
Java and C Performance Comparison on Palm OS

Zhi-Kai Xin
zxin@cs.columbia.edu

Abstract

This paper investigates the performance comparisons of
Java and C on Palm OS PDA device. The performance
comparison concentrates on the memory management and
the numerical computation of both languages. Execution
time and memory usage are used as the measurements. The
modern PDA and wireless devices offer powerful
applications, so the choice of using Java or C becomes
very important. This paper also addresses the doubt on
whether Java is an acceptable embedded system language.

1 Introduction

Java has gained popularity over last couple years. It is no
longer a web language. Many back-end servers have
deployed with Java technologies. With the introduction of
Java 2 Enterprise Edition (J2EE) on existing Java 2
Standard Edition (J2SE), Java has become the only E-
commerce solution. The standard Java library APIs offer
fast and easy application development. The portability of
Java code allows the evolvement and enhancement of
software. Java’s memory management provides automatic
garbage collection that allows safe software development.
Modern computing has put more focus towards Personal
Digital Assistance and wireless phone devices. Typical
PDA device contains calculator, memo pad and calendar
applications. Other high-end PDA contains mpeg and mp3
players. These applications need both powerful hardware
and software support. In the current market, PDA uses
Palm OS, Pocket PC, and Window CE as the most popular
embedded OS. This project chooses Palm OS power PDA
because Palm OS offers more development tools and
Opensource software. Both Java and C runs on Palm OS
based PDA devices. There are many literature surveys on
C/C++ and Java performance comparison. Although C
offers better memory usage and execution time
performance but Java’s performance has been improved
with newer releases and implementations of the JVM. Just-
in-time (JIT) Java compiler for the latest J2SE can turn
Java byte-code into native machine code during runtime,
so it can significantly speed up Java performance. Many
researches have also suggested that by rewriting some of
the existing Java software in more efficient manner can
greatly improve the Java performance. Sun Microsystems
offers Kilo-byte Virtual Machine (KVM) for Palm OS
powered PDA devices. KVM is a stripped down version of
JVM. The project measures the performance of Java and C
running on Palm OS. The performance is measured in
terms of memory usage and execution speed. Does Java
offer acceptable performance on Palm OS based PDA

device? What improvements can be done from
programmer side? These are the main questions the paper
tries to address. The rest of the paper is organized as
follows – Section 2 describes some existing related works.
Section 3 describes the project plan. Section 4 describes
the results. Section 5 is the conclusion and Section 6 is the
future works.

2 Related Works

2.1 KVM for Palm OS

In June 1999, Sun Microsystems released Java 2 Micro
Edition 1 (J2ME). It is targeted for PDA and wireless
devices where power consumption and memory are very
stringent. J2ME is divided into following layers [1][2][3]:

• Kilobyte Virtual Machine (KVM).
• Configurations. Connected Device Configuration
(CDC), Connected Limited Device Configuration
(CLDC).
• Profiles. Mobile Information Device Profile (MIDP).

KVM is a slim version of JVM that requires about 80
Kilobyte of memory. Java byte code such as .class or .jar
files can be run on KVM. CLDC defines the standard Java
platform for wide range of PDA and wireless devices.
CLDC is also the specification of JVM that can be run on
particular range of devices [2]. It is also responsible for
delivery of Java applications to the devices. MIDP is more
specific subset of CLDC targeting particular kind of PDA
or wireless devices. MIDP is the Sun Microsystems’ JVM
implementation targeting Palm OS devices. ChaiVM of
HP is a JVM targeting Pocket PC based PDA devices.
KVM differs from JVM that it lacks of following features
[1]:

• Floating Point Math. No float variable.
• Java Native Interface (JNI).
• Custom Class Loader.
• Reflection and Introspection.
• Thread Groups.
• Finalization.

Typical architectural hierarchy of J2ME looks like:

MIDP
CLDC
KVM

Host Operating System

1 http://java.sun.com/j2me/

 Figure 1. J2ME architecture

Developer should directly interact with MIDP library. The
Host Operating System is Palm OS in this project.

2.2 Smart Object Management

Sosnoski [4] analyzed the performance of Java and C/C++
with various compilers and JVM implementations. The
results showed that C outperforms Java in memory usage
and execution speed. Java’s automatic memory
management handles all the memory allocation and de-
allocation without developer’s intervention but it also
creates an extra overhead to the Java software. Due to this
extra overhead, Java object’s memory usage is rather very
high [4]:

 Figure 2 memory usage in (bytes)
According to Sosnoski [4], different JVM implementations
show very unique memory allocation usages. Newer
version of JVM does give much better performance.
Memory usage is only one problem with Java object. Its
allocation time is also worth notice [4]:

 Figure 3 Memory Management Performances
 (time in seconds)

According to Figure 3, the memory allocation time of
C/C++ is apparently much better than Java, although
newer version of JVM does give more acceptable memory
allocation time. In order to improve Java performance,
Sosnoski [4] suggested modifying the Java code to use
more primitive Java types instead of Java objects. Java
contains primitive types of boolean, byte, char, double,
float, int, long, and short. Developer should avoid using
their wrapper classes such as Integer, Double, Long, Short,
etc… Wrapper class represents immutable values of the
corresponding primitive types, which give extra memory
and performance overhead [4]. Utilities classes such as
java.util.Vector and java.util.Hashtable should also be
avoided as much as possible since each element must

contain a Java non-primitive object or custom object. For
instance, java.awt.Point class is used to represent a ‘point’
such as x and y coordination. Sosonoski [4] suggested
using Java primitive type long to represent a Point. Since
long is 64 bit in size so the higher bits can represent x
coordinate while the lower bits can represent y coordinate2.
Sosnoski [4] also suggested using dedicated object reuse
and object pool concepts to avoid creating new object
every time when the object is used very frequently.
Database connection object or file descriptor object should
only be created once and rest of the program should just
reuse those objects without re-creating them again.

2.3 Benchmark test for Java and C/C++

Sosnoski [5] carried out series of benchmark testing on
various Java compilers and JVM implementations such as
HotSpot JVM and IBM win32 JRE. The benchmark test
areas include:

• Basic numerical computation
• File I/O
• Memory management
• Typecasting overhead
• Multi-thread and Synchronization

The benchmark test results showed C/C++ definitely
outperforms Java in many aspects. But newer version of
Java compiler and JVM does improve the overall Java
performance. IBM win32 JRE actually outperforms C/C++
in numerical computation by small percentage.

2.4 Numerical Computation

Moreira et al. [6] compared the matrix multiplication
benchmark test with Java, C/C++ and FORTRAN. Here
are the results:
 Figure 4. Performance measured in Mflops

FORTRAN and C/C++ clearly outperform Java in matrix
computation. The matrix is implemented using array in all
three languages. Java has an overhead of array checking
where extra code is inserted to test array boundary and
array index validity. Java throws indexOutOfBound

2 For code example on representing Point with long,
see http://www.javaworld.com/javaworld/jw-11-1999/jw-

11-performance.html

Content
(bytes)

JRE
1.2.2
(Classic)

JRE
1.2.2
(Hotspot
2.0
beta)

java.lang.object 0 28 18
java.lang.Integer 4 28 26
Int[0] 4 28 26
java.lang.String
(4 characters)

8+4 60 58

JRE 1.2.2
(Classic)

JRE 1.2.2
(Hotspot 2.0
beta)

C/C++

331MB 26 14 9

Matrix size Java C/C++ FORTRAN

64x64 2.2 137.6 205.4

500x500 1.6 91.1 193.3

exception if the software tries to access invalid array index
or null array. Another problem is that Java does not have
true multidimensional array, instead it has array of arrays.
C/C++ and FORTRAN use true multidimensional array so
the indexing is much faster. Moreira et al. [6] proposed to
disable Java runtime array checking mechanism and Java’s
matrix multiplication performance got 15-fold
improvement. Many Java runtime features must be left out
in order to improve the overall performance.
 Boisvert et al. [7] also pointed out the problems of
multidimensional array with Java in numerical
computation. Getting rid of Java runtime array checking
was the solution proposed to improve the matrix
multiplication performance. Complex number is also
popular in numerical computation, Java implementation of
complex number incurs overhead of object accessing.
Boisvert et al. [7] presented a list of Do’s and Don’ t for
numerical computation in Java in order to improve its
performance:

• Do use latest and modern JVM
• Do alias multidimensional array that is turn

A[i][j][k] to Aij[k]
• Do declared local variable in innermost scope.

That is for (int i=0; …)
• Do use += rather than + semantics to reduce the

temporary variables.
• Don’ t create/destroy little objects in innermost

loops; Java GC3 slows thing.
• Don’ t use java.util.Vector in numerical

computation.

Boisvert et al. [7] carried out series of SciMark 4
benchmark test on 500-MH Intel PIII running Win98. The
results actually showed that Java (Sun 1.2 and IBM 1.1.8)
outperforms C (Borland 5.5 and MS VC++ 5.0) with
optimization. Java’s performance is correlated to JVM
implementation rather than underlying hardware [7].

2.5 J2ME: Real-world performance

Yi et al. [10] performed series of benchmark test on
various PDA and wireless devices with J2ME. Each device
is loaded with CLDC 1.0 and MIDP 1.0. The benchmark
test includes: JKernelMark, JAppsMark and JXMLMark.
JKernelMark is set of test drivers for testing KVM
implementation while JAppsMark and JXMLMark are for
applications. The JKernelMark benchmark includes basic
numerical computation, string manipulation, memory
management, and method calls. The benchmark test results
can be found at:
http://www.javaworld.com/javaworld/jw-10-
2002/images/jw-1025-j2mebenchmark4.gif

3 Garbage Collector
4 SciMark is benchmark from National Institute of
Standards and Technology, http://math.nist.gov/SciMark.

Different JVM implementations actually give rather wide
range of performances.

2.6 Garbage Collection in Embedded System

Chent et al. [11] performed set of experiment on
relationship between garbage collection and energy
consumption on Palm OS device. KVM uses mark and
sweep style garbage collection algorithm. Overall the
experiment showed that frequent garbage collection
actually consumes less energy while it may impact
application performance.

3 Project Plan

The purpose of the project is to compare runtime
performance of Java and C on Palm OS device. Many of
the previous Java and C/C++ works were performed either
on Unix or Window machines where processor speed,
memory and power are plentiful. One of the main
challenges of this project is getting complicated algorithm
programs running on the low power, stringent physical
memory and limited processor speed PDA device. Three
questions should be answered by end of this project: which
language has better runtime performance on embedded
PDA device, Java or C? If Java’s performance is poorer
than C on PDA device, how bad is it? Is there any future
improvement could be made either on the JVM itself or the
software written in Java? Java has many useful features
that ease the programmer’s responsibility to produce safe
and robust software. Sometimes these useful features have
to be sacrificed in order to boost up Java performance. For
instance Java array and garbage collection are useful but
also incurring huge runtime overhead.

3.1 Target test environment

Benchmark test is carried out on Sony Clie with Palm OS
4.0 and 16MB of physical memory. Sun Microsystems
KVM is used as JVM.

3.2 Development environment

Development is carried out under Intel PIII 700-MH
Win98. Require Java software’s are JDK1.4 and J2ME
(CLDC 1.0 and MLDP 1.0). Require C software’s are
Cygwin emulator with GCC and PRC-TOOL [14] for
Palm OS.

3.3 Benchmark test

The performance measurement is based on the execution
time and memory usage. Below are list of benchmark test
programs that should be performed on the Sony Clie5:

5 Eventual list may vary little depending on actual implementation and
time constraints.

• Looping
• Array Copy
• Hashing
• String Concatenation
• Matrix Operation
• Factorial (recursive and looping)

Neither Java nor C can claim to be the only best language
for embedded environment development. Java and C each
has its advantages and disadvantages. Java’s rich set of
library and its runtime checking make development much
faster and produce robust software while suffering
performance issues. C on the other hand relies more on the
developer’s coding skills and language knowledge such as
manual allocation and de-allocation of memory where
development takes much longer and produce error-prone
software while honoring with its excellent performance.
There are trade offs on using either Java or C. It is up to
developer deciding which language will benefit the most.

4 Results and Discussion

4.1 Looping

The experiment involves running calculations through
double for loops with n numbers of iteration per loop. The
execution time of C obviously outperforms Java (Figure 5).

Double Loop Test

0
20000
40000
60000
80000

16 32 64 12
8

25
6

51
2

60
0

70
0

10
24

Number of Iteration (Figure 5)

T
im

e
in

M

ill
is

ec
o

n
d

Java Un-optimized Java Optimized C

Java must avoid putting unnecessary method calls and
array access in the loop to improve the runtime
performance. Array access involves automatic array bound
check that can slow down array access. In the Optimized
version of the Java loop test, array access is taken out of
the loop, and the execution time shows great improvement.

4.2 Array Copy

This experiment involves copy source array to destination
array. Using loop to copy arrays in Java outputs poor
performance. Shirazi [15] suggests using the
‘system.arraycopy’ to improve array copy execution time.

Array Copy Test

-10

10

30

50

70

16 32 64 12
8

25
6

51
2

60
0

70
0

10
24

Size of Array (Figure 6)

T
im

e
in

M

ill
is

ec
o

n
d

Java Loop Array Copy Java System Array Copy

C Array Copy

From figure 6, it is clear that using Java’s system array
copy API significantly improves the execution time and
yields compatible results as C. In fact, for array size of 700
Java actually outperforms C by more than 10 milliseconds.

4.3 Hashing

In Sosnoski’s Java and C benchmark performance
experiment, he points out the importance of Java object
management [4]. Smart allocation and garbage collection
of Java object will yield much better performance than just
blindly allocation of unnecessary objects. Since garbage
collection is an expensive operation, it should be avoided
whenever possible. Object pooling is the re-use of Java
object to avoid garbage collection while running heavy
computation. In the Object pooling version of Java
hashing, most frequent used objects are re-used without
being garbage collected, thus the running time is very
compatible to C. After all Java’s build-in hashing library
Hashtable frees programmer from re-implementing
hashing routines. In the experiment C hashing is
implemented using separate chaining algorithm6.

Hashing Test

0
500

1000
1500
2000
2500

16 32 64 128 256 512 600 700 800 900

Number of hashing (Figure 7)

T
im

e
in

m

ill
is

ec
o

n
d

Java No Object Pooling Java Object Pooling

C Hashing

6 Uses Mark Weiss C hashing implementation
http://www.niksula.cs.hut.fi/~tik76122/dsaa_c2e/files.htm

4.4 String Concatenation

Java’s String class is easy to use and it comes very handy
in all sort of situation. Concatenation of Java static strings
is done at the compilation time, thus it takes off the
runtime burden. C’s string is implemented using array of
characters or characters pointer, thus all string
concatenation is done at the runtime. Java’s string
concatenation clearly out performs C’s primitive string
manipulation.

String Contenation Test

0
200
400
600
800

1000

16 32 64 12
8

25
6

51
2

60
0

70
0

80
0

90
0

10
00

Number of concatenation (Figure 8)

T
im

e
in

 m
ill

is
ec

o
n

d

Java C

4.5 Matrix Operation

Memory shortage is the main problem with Java
development in the PDA environment. PalmOS KVM only
allocates 64KB of total memory for Java program to run.
Matrix operation usually involves heavy memory usage
and computation cycles. Matrix computation in Java is
very poor due to the fact that matrix implementation is
using multi-dimensional Java array in multiple for loops.
Frequently garbage collection and array bound checks
within loops are the main problems for Java matrix
operation. There is a way to disable Java array bound
checking, but KVM and JDK do not support this feature.
GCC Java compiler can be tailored to meet such needs.
During the experiment Java throws OutOfMemory
exception when trying to allocate 128x128 integer type
matrix. This behavior does concur with the 64KB memory
limitation of KVM under Palm OS device. An interesting
observation is that Java garbage collection is not very
consistent during the execution of Java program. In figure
9, after memory allocation of size 64x64 matrix, the
garbage collector does not seemed to be run, since the
Memory before matrix allocation of size 100x100 matrix
still remains to be around 28KB. Overall KVM under
Palm OS is not an ideal place for matrix computation.

Java Matrix Memory Allocation

0

50000

100000

16 32 64 100

Matrix size (Figure 9)

M
em

o
ry

 in

(b
yt

es
)

Memory before matrix allocation

Memory after matrix allocation

4.6 Factorial

Java Factorial Test

0

50

100

150

40 80 20
0

40
0

60
0

90
0

Factorial Input (Figure 10)

T
im

e
in

m

ill
is

ec
o

n
d

Recursion While Loop

Factorial is a highly recursive algorithm but it can also be
implemented using while loop. The recursive version of
programs in both Java and C are much shorter than the
while loop version. From figure 10, it is clear that the
while loop version of Java factorial runs significantly
faster than the recursive version. According to Chirazi [15]
Java should avoid recursion when ever possible instead
loop should be used. C’s recursive factorial throws a stack
over flow error when input to factorial is 100. Palm OS
clearly has a relative smaller stack size of 2.5KB. Thus
Java seems to be doing better job in the factorial
calculation.

5. Conclusion

In this report the performances of Java and C are closely
studied on the Palm OS PDA device, Sony Clie. No single
language is perfect for development on the PDA device.
Both Java and C have to deal with the following issues:

• Memory management
o Java’s automatic garbage collection helps developer
catch memory leak by de-allocating out of scope objects,

but it can also cause significant performance issue,
especially within loops.
o Smart object re-use and pooling in Java can
significantly improve the memory allocation time and
execution time, it prevents unnecessary object allocation
and garbage collection.
o C relies on developer to manage the malloc and free
of memory objects, which can cause subtle memory leak
bugs.
o C needs better basic String operations. Operation
such as StrCopy and StrCat are too error prone and slow.

• Execution time
o Java array access has poor performance due to the
automatic array bound checking, but it can be disabled in
GCC Java7. On other hand array bound check can be a
very safety feature to eliminate runtime bug or memory
violation.
o Java’s loop execution time can be improved by
taking out array access operation or other unnecessary
method calls from the loops.
o Avoid recursion whenever possible can improve the
performance of both Java and C.
o C’s looping or matrix operations are fast.

• Development time
o Java’s rich set of APIs definitely eases the software
development on the PDA devices. Automatic garbage
collection and array checking definitely take over much
of the developer’s responsibilities.
o C is too cumbersome to use and lack of good String
and Array operation libraries on Palm OS devices.

With careful tuning and smart object management, Java’s
performance can definitely match up to C or even
exceeding it.

6 Future Works

Java has a rich set of IO and network APIs that are
interesting to look into on the PDA devices, since the
future of PDA devices all have to be connected to the
Internet and distributed. The performance of Java IO and
network can be compared against C’s system level IO and
socket library.

References

[1] John W. Muchow. Core J2ME Technology &

MIDP. Prentice Hall PTR, Saddle River, NJ, 2002.
[2] Sumi Helal. Standard, Tools, & Best Practices.

Pervasive Computing, ACM, January, 2002.
[3] Java 2 Platform Micro Edition (J2METM)

Technology for Creating Mobile Device. White
paper. Sun Microsystems, May 19, 2000.

7 Time limitation does not allow to look into GCC Java

[4] Dennis M. Sosnoski. Java performance
programming, Part 1: Smart object-management
saves the day. Java World, November 1999.
http://www.javaworld.com/javaworld/jw-11-
1999/jw-11-performance.html

[5] Dennis M. Sosnoski. Java Performance Comparison
with C/C++. Sosnoski Software Solution, Inc. This
report was presented in 1999 JavaOne conference.
http://www.sosnoski.com/Java/Compare.html

[6] J. E. Moreira, S. P. Midkiff, and M. Gupta. A
Comparison of Java, C/C++, and FORTRAN for
Numerical Computing. IEEE Antennas and
Propagation Magazine, Vol. 40, No. 5, October
1998.

[7] Ronald F. Boisvert, Jose Moreira, Michael
Philipensen, Roldan Pozo. Java and Numerical
Computing. Computing in Science & Engineering.
March, 2001.

[8] Java Grande Forum. Improve Java Performance.
http://www.javagrande.org

[9] SciMark. Java benchmark by NIST.
http://math.nist.gov/SciMark

[10] Wang Yi, C. Y. Reddy, Gavin Ang. J2ME device:
Real-world performance. Java World. March 25,
2002. http://www.javaworld.com/javaworld/jw- 10-
2002/jw-1025-j2mebenchmark.html

[11] G. Chent, R. Shetty, M. Kandemirt, N.
Vijaykrishnant, M. J. Irwint, and M. Wolczkot.
Tuning Garbage Collection in an Embedded Java
Environment. In Proc. Eight International
Symposium on High-Performance Computer
Architecture. 2002

[12] More detail on Java and C benchmark.
 http://www.spec.org
[13] David A. Cargill, Mohammad Radaideh. A

Practitioner Report on the Evaluation of the
Performance of The C, C++ and Java Compilers on
the OS/390 Platform.

[14] Neil Rhodes, Julie McKeeban. Palm OS
Programming. The Developer’s Guide, 2nd Edition.
O’Reilly & Associates Inc. 2002.

[15] Jack Shirazi. Java Performance Tuning. O’Reilly &
Associates Inc. 2000.

