a

sel

TSo]

The Verilog Language
COoMS w&égs-oz

Prof. Stephen A. Edwards

Multiplexer Built with Alw.

Columbia University
Department of Computer Science

Fall 2002

///

module mux(f, a, b, sel);

output T;
input
reg T

if (sel) f
else F=0b

endmodule

a, b, sel;
always@'({sel)\

Mux with User-Defined Pri

primitive mux(f, a, b, sel);

output f;

input a, b, sel;

table
1?0 : 1;
0?0 : O;
?11 - 1;
?01 : O;
117 : 1,
00? : O;

endtable

endprimitive

|
sel

Z)L

a

Modules may
contain one or more
always blocks

Behavior-defined using
a‘truth table that
includes “don’t cares”

Sensitivity lis
contains signal
whose change
makes the block
execute

S

/ This is a less pessimistic thaﬁ\

/////

others: when a & b match,
ignored; others produce X

sel is

a

sel

The Verilog Language

Originally a modeling language for a very efficient

event-driven digital logic simulator

Later pushed into use as a specnflcatlon language for logic

synthesis

Now, one of the two most commonly-used languages in
digital hardware design (VHDL is the other)

Virtually every chip (FPGA, -ASIC;-etc.) is designed in par

using one of these two languages

Combines structural and behaworal modellng styles

AN
N\

Multiplexer Built with Alw.

module mux(f, a, b, sel);
output T;
input a, b, sel;

always @(a or b or sel)
if (sel) f = a;

else T = b,\

endmodule

How Are Simulators Used?

Testbench generates stimulus and checks response

Coupled to model of the system

Pair is run simultaneously

A reg behaves like
reg f; ~ memory: holds its value
until imperatively

assigned otherwise

Body of an always bloc
contalns tradmonal
|mperat|ve cﬂode

a

—

Stimulus
S
~
Testbench
Response
Result checker |<€

S‘s;stem\l‘\‘/lodel

\.

sel

sel

Multiplexer Built From Primitives

module mux(f, a, b, sel);

output T;

input a, b, sel;

and g1(fl1, a, nsel), Each
g2(f2, b, sel);

g3(f, 1, 2);

sel);

or
not g4(nsel,

structure:
endmodule

g2
f2/

Mux with Continuous Assi
module mux(f, a, b, sel);

output T;
input a, b, sel;

assign =sel ? a : b;
endmodule

Any change on the
causes reevaluatlon

ik

Structural Modeling

When Verilog was first developed (1984) most Ioglc

simulators operated on netlists

Netlist: list of gates and how tpey;fe connected N
A natural representation of/é digital logic circuit

Not the most convenient way to express test benches

~ Veri
built from modules

an interface

Module may contain

primitives and other

—Dfl_‘ modules
D gl N
nsel) g3> f

LHS is always set to
the value on the RHS

1|

module has

instances of

right

Behavioral Modeling

A much easier way to write testbenches
Also good for more abstract models-of circuits

* Easier to write / \
/ \\

* Simulates faster / \

More flexible

. o |
Provides sequencing |

Verilog succeeded in /ptart‘\because it alk\)w\ed both the
model and the testbench to be described together /

Two Main Components
Structural

Structure (Plumbing)
Verilog program build from m9dﬂiés with 1/0 inteﬁacgé
Modules may contain instan/t:es of other modules \
Modules contain local sighals, etc.

Module configuration is s‘tatigian’q all run concurrently

Discrete-event Simulation — —

Basic idea: only do work when something changes

Centered around an event queue that contains events
labeled with the simulated time /at which they are to b\e\
executed

Basic simulation paradigm
* Execute every event for the current simulated time

¢ Doing this changes éystemstate and may schedule |
events in the futgpe /

/

\
\

* When there ave no events left at the current time /
instance, advance SImuIat\d time soonest event in the
queue (Y \ 7

How Verilog Is Used

Virtually every ASIC is designed using either Verilog or
VHDL (a similar language) L

~

Behavioral modeling with son}e’s/tructural elements

“Synthesis subset” can be /‘u‘anslated using Synopsys’
Design Compiler or others into a netlist

Design written in Verilog ‘
Simulated to death to check functlonallty

Synthesized (netllsf generated) N\
Static timing ana!y5|s to check\ming

“ N s

Two Main Data Types: N

Nets represent connections between things

Do not hold their value _— T
Take their value from a driverﬁﬁch as a gate or other
module / \

Cannot be assigned in an initial or always block

Four-valued Data

Verilog's nets and registers hold four-valued data

0, 1: Obvious / T

Z: Output of an undriven tri-stafe driver. Models case
where nothing is setting a \Mre's value

X: Models when the simul’ator can't decide the value
e Initial state of reglsters - |
* When a wire is tyerng driven to O artq 1 simultaneously |

\

* Output of a gate with 2 \inputs /

“ N | e

Two Main Components
Behavioral

Concurrent, event-triggered progessestbehavigral)
Initial and Always blocks \

Imperative code that can p;a/rform standard data \
manipulation tasks (assignment if-then, case)

Processes run until they Pelay for a perlod of time or wait |
for atriggering event |

B 0
Two Main Data Types: Regs ==
B

Regs represent data storage

Behave exactly like memory in a computer
Hold their value until explicitly/assigned in an initial or
always block / \

Never connected to something

Can be used to model Iatches fllp rops etc., but do not
correspond exactly / -

Actually shared varrables W|th all their attendant problems

Four-valued Logic

Logical operators work on three-valued logic

D ‘ 0 1 //X 7 o \ !
0/l0 0/ 0 0— Outputs 0 if eithe
[input is 0 \
110 1“ X X |
X |0 ,,X XX Outputs Xifboth |
z 0/ X\ X X Inputs are gibberish /
! \

Nets and Registers Modules and Instances

Wires and registers can be bits, vectors, and arrays Basic structure of a Verilog module:

wire a; Il Simple wire module mymod(outl, out2, inl, in2);

\
/

\
/

tri [15:0] dbus; //'16-bit tristate bus output outl;
) , - . . , Verilog convention |
Structu gal Modellng \ i#(5.4.8) b / ['Wire with delay \ output [3:0] out2; / lists outputs first \

\ 1- . / iv_hi f \ /
reg [-1:4] vec; /Il Six-bit register \ input inl; /

[\ trireg (small) q; 5 /I Wire stores a small charge \“ B B 3 |
_ i I) | input [2:0] in2; |
A ™~ | integer imem([0:1023]; -~ // Array of 1024 integers | e N

Y \ / reg [31:0] dcache[0:63]; //A32-bit}gmory / / \ \ /
/ \ \ /

\ / \ / endmodule \

B
B
B 0 |
B
Instantiating a Module Gate-level Primitives s
B]
Instances of Verilog provides the following: Instances of primitives may include delays
module mymod(y, a, b); and nand logical AND/NAND buf bi(a,b); [/ Zerodelay
look like / or nor logical)O?//@R buf #3 b2(c,d); //Delay of 3
mymod mmi(yl, ai, b}//f: /I Connect-by-position \ xor xnor logical XOR/XNOR \ buf #(4,5) b3(e, f); '/ Rise=4, fall=5 \
mymod (y2, al, bl), \ buf not buffer/inverter \ buf #(3:4:5) b4(g, h); // Min-typ-max \
(y3, a2, bZ)% /I Instance names omitted ‘ bufifd0 notif0 Tristqie with low enable \“ ““ \“
T T / bififl notifl Tristate with high enable / -
/I Connect- by-nam/;e/ \\ \ // C / // “\\ // C /
mymod mm2(.a(é12), b(\Q -y(czﬁ); / ‘3/ \ \\‘ /
| - | . P

B 0
B
Switch-level Primitives User-Defined Primitives = =S A Carry Primitive e
B
H M M -
Verilog also provides mechanisms for modeling CMOS Way to define gates and sequential elements using a truth primitive carry(out, a, b, c);
) . . output out; -
transistors that behave like SWItchf:/s//,/———77——%,\\ table T inpzt a b ‘C\ Always has exactly
A more detailed modeling scheme that can catch some | Often simulate faster than using expressions, collections table T one output
additional electrical problem when transistors are used in of primitive gates, etc. \ 007 - 0
this way / \ / \ 2 - 03 /) \
1S ey / \ Gives more control over behavior with X inputs \ 070 - 0: /T’ruth table may include \
Now, little-used because circuits generally aren’t built this | L. o o / /don't-care (?) entries
c \ Most often used for specifying custom gate libraries \ 2?00 : O; c \
ey — | L | 117 = 1; — |
More seriously, model is not detailed enough to catch A ™ - q- - ™
f th Y bl D(L \ '\9’ / 7\ \ J 1?1 - 1; ya \ /
many of the prol ? S \ . / / \ \ / ?11 - 1; / \ \ /
These circuits argé usually simulated using SPICE-like endtable
simulators baseq on nonlinear differential eqi‘Tlation ;9Nérs [. \) endprimitivef : \

A Sequential Primitive

Primitive dff(gq, clk, data
output q; reg q;

NNN

input clk, data; _ T~
table /

// clk data q new-q |

(01 o© ? o;/ Il Latch a 0

(1) 1 :-2?: 17 /lLachal

Ox) 1 :1: 1F // Hold when d and q both 1
(0x) 0 0 - 03 //'Holdwhen dand g both 0
(0) 2 :2? / -3 //Hold whéxclkfans

? @2 :2: -; I/ Hold when clk stable
endtable
endprimitive i ‘

/

|
- T

Initial and Always Blocks s

initial always
begin begln J——
/I imperative statements /lmperatlve statemem\
end end
/

/

- . ‘/ . .
Runs when simulation starts Runs when simulation start

[
Terminates when control Restarts when control
| Res
A

reaches the end A reaches t\nd
Good for prowdlnggulus Good for gling or

w:lfymg hardware
| |

if (select == 1) y =

O ee——
O eee——
Imperative Statements S
B

else y = b; P
case (op)

27b00: y = a + b;/

2°b01: y = a - by

2’b10: y = a bﬁ

default: y = ’hx/%/xx —

endcase / ’ \ \
\

Continuous Assignme

Another way to describe combinational function
Convenient for logical or datapath specifications

wire [8:0] sum; Define bus widths

wire [7:0] a, b; / Continuous
wire carryin; ;‘"/ assignment
“‘ permanentl
P sets the val
assign sum = a b‘\+ carryln\;\T sum to be
y \

/ \ 'Recompute
“ - When a, b, 0

o '»r—»fearrym char

Initial and Always

Run until they encounter a delay

initial be
#10 a
#10 a
end

OI—‘(Q

b
; b

or a wait for an event /
always @(posedge c‘ik) q = d;

always begin A

walt(l)' \

< / \ \
walt(i); . \
a=1; | \

end “ - “

For Loops

Example generates an increasing sequence of values or
an output R

,/ ~

reg [3:0] 1, output;/’

for (i =0;i<=15; i =i+ 1) begin
output = i; /
#10; ‘

end AT

\
/

. atb+carryin.

|
|
ue of

/
/

"

\
/

\
/

Behavioral Modeling \

Procedural Assignment s

Inside an initial or always block:

\

sum = a + b + cin; T T

Just like in C: RHS evaluate?@ assigned to LHS befol e\
next statement executes /’ \

RHS may contain wires q‘ﬁd/or regs

LHS must be areg \:

— |
v T) /
(only primitives or (yﬂ’nugus assignment may set wire
values) y \ \ /

While Loops

A increasing sequence of values on an output

reg [3:0] i, output; T
i =o0; !
while (i <= 15) begi/n \\\
output = i; /
#10 0 =i +1; ‘
end T |
/ N\
\\ //

\ |

B 00000 |
Modeling A Flip-Flop With AlwayS======
B |

Very basic: an edge-sensitive flip-flop

reg g, _— ~~—

always @(posedge cl k)/

q=d;

/ \
q = d assignment runs wﬁen clock rises: exactly the ‘
behavior you expect ‘ P |

Non-blocking Assignments ===

This version does work:
reg dl, d2, d3, d4;

Nonblocking rule:
~—RHS evaluated

when 5§§ig\1ment

runs
always @(posedge clk) d2 <= di; \
always @(posedge cl/k) d3 <= d2;

always @(posedge c]k) d4,<= d3; ‘

. \L\HS updated only /
\ after all events f{o/
\ the‘\‘currentiyfz nt

~_ haverun -
B 00000 |
B |

Blocking vs. Nonblocki

Verilog has two types of procedural assignment

Fundamental problem: // T~

* In a synchronous system, all flip-flops sample
simultaneously / \

* In Verilog, always @/(posedge clk) blocks run in
some undefined seqﬂhence ‘

Nonblocking Can Beha

A sequence of nonblocking assignments don’t
communicate ——

~ ~

a=1; %;1;
b = a; /b <= a;

c = b; /,/ c <= b; \
Blocking assignment: ‘ Nonblocking assignment: ‘
a=b=c=1 ‘ar=1\ |
///\“\\ b = old value of a /s‘“‘

/ ' c=oldvalue of b /

/

Modeling FSMs Behavi

There are many ways to do it:

« Define the next-state logic combinationally and defin
the state-holding latches explicitly

[

¢ Define the behavior in a single always @(posedge
clk) block J,/' \

¢ Variations on these themes

A Flawed Shift Register

This does not work as you would expect:

reg di, d2, d3, d4; T
always @(posedge clk) d2 = di; .
always @(posedge cl}é) d3 = d2; \\\
always @(posedge clk) d4 = d3;

These run in some orderlL ‘but you don't know which |

Nonblocking Looks Lik
R
B
RHS of nonblocking taken from latches

RHS of blocking taken from wires
a=1; /

b = a; £) b N \

c = b; 1‘>/—>_>'° \

11

a <= 1; f**faf»——n\\ |

<=a; I { /

C <= b; / b \ //”

oy

FSM with Combination

nodul e FSM o, a, b, reset);
output 0;

Output o is declared a 1
because it is assigned
__procedurally, not because it

alvays @a or b or state) ~ holdsstate
55 5

reg o;
|npu
g1 b] state nextState;

begin
o a & b; \
nextState =a? 2 b00 : 2’ bO1; \
2 bOl begi n
= 0; nextStaLe = 2’ b10; \
end |
endcase L ‘J
al ways osedge k or reset h
e y(@P) 9 !) \ /
state <= 2’ b0O; \ N\ /
el se \ /
state <= nextState \
endnodul e ‘ . |
| ~— -

FSM with Combinationa

rm{jul e FSMo, a, b, reset);
‘,’ggp“- 0: Combinational block must be

input a, b, re
reg [1%0] st at e next State: sensitive-to-any change on any
~of its inputs (Implies

alvways @a or b or stat e) state-holding elements

case (state)
2' b0O:

b btebn otherwise) \
_NextState'= a ? 2 b00 : 2’ bO1; \\
2 b01: begin
8 = 0; nextStaLe 2' b10; \
en
endcase \, — |
al ways osed e clk Or reset o :
nays @ posed clk :) .)
o St ate. Pl 2 %0 \ Latch implied by /
state <= nextState sensitivity, to the clock /
endrodul e ‘w ~ orreset oh‘ly e
I \\\7 | ///’
B 0000]
B 0000 |
B 0000]
B 0000]
B 0000 |
B 0000]
B |
v - \\ N

Simulation Behavior

Concurrent processes (initial, always) run until they stop
at one of the following o —

d N

o #42 g h
Schedule process to resume 42 time units from now|

/
* wait(cf & of) / \

Resume when expreésion “cf & of” becomes true \

> @(aorbory) /‘*
Resume when a/b or y changes

S/

+ @(posedge cfk) \ /
Resume wh?n clk chang\Nrom Oto 1 ‘ .

7

\ /

module FSM(o, a, b);
output o; reg o;
input a, b;

reg [1:0] state;

always @(posedge clk or reset)
if (reset) state <= 27b00;
else case (state)/,r/

27b00: begin |
state <= a ? 2°b00 : 27b01; \
o<—a&b\/% \
gntd) 01: begi -~ Nonblocking assignments |

state < 27 510 used th ughout to ens re /

end values calculated in
endcase [

\ ‘previous clopk cycle”

Simulation Behavior

Scheduled using an event queue

Non-preemptive, no priorities ///"""" T
A process must explicitly req/ye/s/t a context switch
Events at a particular time,dj/nordered \

/
Scheduler runs each event at the current time, possibly
scheduling more as a res%ult

Simulation Behavior

Infinite loops are possible and the simulator does not
check for them This runs forever: no ‘context switch

allowed, so ready can never change N
while (Cready) / N\
/ \
count = count + 1; \
Instead, use [\
|
wait(ready); A
\ \ /
/ \ \ /
\ Y
‘ \\ ‘ P

that are sensitive to
achange ona \ /

Writing Testbenches
module test;
reg a, b, sel;/ under test

/ Device under test
mux m(y, a, b, sel); - ™

S AN

Inpu

initial begi $mon;tés a built-in even-driven “printf”
$monitoréStime, ,"a—%b b=yb sel=%b y=¥b",
a, b, sel, y); \

= 0; b= 0; sel = 0; Stimulus generated by
#10 a

= 1: | |
’ |_————sequence of |
#10 sel = 1; «—"—— s\q}
#10 b = 1; / \ ass@rwents and /
end / \ delays /
/ \\ \\‘ //

Two Types of Events

Evaluation events compute functions of inputs

Update events change outputs T

-

Split necessary for delays, ngrrﬁlocklng assignments, e\c

/ \\\

Update event writes ‘/' \
new value of a and °
schedules any

evaluation events A\

Evaluation even

/ t
/a f<= b + C\reads values ofb |
=~ Nandc, adds them, |

7\ ~and schedules an |
/ \ update event /

~_ ‘ e

Simulation Behavior

Race conditions abound in Verilog

These can execute in either order: final value of a-
undefined: / B h

always @(posedge cllyj/ a = 0; \
always @(posedge clk) a = 1; \

Simulation Behavior

Semantics of the language closely tied to simulator
implementation L

Context switching behavior co/nv’enient for simulation, not
always best way to model / N\

Undefined execution order convenient for implementing
event queue

Logic Synthesis

Verilog is used in two ways

\
| .)
| 4
//’) \
Y, \

Model for discrete-event simulation

/

Specification for a logic syntheéis system

/
Logic synthesis converts a’subset of the Verilog language
into an efficient netlist

One of the major breakthroughs in de5|gn|ng logic chipsin |
the last 20 years A . “
Most chips are desrgned usmg at least some logic

/

synthesis / \ \ /

Logic Optimization

Netlist optimization the critical enabling technology

Takes a slow or large netlist and transforms it into-one that
implements the same functior1/rﬁ6re cheaply h

Y,
/ \\

Typical operations: / \

* Constant propagation

|

¢ Common subexpres$iohreﬂr]]ination
* Function factorlhg N

Time- consumlng operatlon \Can take hours for large chlps

“ N | S
| ~__ |

Compiled-Code Discrete

Most modern simulators use this approach

Verilog program compiled intoC

N

Each concurrent process (e.g/ continuous assignment,
always block) becomes one/ or more C functions

Initial and always blocks split into multiple functions, one \
per segment of code between a delay, a wait, or event |
control (@) r e |

Central, dynamic evefnt queue mvokes these functions and
advances S|mulat|0n time /

Logic Synthesis Tools

Mostly commercial tools
* Very difficult, complicated programs to write well

,/ ™~

¢ Limited market AN

e Commercial products |n $/0k $100k price range
Major vendors

* Synopsys Design thnpiler, FPGA Express

* Cadence BuiIdGates\:

 Synplicity (FPGA/S)/‘L\ \
* Exemplar (FP;Z-’AS) \ \\\ /
Academic tools | : \ :
« SIS (UC Berkeley) N |
\ _
B 0]
B 0 (]
B 20]
Translating Verilog into
B 0]
B]

Parts of the language easy to translate
Structural descriptions with prlmltl\ms is already a rletllst

Continuous assignment expres/smns turn into little
datapaths /, \
Behavioral statements the bigger challenge

\
\
\
|
|
/
/

\
/

Verilog and ’I/_’/ogic Synthesis \

Logic Synthesis

Takes place in two stages:

1. Translation of Verilog (or VHDL) source to a netllst

Register inference perfor;réd here
/ \
2. Optimization of the resultlng netlist to improve speed

and area /
Most critical part of the process ‘

Algorithms very compllcated and beyond the scope of
this class: Take Prof Nowrcks class’ for details

What Can Be Translated

Every structural defi nition

Behavioral blocks

\
|
|
//’
Y,

/

e

¢ Depends on sensitivity list //"

¢ Only when they have reasoﬁable interpretation as \
combinational logic, edge, or level-sensitive latches \

* Blocks sensitive to both edges of the clock, changes on \
unrelated signals, chan?ing sensitivity lists, etc. cannot be \
synthesized

User-defi ned primitives/"/ ‘ AN
\ y
¢ Primitives defi ne/d with truth tables \\ /

* Some sequentlal UDPs can't be translated (not latches or
fip-fops) ‘ N ‘ -

What Is Not Translated

Initial blocks
* Used to set up initial state or desc{ri/befi'n‘ﬂé*tés'tbendl\stimuli
* Don't have obvious hardwayzér/lponent

Delays /
* May be in the Verilog souﬂrce but are simply ignored

A variety of other obscure Iapguage features

* In general, things he vfIS/ dependent on discrete-event |
simulation semarynéa /

« Certain “disable” statemen
e Pure events ‘ |

Register Inference

NNW -

A common mistake is not completely specnfylng a case
statement P

This implies a latch: /

always @(a or b) , .

case ({a, b}) / \
2°b00 : £ =0; | ‘
27p01 = £f=1; |
2°b10 : f

) o /

~__ fis not assigned when /

endcase - \ /
/ y

{a,b}= 27b11

1
[y
\

B 0 |
T
Simulation-synthesis Mismatches ===
B |

Many possible sources of conflict

- Synthesis ignores delays (e.g., #10), but simulation
behavior can be affected by them

¢ Simulator models X explicitly, synthesis does not \
/

* Behaviors resulting from shared-variable-like behavior

of regs is not synthe$lzed ‘

always @(pOSedgé clk) a

New value of amay be seen by other @(posedge clk) /
statements |n smulatnonger in synth\esns

\ ~_ | -

Register Inference

The main trick

Aregis not always a latch or flip-flop

Rule: Combinational if outpuhﬁvays depend exclus%f&

on sensitivity list /

Sequential if outputs may‘s"élso depend on previous values

Register Inference

The solution is to always have a default case
always @(a or b) —

~ ~

case ({a, b}) :
2°b00 : ¥ = 0; /

2°bo1l : f=1; /

2’b10 : F

default : f =
endcase

1
[EN

Register Inference

Combinational:
Sensitive to
reg y: __— changes on all the
always @(a or b or sel) c 9
- variable it rea
if (sel) y =
else y = b; < yis always assigned \
/ \“
Sequential: “ \“
reg q; T
always @(d or 9]1() \ /
if (clk) g ?_/ d: < g only assign g /
@ ckis1

Inferring Latches with

Latches and Flip-flops often have reset inputs
Can be synchronous or asynchronous™

Asynchronous positive reset:

always @(posedge clk or posedge reset) \
if (reset) | \\\
q <= 0; ‘\ \
else q <= d; T T
/ “\ \ /“

/ \ /

Summary of Verilog

Systems described hierarchically
¢ Modules with interfaces /” ~_

* Modules contain instances of primitives, other
modules / \

/
* Modules contain initial and always blocks
Based on discrete-event ‘slmulatlon semantlcs |

e Concurrent pro;éses with sensmv lists ,/"“
\ /

* Scheduler runs parts of these processes in response
to changes |

\ ~ \ o

/

/
\

Modeling Tools

Switch-level primitives: CMOS transistors as switches th
move around charge

~ ™~

Gate-level primitives: Boolear}ldéyic gates

User-defined primitives: tht’és and sequential elements \

defined with truth tables /

Continuous assignment: Modeling combinational logic

.) \
with expressions L

Initial and always b!;z/c:/ks: “F\’rocedural m‘a\delling of behavi

\
/ \

Little-used Language Fea

Switch-level modeling
* Much slower than gate or behavroral level models

* Insufficient detail for mode/ng most electrical
problems /

* Delicate electrical problems simulated with a
SPICE-like differential equation simulator

In Conclusion

Verilog is a deeply flawed language

/

* Nondeterministic ”,/

y

¢ Often weird behavior dueto discrete-event semantics

* Vaguely defined synthésis subset

* Many possible sourcés of simulation/synthesis
mismatch ‘

L

Language Features

Nets (wires) for modeling interconnection
* Non state-holding

/

* Values set continuously

/

Regs for behavioral modelin
 Behave exactly like memory for imperative modeling
¢ Do not always corresbond to memory elements in

synthesized netlist |
Blocking vs. nonblocking “assignmén‘t .
* Blocking behaves like normal “C- like” assignment

* Nonblocking delays updat{ modeling synchronous /

behavior ‘ ‘

Little-used Language Fea

Delays

* Simulating circuits with delays does not improve -
confidence enough yd

* Hard to get timing mod,éyls accurate enough
* Never sure you have simulated the worst case

e Static timing analysis has taken its place

In Conclusion

Verilog is widely used because it solves a problem

 Good simulation speed that gontinijé'sﬂ)ni'rﬁprove\

* Designers use awell-behéled subset of the Ianguab 1

* Makes a reasonable specmcatlon language for logic
synthesis

Logic synthesis one bf the great deS|gn automation
success stories Ve “\

/

/ \ \
/ \ \

Language Uses

Event-driven simulation

* Event queue containing thlngs to-do aﬁ)amcular
simulated times - AN
/

* Evaluate and update evénts
/
» Compiled-code event:driven simulation for speed

Logic synthesis ‘
* Translating Verllog (structural and behaVIoraI) into

netlists yd

/ A \

/

* Register |nference whether output is always update

* Logic optlmlgatlon for clea\mng up the result

Compared to VHDL

Verilog and VHDL are comparable languages

VHDL has a slightly wider scope _—
* System-level modeling //
* Exposes even more dirsf:rete-event machinery

VHDL is better-behaved: Fewer sources of
nondeterminism (e.g., nq shared variables)
VHDL is harder to S|mulate qmckly

e
VHDL has fewer bullt-ln fa(;llltles for hardWare modeling
VHDL is a much more verbos\language Most example
don't fit on slldes . |

~ | -

S

