3. How to declare a list of three types,
using the Nul | and Node classes directly, and
by using Li st shorthand.

The real power of typelists comes from the
fact that they can be manipulated and used to
generate classes and values using compile-time
algorithms. Figure 4 shows a simple algorithm
class called Lengt h that determines how many
elements are in a typelist passed to it as a
parameter. The length template class is
specialized for the Null type to give a length of
0. It is specialized for any Node type to give a
length of 1 plus the length of the Node’s
successor list. So when it is passed MyLi st it
will give a length of (1 + (1 + (1+0))) = 3.

t enpl at e<t ypenane LI ST>
struct Lengt h;

tenpl at e<>
struct Lengt h<Nul | >

{
enum { value = 0 };

b

tenpl ate<class T, class U>
struct Length< TypelList<T, U> >

{
enum { value = 1 + Length<U> };

b

cout << Length<MLi st>::val ue;

Figure 4. Definition and use of the Length
algorithm.

Length is one of the simplest typelist
algorithms. Other commonly used algorithms
return classes which inherit from every type on
the list or returned sorted or filtered versions of
lists. There are entire libraries filled with
algorithms for manipulating typelists, including
Boost::MPL* (MetaProgramming Library) and
Loki®. MPL was used heavily in the
implementation of this library. Along with
providing algorithms for typelist manipulation, it
provides cross-platform versions of
metaprogramming constructs like if statements
and lambda expressions, that eliminate the need
for rote template specialization. MPL was
written by Aleksey Gurtovoyi and described in a
long paper by

T http://www.boost.org/libs/mpl/doc/
¥ http://www.moderncppdesign.com/

Abrahams et al [6].

The Device template class which gets
inherited by user’s device classes can be seen as
an abstract base class, because it can depend on
information stored in descendants for
performing register 1/O.

Abstract base classes are normally able to call
methods on the classes which inherit from them.
By default this works in C++ and some other
object oriented languages through virtual
function calls. Virtual function calls are
problematic in this case, however, because C++
does not support virtual calls on templated
functions. Additionally, virtual calls only allow
abstract base classes to access their descendants’
functions, and not their internally defined
constants and type definitions. A solution to both
of these problems comes in the ‘“curiously
recursive template” pattern, also known as
Barton and Nackman trick. This trick works by
turning the abstract base class into a template
class which takes the type of the descendant
class as a single parameter. This way, when the
base class needs to call a function on its
descendant, it can cast its t hi S pointer to the
descendant type, and proceed to invoke the
correct method. Figure 5 shows an example of
this technique taken from Veldhuizen [7].

tenpl at e<cl ass T_| eaf t ype>
class Matrix {

publi c:
T |l eaftype& aslLeaf ()
{ return

static_cast<T_ | eaftype&(*this); }

doubl e operator()(int i, int j)
{ return asLeaf()(i,j); }
H

class SymretricMatrix :
public Matrix<SymmretricMatrix> {

s

Figure 5. The curiously recursive template
technique.

Another generally useful technique is static
checking. Static checks are performed in macros
that look just like assertions, except that if the
condition is not true there will be an error at

compile time instead of run time. Static checks
don’t require advanced multiprogramming
functionality, and they can be implemented even
in C, although they are less useful there. In C++
most static checks work by attempting to
instantiate a template class that is specialized for
<true> and undefined for <false>. Various
approaches to static checking are described and
compared by Alexandrescu [5].

V. IMPLEMENTATION

The metaprogamming features described
above and many others are used to implement a
number of features in this library. The ability to
synthesize classes from typelists is used to use
instantiate the registers passed to the Devi ce
template class as members of the resulting type.

Lists are also used to associate variables with
bits from multiple registers or with a list of non-
continuous bit segments of a single register. In
these cases, the get and put methods traverse the
list at runtime, getting and setting bits at each
location in the list.

When a list of variables is passed to the read
and write methods, typelist algorithms are used
to map it into a list of registers, and then to
eliminate duplicate registers from that list, before
traversing it at runtime to call methods on each
register. Static checking is used all over the
library to ensure consistency in the device
specification. For example, if an invalid bit range
is specified in parameters to a variable, the
compiler will show an error on the line which
checks the bit range.

V1. CONCLUSIONS

So far, the library has not been used to
implement a complete driver. However, the fact
that the interface is so similar to Devil should
suggest that the same readability and
programmability improvements that were
measured using that language would be likely to
apply to this library as well. Performance is
another area that needs to be investigated. In
theory, assuming all of the library code is
inlined, a driver produced with this library
should be equivalent to a driver that has all the

bitwise operations done in place. In practice,
though it is not a good idea to take C++ compiler
optimizations for granted.

The library’s interface could also be extended
to emulate some more of Devil’s redundant
language features such as “algebraic”
enumerations, which are functionally equivalent
to device variables, except that they allow the
user to associate relevant register bit ranges with
constants instead of device variables. A list of all
language features in the Devil language
specifications and their equivalents in this library
is included in the source.

[1] Fabrice Merillon, Laurent Reveillere, Charles
Consel, Renaud Marlet, Gilles Muller. Devil: An IDL
for Hardware Programming. OSDI 2000, pages 17-
30, San Diego, October 2000.

[2] Scott Thibault, Renaud Marlet, Charles Consel. A
Specific Domain Language for Network Cards. 2001.
http://www.cs.columbia.edu/~sedwards/classes/2001/
w4995-02/reports/apostolos.pdf

[3] Apostolos Manzolitas. A Specific Domain
Language for Network Cards. 2001.
http://www.cs.columbia.edu/~sedwards/classes/2001/
w4995-02/reports/apostolos.pdf

[4] Krzysztof Czarnecki and Ulrich W. Eisenecker.
Generative Programming. Addison-Wesley, 2000.

[5] Andrei Alexandrescu. Modern C++ Design:
Generic Programming and Design Patters Applied.
Addison-Wesley, 2001.

Techniques for Scientific C++

[6] David Abrahams and Aleksey Gurtovoyi. The
Boost C++ Metaprogramming Library. Unpublished.
http://www.boost.org/libs/mpl/doc/paper/mpl_paper.
html

[7] Todd Veldhuizen. Techniques for Scientific C++.
Indiana University Computer Science Technical
Report #542, August 2000.
http://osl.iu.edu/~tveldhui/papers/techniques

