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Abstract 
Debugging software running on an embedded chip is more 
difficult than doing the same on a personal computer with 
well-established user-friendly environment.  The problem 
with embedded chips is that there is minimal support to facili-
tate any debugging process.  Often found on PCs and not on 
the smaller scale embedded chips are operating system sup-
port, threading support, IO support, user interface support, 
etc.  Without these, engineers simply cannot run a debugger 
on the embedded chip to test buggy software.  To mitigate 
these deficiencies, engineers often separate the debugging 
setup by running small stub1 software on the small embedded 
chip and leave the rest non-crucial and machine-independent 
debugger running on a more powerful remote machine. 

This paper describes the implementation of a minimal GDB 
server that runs on an x86 processor.  This demonstrates how 
to split a debugging session into two halves: a server that runs 
on the target being debugged and the debugger that runs on a 
host machine.  The example server implements the minimum 
required number of commands.  The goal is to run as little 
code as possible on the chip.  Anything that the remote ma-
chine can take care of gets isolated and runs on a remote ma-
chine.  Symbol information, for example, is non-essential to 
debugging an application so the remote machine instead of 
the stub can manage it.  User interface is also a non-essential 
concern.  The remote machine has the luxury of developing a 
grand user interface, but it makes less sense to have to run this 
code on the chip. 

This paper provides insight as to how to work around a 
situation where there’s limited computing power by leverag-
ing computing power elsewhere.  It focuses on what is needed 
while what can be exfoliated from the stub.  This paper serves 
as a guideline for how to setup a debugging session with fu-
ture and current embedded chip software development. 
 
Introduction 
There are many ways to test software running on an embed-
ded chip.  One way is to test the software by running it on a 
simulator for the embedded chip.  A well-written simulator 
can also behaves like a debugger for that it can always stop a 
process by pausing the simulation.  It can easily provide in-
formation on the variables, registers, or anything program-
mers wish to find out by looking up program memory that it 
already simulates.  But a simulator can be costly to construct 
if one is not readily available. 

Another feasible option considers remote debugging.  The 
buggy software runs on the actual board instead of a simula-
tor.  A small stub program runs along side the tested program 
and instruments the tested program.  This stub is responsible 
for stopping, continuing, reading, and writing regis-
try/memory, etc.  It also communicates with the full debugger 

                                                 
1 Stub is referred to as the target, nub, etc in other literatures. 

that oversees and manages the entire debugging operation.  
The full debugger runs on a relatively powerful remote ma-
chine.  It communicates and gives command to the stub, 
which then carries out and returns with the results.  A debug-
ging session consists of a sequence of request and reply be-
tween the debugger and the stub. 

The most prominent command issued by the debugger is 
perhaps the breakpoint command, followed by run, by read 
memory addresses, and so forth.  This correlates to a user at a 
terminal issuing a breakpoint on a line of source code, runs 
the program, wait until the program stops, and reads some 
memory addresses that corresponds some variables in the 
program while trying to understand the dynamic of what’s 
going on under the hood.  Thus with remote debugging 
achieves the net effect of debugging software running on the 
board, but without running the full debugger on the target 
board. 

The question arises on what exactly does the stub do and 
how does the full debugger interact with the stub.  Most im-
portantly, what the stub cannot do without. 

This paper provides an analysis.  Briefly, the stub needs 
only be able to respond to a debugger’s command to read 
write register memory and resume programs.  The stub code 
behaves unintelligently.  The full debugger must have knowl-
edge of the target chip and be able to drive the stub intelli-
gently.  Analogously, an operating system drives a kernel 
driver to control a device.  Here the debugger drives the stub 
by issuing debugging related commands.  For example, the 
debugger wishes to set a break point at the certain line in the 
source code.  It consults the symbol table and finds out the 
corresponding program address.  It then issues a command to 
read the instruction stored at the address.  Then it writes an 
interrupt instruction to that address location.  The breakpoint 
is set.  The debugger thus achieves the user’s objective by 
working with the few commands handled by the stub. 
 
Related work 
Programmers, prior to the popularity of debuggers, insert 
printf statements into codes to gain insights on the dynamics 
of buggy software.  Since the first introduction of debuggers, 
there are numerous debuggers and techniques introduced.  
The more common debuggers include cdb, msdev, dbx, 
windbg, kdb, gdb, etc….  

Most debuggers work in similar fashion.  They pause the 
execution of a running process based on some criterions and 
allow the user to examine the program internals while the 
program is paused.  The common way to achieve this is to 
patch the program with special instructions so that program 
relinquishes control of the CPU when it executes the instruc-
tions. For example on a x86 machine the special instruction is 
byte “CC”, which will cause the program to fault and relin-
quish control to a signal handler. 

While runtime code patching is not new, Buck and Holl-
ingswoth [1] describe an API for doing runtime code patch-



ing.  They create common APIs at the machine independent 
level.  The actual patching work is done separately using dif-
ferent modules.  This approach enables portability, and most 
importantly resembles the remote debugging paradigm. 

Then again, remote debugging is not something new.  Han-
son and Raghavachari [2] introduce a machine-independent 
debugger called cdb.  The paper aims to separate the debugger 
and the stub, which is called a ‘nub’ in their paper.  The nub is 
compiled with the program to be debugged.  It communicates 
with the debugger to facilitate the debugging environment.  
This is the major design constituting remote debugging. 

GDB is a more widely used debugger.  It also provides re-
mote debugging capabilities.  The debugged stub is called a 
target.  GDB is also extensible for that it can communicate 
with a variety of remote stubs to perform debugging tasks.  A 
sample stub, called GDBServer, comes with the gdb.  The 
debugger and the stub communicate using its own protocol 
called the Remote Serial Protocol. 

The remote serial protocol is developed for gdb so that 
there is a standard protocol for stub writers to communicate 
with gdb.  Gatliff [3] gives a summary the remote serial pro-
tocol.  He also includes examples of the message exchanges 
used in the protocol.  The protocol is basically a request and 
reply, which is very similar to the http protocol.  The debug-
ger encodes the request in an ASCII string, sent to the server 
(stub) and then waits for an ASCII string reply.  The protocol 
is significantly simple so it can run on top of virtual all com-
municate medium. 

GDB is so widely used that it is selected as the sample in 
this paper.  Others find this debugger useful as well.  Kawa-
chiya and Moriyama [5] describe their adaptation of gdb to 
their own hardware, Engineering Support Processor.  They 
ported the GDBServer stub to the architecture and describe 
the processing of doing so.  Their paper also examines some 
aspects for rewriting the stub. 
 
Debuggers that support remote debugging 
Remote debugging is not new.  Most sophisticated debuggers 
offer some support for debugging software remotely. 

I choose gdb because it is extensible, open source and sup-
ports numerous platforms.  The current gdb, version 5.2.1, 
supports Intel 386, Motorola 680x0, Hitachi SH, SPARC, and 
Fujitsu SPARCLITE.  This means the debugger has knowl-
edge of these platforms and knows how to debug software 
running on these platforms.  The real gem is that the debugger 
does not necessarily need to run on these platforms, despite 
also having existing ports to these platforms.  In short, gdb 
knows how to set/restore interrupt instructions, unwind 
stacks, and fiddle with the registers for all of these platforms.  
But by itself, gdb does not necessarily do these tasks.  It re-
quests a software stub designed for a particular platform to do 
the actual low level fiddling, such as reading writing to mem-
ory and registers.  This approach makes gdb extremely exten-
sible for all it takes for gdb to support a new version of the 
same platform is to rewrite the appropriate stub if need be. 

Because of the architecture, debugging remote programs 
comes naturally to gdb.  The only additional requirement to 
enable remote debugging is that the communication between 
the debugging stub and the debugger through some medium. 

 
Figure 1. Debugger requesting the stub to read memory. 
 
It’s worth mentioning the communication between the stub 

and the debugger.  GDB can use numerous communication 
protocols. e.g. TCP/IP, udp, or serial cable.  The example 
GDBServer runs on top of TCP/IP, but any protocol would 
suffice as long as the stub and the debugger can convey the 
right information.  The preferred way is often limited to the 
capability of the chip and is not a concern in this paper.  Dif-
ferent communication protocol/medium does not change what 
are the essential things on the stub other than the communica-
tion portion of the code. 

The gdb distribution comes with a sample stub call 
GDBServer.  The stub runs as a standalone process on a re-
mote machine, which also can be the same machine that gdb 
runs on.  As an example, this stub does not impress because it 
requires the same operating system support as the debugger 
itself.  This is to say that if GDBServer can run on a machine, 
then gdb can also run on the machine.  Nonetheless, it serves 
as an example of what the debugger requests stubs do and 
how to implement these requests.  A stub that works in similar 
fashion but without the operating system support can be easily 
derived from this example. 

 
Example GDBServer 
I created a sample gdbserver by following the same guidelines 
outlined for the original gdbserver.  The stub runs on the x86 
architecture.  It runs as a separate user process on the Red Hat 
Linux operating system and can easily be ported to other x86 
platforms.  It implements a subset of the Remote Serial Proto-
col, while remaining capable to debug various programs run-
ning on the platform.  It only answers on the TCP/IP protocol, 
whereas the real GDBServer can work on other protocols 
including udp and serial ports.  Upon receiving a request, the 
stub translates the request into ptrace calls to the operating 
system.  Then the stub returns the results from the ptrace calls 
to the debugger in a messages reply.  Here’s a list of com-
mands the sample stub implements. 

Command In Stub Description 
g yes Reads all registers 
G yes Writes all registers 
m yes Reads memory at address 
M yes Writes memory at address 
? yes Get last signal: S 
s yes Step the program 
c yes Continues program execu-

tion 
Table 1. List of commands implemented by example stub. 
 



Because the stub runs as user process in the operating sys-
tem, it does not have all of the privilege on a machine.  So the 
stub depends on the operating system to do its low level fid-
dling.  For example, to read from memory, the stub requests 
the operating system through a ptrace call with the 
PTRACE_PEEKTEXT argument.  The operating system is 
responsible to read memory pages from the designated proc-
ess memory address space, along with all the necessary page 
table lookup and translations.  For stubs that run without the 
operating system, it needs to do the above task itself.  To a 
read a register, the stub also consults the operating system 
through a ptrace call.  The operating system in turn looks up 
the block that contains the saved registers of the preempted 
process and returns the appropriate data.  Again, a stub that 
runs without the operating system needs to figure out the loca-
tion of the saved registers and fetch the saved data.  So oper-
ating system support is absolutely required for this example 
stub. 

Here’s how to stub implements the commands.  The stub 
supports the “g” and “G” command, which are read and write 
register respectively.  The results of the “g” command are a 
string of hex ASCII representing all of the registers in a order-
ing expected by gdb.  Here’s an excerpt of the g command. 
 
      buf = malloc (regset->size); 
      res = ptrace (PTRACE_GETREGS,  
                           childpid,  
                           0, 
                           (int) buf); 
Figure 2. Excerpts of register read implementation. 
 
The buf variable, after the ptrace call, points to a buffer stor-
ing the registers.  The “G” command is the complement of the 
“g” command and is followed by string of hex ASCII repre-
senting all of the registers.  Here’s the call to write the regis-
ters. 
 
      regset->fill_function (buf); 
      res = ptrace (PTRACE_SETREGS, 
                           childpid,  
                           0, 
                           (int) buf); 
Figure 3. Excerpts of register write implementation. 
 
The above ptrace calls writes the data pointed by the buf vari-
able to the saved registers block. 

As for memory related commands, the stub supports the 
“m” and “M” command to read and write memory, respec-
tively.  The starting address and number of bytes follows 
directly after the “m” character in the packet.  The response is 
a sequence of hex ASCII representing the memory content of 
the requested memory address location.  Here’s the helper 
function that reads the data in ‘memaddr’ address of the de-
bugged process to ‘myaddr’ buffer. 
 
void read_memory (long long memaddr, 
                                char *myaddr,  
                                int len) { 
  int i; 
  PTRACE_XFER_TYPE *buffer; 
  long long startAddr = memaddr & -(long long) 
                                     sizeof(PTRACE_XFER_TYPE); 

  long long endAddr = (memaddr + (long long)len); 
 
  endAddr = endAddr & -(long long) 
                    sizeof(PTRACE_XFER_TYPE); 
 
  buffer = (PTRACE_XFER_TYPE*)  
                alloca( ((endAddr - startAddr)/4 + 1) * 
                sizeof(PTRACE_XFER_TYPE) );  
 
  i = 0; 
  while (startAddr <= endAddr) { 
    buffer[i] = ptrace(PTRACE_PEEKTEXT, 
                                 childpid, 
                                (PTRACE_ARG3_TYPE) startAddr, 
                                0); 
    startAddr += sizeof(PTRACE_XFER_TYPE); 
    i++; 
  } 
   
  memcpy(myaddr,  
                 buffer + (memaddr& 
                 (sizeof(PTRACE_XFER_TYPE)-1)),  
                 len); 
} 
Figure 4. Excerpts of the memory read implementation. 
 
The complementary command “M” is accompanied by the 
starting memory address, size of the data, and the data in hex 
ASCII form.  Here’s the other helper function that writes the 
data in ‘myaddr’ to ‘memaddr’ address of the debugged pro-
gram. 
 
int write_inferior_memory (long long memaddr,  
                                            char *myaddr,  
                                            int len) { 
  int i; 
  int count; 
  PTRACE_XFER_TYPE *buffer; 
  long long startAddr = memaddr & -(long long) 
                                     sizeof(PTRACE_XFER_TYPE); 
  long long endAddr = (memaddr + (long long)len); 
 
  endAddr = endAddr & -(long long) 
                    sizeof(PTRACE_XFER_TYPE); 
  count = (endAddr - startAddr)/4 + 1; 
 
  buffer = (PTRACE_XFER_TYPE*)  
                alloca( count * sizeof(PTRACE_XFER_TYPE) ); 
 
  buffer[0] = ptrace(PTRACE_PEEKTEXT,  
                                childpid, 
                               (PTRACE_ARG3_TYPE) startAddr, 
                               0); 
  if ( count > 1 ) { 
    buffer[count-1] = ptrace(PTRACE_PEEKTEXT, 
                                 childpid, 
                                 (PTRACE_ARG3_TYPE)endAddr, 
                                 0 ); 
  } 
 
  memcpy ((char *)buffer + (memaddr &  
                  (sizeof(PTRACE_XFER_TYPE)-1)),  



                  myaddr,  
                  len); 
 
  i = 0; 
  while ( startAddr <= endAddr ) { 
    errno = 0; 
    ptrace (PTRACE_POKETEXT, 
                childpid, 
               (PTRACE_ARG3_TYPE) startAddr, 
               buffer[i]); 
    if (errno) { 
      return errno; 
    } 
    i++; 
    startAddr += sizeof(PTRACE_XFER_TYPE); 
  } 
  return 0; 
} 
Figure 5. Excerpts of memory write implementation. 
 

In addition, the stub responses to three control-related com-
mands: get last signal, step, and continue command.  The stub 
responses to the get last signal command by sending the 
reason that stops the debugged process.  This information is 
given to the signal handler when the debugged program is 
interrupted, and is transferred from the operating system back 
to the stub.  The mechanism to do so is through a wait on 
ptrace call.  A stub without operating system support would 
have to save the signal information somewhere in its memory 
and transfer to gdb when asked to.  This is true for any signal 
such as bus error, access violation, out of memory, etc.  This 
information is transferred back to gdb, which then entails a 
sequence of register and memory read commands.  Once gdb 
gathers enough information from the register and memory, it 
can compute and display to the user the current point of exe-
cution of the debugged program along with the last signal.  
Here’s the code segment that captures the last signal in vari-
able ‘w’. 
 
unsigned char waitForProcess (int childpid, char *status) { 
  int pid; 
  int w; 
 
  pid = waitpid( childpid, &w, 0 ); 
  *status = ‘S’; 
  return (unsigned char) WSTOPSIG(w); 
} 
Figure 6.  Excerpts of get last signal implementation. 
 

The step and continue command tells the stub to execute 
one instruction and continue execution until signaled, respec-
tively.  The stub calls ptrace with PTRACE_SINGLESTEP or 
PTRACE_CONT for stepping and continuing.  A stub with-
out the assistance of the operating system needs to manually 
restore the debugged process’s context and switch2 to it.  Fi-
nally, here’s the code to continue and step the debugged proc-
ess, respectively. 
 
  ptrace (PTRACE_CONT, childpid, 1, 0); 

                                                 
2 Stepping a program is a difficult task as the debugger needs to inter-
pret a few instructions of the debugged program. 

  … 
  ptrace (PTRACE_SINGLESTEP, childpid, 1, 0); 
Figure 7. Excerpts of the step and continue implementation. 
 
The separated and the non-separable 
Here I discuss the functionalities that are absolutely necessary 
to run on the stub and those that the full debugger performs. 

Regardless of how much or little intelligence a stub has, it 
must be able to handle an exception or signal of the debugged 
program, for that is the time the debugged program unwill-
ingly relinquish control of the CPU.  The processor calls the 
signal handler either deliberately so on a user breakpoint or 
when the program encounters a fault.  The handler needs to 
convey this fault information back to the debugger. 

The sample stub does this using a ptrace wait command, 
which waits until the debugged program reaches the signal 
handler.  By itself, it does not setup the signal handler for the 
debugged program as the operating system facilities this pro-
cedure.  Nonetheless, any stub needs some method of inter-
cepting and handling a signal from the debugged program. 

Resuming the stopped program is also a responsibility of 
the stub.  The stub must be able to restore the program context 
and switch to the program when requested by gdb.  The ex-
ample stub does this through the operating system, which 
already saves the context of the program.  Resuming a 
stopped program in a multiprocessing operating system is as 
simple as fiddling around with the scheduler that already sup-
ports this kind of operations. 

Fetching and writing the registers and memory are also an-
other responsibility of the stub.  A stub that runs with no op-
erating system support that fetches and writes the register 
needs to identify the saved register block of the debugged 
program at the time when the program faults.  The saved reg-
isters can reside either on the stack or a predefined location in 
memory depending on the platform.  When requested by gdb 
to fetch a register, the stub needs to read the corresponding 
memory address for the appropriate register.  Register writes 
is analogous to reads.  The new register content overwrites the 
appropriate address in memory before the context of the 
stopped program is restored. 

The memory read and writing part is simpler as the associ-
ated address is passed along with the command.  The proce-
dure is more difficult without operating system for that the 
stub may need to consult the page table, if one is required, in 
order translate the user address into physical address.  The 
sample stub does this through the operating system, which 
already supports page table lookups and page fault handling.  
In any case, a stub must implement both register and memory 
operations. 

Finally, a stub must be able to resume a stopped program.  
It needs to bring back the program context saved in memory 
and jump to last program counter location of the stopped loca-
tion. 

With only the above-mentioned functionality implemented 
in a stub, it is an unintelligent piece of code that is driven by 
the debugger. 

In theory, a user can debug a program with a minimal 
working stub by manually interacting with the stub without 
the presence of a debugger.  However, it is tedious to do so as 
the user needs to manually send commands to the stub and 
listen for results from the stub.  The analogy here is that the 



user writes a large program in assembly instead of c code, 
which can be readily compiled. 

For instance, a debugger provides a user-friendlier interface 
to help facilitate the speed at which the user can test buggy 
software.  The user improves on efficiency when much of 
repetitive routines are automated into simple click and drag-
ging.  The gdb debugger is the kind of debugger that can 
builds on top of the minimal stub to provide the full debug-
ging experience. 

The debugger, not the stub, is responsible for correlating 
the correspondence between source code and layout of binary 
code in memory.  In order to do this correspondence, symbol 
information, which translates between source lines and func-
tions and offsets, are required.   The symbol tables basically 
contain a source line and offset pair, along with other things 
such as the layout of the variables, etc.  For each line of 
source, the symbol table has an entry that contains the number 
of bytes beyond the last symbol, which usually is the function 
entry point.  These tables are large in size and may not be 
feasible to store on the embedded chip.  So the debugger, with 
knowledge of the embedded chip, can store and query the 
tables instead of the stub. 

Symbol table is useful, for example, when the user decides 
to read the data of a local variable for a stopped program.  The 
debugger consults the symbol table and finds the memory 
address corresponding to the variable, then issues a memory 
read command to the stub, and waits for a response. 

Another use of the table is when the debugger needs to set a 
break point.  Normally a user does not tell the debugger to 
stop the program at a certain memory address.  The user tells 
the debugger to stop the program when it reaches a certain 
line in the source code.  The debugger takes this argument and 
translator it into the memory address for the user.  It sets the 
breakpoint first by recording the content in the memory ad-
dress through a memory read then writes interrupt instruction 
to that address. 

When a program stops, the user may be interested in know-
ing where the program stopped.  This is accomplished by 
printing out the stack trace.  Stack information, store in regis-
ters and memory, is not readily in human readable form.  
Every chip differs in the way it represents a call stack for its 
disparate calling conventions, architecture, etc. But all of the 
stack information, with pointers from registers, are in memory 
somewhere.  The debugger needs to unwind the stack by in-
terpreting it frame by frame.  This code can logically exist in 
either the stub or the debugger.  The preferred option is the 
debugger as the goal is to make the stub as small as possible. 

During the frame by frame unwind, the debugger also looks 
at the return address, which can be in registers or on stack 
depending on the chip.  The debugger consults the symbol 
table to translate the return address back to the ASCII name of 
the function.  This is done for each frame on the stack so that 
the stack trace shows functions corresponding to each frame.  
To identify the topmost frame, the debugger looks at the pro-
gram counter.  The debugger again translates the address 
stored in the program counter by consulting the symbol table.  
All of these functionalities are implemented in the debugger 
and not the stub, and it makes little sense to have around in 
the stub. 

Even with the minimal stub such as the example stub, the 
debugger can implement other more advanced debugging 
techniques and tricks.  On a sophisticated system, a watch 

point is set by changing bits in the page table so that access to 
a particular memory address stops the program by relinquish-
ing control to the stub.  The example stub, however, does not 
accept any commands that deal with page translations.  But 
the stub offers a step command that proves to be useful.  A 
naïve way to implement the watch point is to step the program 
while interpret the next instruction until there is access to a 
particular memory address. 

Conditional breakpoint is another enhancement.  The de-
bugger can easily implement this without addition help from 
the stub.  A conditional breakpoint is a normal breakpoint 
with addition stopping criterions.  The only difference is that 
the when the debugged program breaks, the debugger evalu-
ates the additional condition, which usually translates into 
reading and comparing memory contents.  The debugger only 
alerts the user when the evaluation is true; otherwise it con-
tinues the program execution. 

This concludes the functionalities the need and need not be 
part of the stub. 
 
Conclusion 
Often a debugger cannot run on the embedded chip, but hav-
ing a small stub that provides some core functionality is a way 
to mitigate the problem.  The size of the stub is limited to the 
number of function it must provide.  To the bare minimum, it 
must provide functionalities to read write registers and mem-
ory, handle exception/signal, and resume a stopped program.  
On top of these functionalities, the debugger such as gdb can 
work its magic to provide user a full debugging experience. 
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