
Code generation from an Esterel PDG

Cristian Soviani

December 16, 2002

Abstract

If a concise CFG exists for the given PDG, an optimal
CFG can be efficiently generated. This is not the
case for most Esterel programs. Solving the general
problem optimally is NP-complete, so my project will
find an non-optimal but efficient CFG.

1 Introduction

From the programmer’s point of view, Berry’s [2] syn-
chronous programing language Esterel 1 can be the
ideal choice for writing a large class of embedded sys-
tems software. The real battle is performance. Speed
and size are both crucial issues in embedded systems.
If the Esterel compiler does not generate very efficient
code, the programmer will have to switch back to C.

Berry’s Esterel V3/V5 compilers can generate both
automata [2] and netlist code [1]. The automata code
is build through exhaustive simulation of the program
possible states; the code is very fast but code size can
grow exponentially with the input source. The netlist
code grows linear in terms of input source but speed
is much slower as all instructions (most of them idle)
are executed each cycle. These methods have a solid
theoretical background (they are excellent tools for
program analysis) and can be seen as two theoretical
extreme cases but run-time performance requires a
more pragmatic view.

Bertin, Weil et al.’s Esterel compiler [3] [8] splits
the code into small compiled functions between “halt-
points”. Control and data dependencies are taken
into account so these “halt-point” functions can be
safely executed top to bottom when scheduled. They

1www.esterel-technologies.com

are then topologically sorted. Each function can be
marked to be executed or not when its turn comes. If
executed, it can mark as “executable” other functions
(in the next or current cycle). The code speed and
size are promising. This approach excludes most idle
instructions from execution but does not take advan-
tage from mutual exclusive code sections; each cycle,
the scheduler must check the “executable” mark for
all functions

In his EC compiler, Edwards [4] notes that de-
spite of many differences, Esterel can be after all
seen as an imperative language. Inspired form Lin’s
work [5] (which compiles a rendesvous like concur-
rent variant of C), EC translates Esterel’s inteme-
diate code (IC) into a concurrent intermediate rep-
resentation (CCFG - concurrent control flow graph)
and than into a sequential CFG (which is actually
code). The main challenge is generating the CFG
from the multithreaded CCFG when data depen-
dencies require “thread interleaving”. EC statically
“slices” the threads and introduces additional vari-
ables to store the thread “state” at cut points. The
variables are later used to “resume” thread execution.
Edwards’ work is sustained by the experimental re-
sults which show very good performance (code speed
/ size) for a large class of real world Esterel inputs.
At this moment, EC can handle only programs where
a statically ordering of the instructions can be com-
puted (i.e. they can be topologically sorted); fortu-
nately, this is the case for most real programs.

Although each of above approaches has encourag-
ing results, there is still room for improvement.

My approach is to generate the CFG and thus the
code from the PDG (program dependency graph).
The PDG is an intermediate representation of the

1



program, much used in compiler design, consisting
from a CDG (control dependency graph) and a DDG
(data dependency graph). Instead of being a simple
“translation” of the program, like IC, the PDG is a
higher program abstraction, ignoring arbitrary links
between nodes and keeping only mandatory (control
and data) dependencies. Although PDG to CFG
translation is not trivial, it is a promising way to
get both short and fast code.

Simons and Ferrante describe an efficient algorithm
[6] for generating a CFG from a PDG, when a con-
cise CFG exists (i.e. no additional guard variables
/ code duplication is required). Their ingenious al-
gorithm reduces the problem to the ordering of each
parent node’s children (siblings) and runs in poly-
nomial time O(VE). The algorithm walks the CFG
twice and computes for each node a “eec” set. Briefly,
this information is used to detect CDG constraints
in scheduling siblings. Sibling ordering is done by
inspecting the “eec” sets and data dependencies, us-
ing a set of ordering rules. The algorithm stops when
finding a concise CFG is not possible but it points out
that guard variables / code duplication are needed to
solve the problem.

Steensgaard extends Ferrante’s work to handle irre-
ductible programs which contain multiple entry loops
[7]. This is done by introducing the notions of loop
entry and close nodes. His work still considers only
PDGs for which a concise CFG exist.

Edwards showed the general problem of finding
optimum code is NP-complete. Fortunately, Esterel
PDGs have some particularities which allow efficient
algorithms. Due to the timing model, the PDG has
no loops; due to signal semantics, any signal can be
assigned by multiple instructions in arbitrary order;
the signal can be read only after it was written by all
instructions.

2 My work

2.1 Overview

My program takes an Estrel PDG and generates the
corresponding CFG in 4 main steps:

• Constructs the DDG, eliminating unnecessary

data dependencies

• Slices the PDG using Edwards’ technique to re-
move cyclic dependencies between threads, such
that resulting PDG has no interleaving threads
and can be simple scheduled; thread cuts are bad
for both size and speed, so their number should
be reduced as much as possible

• Runs Ferrante’s algorithm and orders the sib-
lings in the PDG according to data dependencies
and Ferrante’s ordering rules; if guard variables
are required, their number should be kept low

• Generates the sequential flow (CFG). Code gena-
ration is trivial from this point.

2.2 Compute and Relax data depen-

dencies

This takes the CDG and computes the DDG by look-
ing at data relationship between nodes. It is done in
2 steps. The result is the PDG.

In the first step each predicate is linked to all the
statements which refer to the same variable. In the
second step each dependency is checked; if the 2
nodes can’t be both executed in the same tick, the de-
pendency is removed (this is done by looking at the
common ancestors). In the next sample, red edges
are kept but the links (N5 to N4) and (N6 to N3) are
removed:

N1

N2
A

0

N7
B*

0

N3
C*

0

N4
B*

1

N5
B=1

1

N6
C=1

1

N8
C*

1

N9
X=1

1

My assumption is that any predicate ancestor can
have any value, independently. This is not true for

2



certain cases. But only a more sophisticated tool
which simulates all possible states and input values
can detect if 2 nodes can be really both executed
in the same tick or not (see Esterel constructiveness
causality). My program could use the output from
such a tool and skip this first module.

compute_relax_ddg()

//step 1

for each predicate p

for each stat s referring the same var as p

add data dep from s to p

//step 2

for each data dep s to p

keep=false

comm=common region ancestors of s and p

for each f in comm

for each child cf of f not in comm

if cf is ancestor of s XOR p

keep=true

if keep==false remove data dep s to p

end

2.3 Slicing the CDG

For each region with multiple children I must as-
sure there exists at least an ordering of the siblings
(threads). The regions are considered hierarchically,
top to bottom, so as less as possible work is moved
to upper levels.

For any such region, if there are cyclic data de-
pendencies between siblings, the execution of threads
should be “interleaved”. This follows the technique
used by Edwards in his EC [4] with the mention
that EC uses a simple “depth-first” approach but
my project reduces the number of context-switches
to the minimum possible. This is important as con-
text switches do both increase code size and execution
time, and I expect heavy threaded programs to take
best advantage of my algorithm.

Next there is a simple sample of a PDG which re-
quires interleaving. Note the cyclic data dependen-
cies (red edges) between the two siblings:

N1

N2
I

0

N4
B

0

N3

1

N6

2

N5
B=1

0 0

N7
A=1

1

N8
A

0

N9
X=1

1

The left thread is a “bad” one because N5 and N8
can not be executed in the same “chunk”; N8 should
execute after N7, N7 after N4 and N4 after N5. The
solution is to cut the “bad” thread in 2 slices; the
“upper” part remains in place - it can be scheduled
first; the “bottom” part is “relinked” to the region,
inserting appropriate guard variables for preserving
the flow control - in can be scheduled later. This op-
eration can be done several times and will safely lead
to a final result, as there are no cyclic dependencies
between signals; in the extreme worst case a one level
schedule (netlist - like) could be generated. But the
idea is to keep the number of “cuts” low.

Fortunately, a greedy algorithm works. For each
“bad” thread (which must be obviously sliced), the
“upper” part will include all nodes which do not de-
pend on nodes on the same thread, using nodes on
another threads as “intermediary”. The nice result
is this simple algorithm make the minimum number
of cuts possible.

Next there is the result of the algorithm. Note
that there are no more cyclic dependencies between
siblings, so they can be scheduled in the order N2,
N4, N100:

3



N1

N2
I

1

N4
B

2

N100
f1*

3

N3

1

N6

2

N5
B=1

1 2

N7
A=1

1

N101
f1=1

1

N8
A

N9
X=1

1

1

The following code is an outline of the cutting al-
gorithm. Instead of adding just a predicate and the
corresponding statements, a more complex algorithm
is actually used to construct a “mirror” tree which
preserves the flow control with minimum overhead.

slice_pdg()

for all regions f (top->bottom)

mark all children ’not onepiece’

while f has a child c not marked ’onepiece’

slice(f,c)

mark c as ’onepiece’

end

slice(f,c)

mark all descendents of f as CH

mark all descendents of c as SON

for each n descendent of c (top->bottom)

if(n has a RMV parent) mark n as RMV

if(n depends of another node in CH using

SON nodes as intermediary)

mark n as RMV

if any node was marked RMV

create a new pred r

link r as son of f

for each n descendent of c (bottom->top)

if n is RMV and its parents are not RMV

add a new statement s w/ the same var as r

link s to n’s parent

relink n to r instead of its parent

2.4 Ordering the siblings in the CDG

For each region with multiple children, a scheduling
is possible due to the slicing, but additional guard
variables/predicates may be necessary. To keep them
as few as possible, I use the algorithm developed by
Simons & Ferrante [6] which computes each node’s
“external edge contition” (eec). The technique is also
described by Steensgard [7].

By definition, X ∈ eec(Y ) iff X executes if any de-
scendent of Y executes. If X 6∈ eec(Y ), Y has an
external edge with respect to X. Briefly, X can be
simply scheduled before Y but not after Y, and we
can write it as X < Y . If we can find such an order
for all siblings which also respects data dependencies,
no guard variables should be added; otherwise, they
are mandatory. A “bad” schedule can be forced by
data dependencies and/or by siblings having exter-
nal edges with respect to each other (i.e. X 6∈ ecc(Y )
and Y 6∈ ecc(X), meaning X < Y and Y < X). For-
tunately, this rarely happens so Ferrante’s ordering
saves us from additional code most of the time.

In the next sample PDG, N4 and N3 schedule their
children as shown by the blue numbers. It can be
noticed that an additional predicate is required for
N5 but not for N6 and N7.

N1

N2
S

1

N3

2

N4

3

N5

1

N7

4

1

N6

2 3 1 2

N8
Z=1

1

N9
X=1

1

N10
Y=1

1

order_sib()

4



while there unscheduled siblings

poss=all possible siblings, according to data dep.

schedule nextsib(poss)

end

nextsib(poss)

x=first(poss)

for each y of (poss-x)

if(y<x) x=y;

return x;

Note that statements and predicated without exter-
nal edges are first scheduled.

2.5 Generating the CFG

Now we have the scheduling order for all siblings.
As a concise CFG do not always exist (in that case
its construction is trivial) my program generates the
CFG in two steps, to avoid inserting unnecessary ad-
ditional code.

First, the CDG is walked top to bottom and ad-
ditional predicates / statements are inserted for any
region with multiple parents. “wire” nodes are added
to simplify the CFG construction (a wire can have
multiple parents but only one child - briefly, a region
is replaced by several wires). A parent passes to each
child a “wout” node, which briefly is the node where
execution resumes after the child completes; this is
either an executable node (pred. or statement) or a
wire. All regions loose their links (which are moved
to wire nodes) and are removed. Finally, all wires are
removed (updating the links) so the result of the first
step is a valid but unoptimum CFG.

Second, the CFG is walked bottom to top and pred-
icates are “simplified” (when 2 children edges go actu-
ally to the same node) or even removed (when there
is only one child left); in the same time, the corre-
sponding statements are also simplified / removed.
This assures that only necessary additional predicate
/ statements are kept.

Next: the CFG generated from the previous PDG.
Note the additional predicate N106, corresponding
guard variable w5 and its assignment in N107 and
N108:

N2
S

N108
w5=2

1

N107
w5=1

2

N9
X=1

3

N10
Y=1

4

N100

0

N8
Z=1

N106
w5

0

0 0

0

1

N101

2

0

//step 1

makecfg()

for each node n in CDG (top -> bottom)

if n is ’stat’ or ’pred’ wire_ps(n)

if n is ’reg’ wire_f(n)

for each node w of type ’wire’

relink w’s parents to w’s child

remove w

//step 2

for each node n in CFG (bottom ->top)

if n is additional predicate minpred(n)

end

wire_ps(n)

get wout from father

push wout to all children

is n is ’stat’ or ’pred’ w/ default case

link n to wout

wire_f(f)

if f has multiple parents

5



make new predicate P

make new node W of type ’wire’

for each parent pi

make new statement Si

link pi to Si, Si to W, P to pi’s wout

wout=P; win=W

else

get wout from father

win=father

nc=#of f’s children

make nc-1 nodes Wi of type ’wire’

for each child ci in sched order

link win to ci

if(ci is last child)

push wout to ci

else

push W[i+1] to ci

win=Wi

delete f

minpred(p)

while(p has 2 identical children i and j) do

remove link j

remove corresponding Sj

link Sj’s parents to Si

if(p has only one child)

remove p, remove corresponding S

3 Conclusions. To do

I consider the results to be encouraging as my project
efficiently handles “problem” handwritten test pro-
grams. The input PDG and the generated CFG were
exhaustively simulated and the results match. The
next step is to test real Esterel input - using Edwards’
ESUIF development platform - and to compare the
results against other Esterel compilers.

There are several optimizations which can further
improve the code performance. The thread “cuts”
are done by the greedy algorithm as “low” as possi-
ble, but a more careful choice could do better, with-
out affecting the number of cuts. The ordering of
“bad” siblings can be improved, to assure minimum
additional code when they are required. And finally,
the PDG can be optimized exploiting Esterel’s par-
ticularities.

References

[1] Gérard Berry. Esterel on hardware. Philosophical
Transactions of the Royal Society of London. Se-
ries A, 339:87–103, April 1992. Issue 1652, Mech-
anized Reasoning and Hardware Design.

[2] Gérard Berry and Georges Gonthier. The Esterel
synchronous programming language: Design, se-
mantics, implementation. 19(2):87–152, Novem-
ber 1992.

[3] Valérie Bertin, Michel Poize, and Jacques Pu-
lou. Une nouvelle méthode de compilation pour
le language ESTEREL [A new method for com-
piling the Esterel language]. In Proceedings of
GRAISyHM-AAA., Lille, France, March 1999.

[4] Stephen A. Edwards. An Esterel compiler for
large control-dominated systems. IEEE Trans-
actions on Computer-Aided Design of Integrated
Circuits and Systems, 21(2):169–183, February
2002.

[5] Bill Lin. Efficient compilation of process-based
concurrent programs without run-time schedul-
ing. In Proceedings of Design, Automation, and
Test in Europe (DATE), pages 211–217, Paris,
France, February 1998.

[6] Barbara Simons and Jeanne Ferrante. An efficient
algorithm for constructing a control flow graph
for parallel code. Technical Report TR–03.465,
IBM, Santa Teresa Laboratory, San Jose, Califor-
nia, February 1993.

[7] Bjarne Steensgaard. Sequentializing program de-
pendence graphs for irreducible programs. Tech-
nical Report MSR-TR-93-14, Microsoft, October
1993.

[8] Daniel Weil, Valérie Bertin, Etienne Closse, ,
Michel Poize, Patrick Venier, and Jacques Pu-
lou. Efficient compilation of Esterel for real-time
embedded systems. In Proceedings of the Inter-
national Conference on Compilers, Architecture,
and Synthesis for Embedded Systems (CASES),
pages 2–8, San Jose, California, November 2000.

6


