
Michael E. Locasto
Department of Computer Science

Fu Foundation of Engineering and Applied Science
Columbia University

locasto@cs.columbia.edu

Abstract
As the cost of both networking and producing

powerful embedded devices drops, collections of these highly
specialized and heterogeneous platforms will proliferate. These
networks will face security threats and suffer traditional hardware
failure. Failure of embedded devices is undesirable because these
devices often perform critical functions and are difficult to take
offline and upgrade. Networks of embedded devices require a
method to accomplish functional survivability of essential
computations in a hostile or volatile environment.

This paper presents a protocol and describes an
implementation for migrating essential computations from failed
devices. An essential computation is a device's primary algorithmic
functionality. This migration is accomplished by specifying both
an Area Controller (AC), which contains definitions for every
essential computation, and a number of proxy agents, which
periodically send the AC update statements. The AC and proxy
agents negotiate the specifics of process migration when the AC
has determined that a device has failed.

The implementation of this protocol in a network of
embedded devices is a crucial step toward fault tolerance and
survivability in networks of embedded devices. The protocol can
also be applied to networks that do not involve embedded systems.

Keywords
Fault tolerance, embedded systems, process migration,

network availability, survivability, security protocols

Introduction
Even though the dedicated efforts of hardware and

software engineers have enabled computing devices to become
more or less reliable appliances, there are many domains where any
failure (either malicious or arbitrary) of a computing device is
completely unacceptable. In the non-embedded domain, many
organizations devote scads of money and countless human-hours to
assuring that their web services systems remain in a
High-Availability (HA) state. The amount of hardware, software,
networking, and management in such systems is staggering, if not
overwhelming.

We can observe how much effort is put into serving
web pages, and then consider the extreme requirements for
networks of embedded devices needed to fly airplanes, perform
health monitoring in hospitals, and control nuclear power facilities.
As embedded devices are networked together, not only do they face
traditional failures, but also the growing legion of threats made
possible by a networked environment.

Fault tolerance and survivability of computer systems
and networks is often addressed by both replication of critical
services (distributed databases, server clusters), and redundancy
(UPS, dual network connections). Traditionally, work has been
done to guarantee some level of service by the system or network in
the presence of attack, failure, or high load [10].

The protocol presented in this paper continues this
theme by precisely specifying the steps necessary for ensuring that
an essential computation can be migrated to a target device based
on some optional policy specification. The result of ensuring that
an essential computation may be migrated is the continued
execution of critical algorithms in the network.

The protocol presented in this paper continues this
theme by precisely specifying the steps necessary for ensuring that
an essential computation can be migrated to a target device based
on some optional policy specification. The result of ensuring that
an essential computation may be migrated is the continued
execution of critical algorithms in the network.

1. Related Work
The impetus for this work is detailed in Keromytis, et

al [2], which describes an ambitious and detailed plan to design
programming languages, policy languages and
compliance-checking mechanisms, and dynamic update
mechanisms to meet the challenges presented by survivability in
embedded network environments.

Faults in and failures of computing devices have long
been an area of concern for computing professionals. The design of
this protocol involves three areas of computer science: embedded
systems, process migration and distributed computation, and
network survivability.

1.1 Embedded Systems
Designing embedded systems to be robust is a

difficult and time consuming process because of the extreme
constraints involved in the available hardware environment.
Embedded systems have more extreme power, heat, speed, and
space requirements than ordinary computer hardware [2]. In
addition, Edwards et al [9] note that most design of embedded
systems was done on an ad hoc basis as recently as five years ago,
with little or no formal specification or proof of correctness.
Edwards et al [9] have written a detailed analysis and presentation
of formal methods for specifying, validating, and synthesizing
reactive real-time embedded systems. Their approach identifies
"management of both design complexity and system heterogeneity
as the key problem." It is clear that heterogeneity is a necessary
challenge in embedded systems, and any work done for embedded
systems networks would do well to adopt the approaches detailed
in their paper.

1.2 Process Migration
Process migration is a technique that has been studied

for some time with the intent of providing load balancing for
clusters of servers or workstations. Some work [4] had suggested
that process migration added too much overhead in general for the
anticipated benefits, but Downey and Harchol-Balter [1] refuted
this claim and presented several common environments in which
process migration is largely beneficial. Process migration is well
suited to clusters of computers and is most famously implemented
as part of the MOSIX [3,14] distributed operating system software.

The Charlotte system is another environment for
process migration research. Charlotte is built with the goal of
ensuring that the migration completes successfully. Artsy and
Finkel [12] provide both a succinct overview of process migration
theory and some performance characteristics related to Charlotte.

The technique of process migration is often compared
with remote execution, which is presented as a lower-cost
alternative. However, process migration offers true continuity of
service, whereas failure of a device providing remote execution
services necessitates the availability of a complete replica -
something that is not always practical in an embedded
environment. Typical remote execution mechanisms are RPC, Java
RMI, and CORBA. These mechanisms rely on a local proxy to call

functions on a server over the network, rather than actually moving
a process.

Protocol For Code Exchange In Survivable Embedded Systems

The technique of process migration is often compared
with remote execution, which is presented as a lower-cost
alternative. However, process migration offers true continuity of
service, whereas failure of a device providing remote execution
services necessitates the availability of a complete replica -
something that is not always practical in an embedded
environment. Typical remote execution mechanisms are RPC, Java
RMI, and CORBA. These mechanisms rely on a local proxy to call

functions on a server over the network, rather than actually moving
a process.

Dynamic updates of software is a complex operation.
Hicks [7] points to Smith [5] as an excellent review of process
migration techniques. Hicks also describes the notion of state
transfer as a process of automatically encoding current process
information and details the difficulties involved with the
checkpointing technique. The primary difficulty in state transfer is
twofold: the target may not understand the state format, and some
essential state may be hidden by the operating system of the
original machine [7].

The initial version of the PCXSES protocol assumes
that with a common virtual machine in the embedded network,
state translation is not required. In addition, all interesting state
information can be captured in the values of an object's instance
data members, much like serialization of Java objects. However, the
protocol does not limit what can be considered state; actually
determining what state is important and translating it are left to the
implementation.

On the other hand, heterogeneous process migration, as
addressed in Smith and Hutchinson [8] does not make the
assumption that all devices share a common runtime platform.
Smith and Hutchinson [8] give a very precise analysis of the
requirements for designing a process migration protocol. Future
versions of PCXSES will address the issues raised by a
heterogeneous network.

1.3 Network Survivability
The threat model for computer networks is

significantly different from the threat model for a standalone
system. Networks are vulnerable to a wide variety of attacks, and
the technical report by Ellison et al [10] provides a very complete
overview of modern network survivability. Fault tolerance and
network survivability are two areas of network security that attempt
to research and respectively address Byzantine [6] and malicious
failures in networks.

Zhang et al [13] have commented that "the
composition of most networks tends to converge on a single
technology [often from the same vendor] at each layer of the
network." This trend may boost interoperability; however, Zhang et
al [13] have suggested that homogeneity in networks presents
vulnerabilities and that survivability may be achieved through
greater heterogeneity.

The weakness of this approach is the greater challenge
in configuration and management when adding non-required
complexity to the network. However, in the OASES [2] proposal,
Keromytis et al argue that the natural heterogeneity of an embedded
network provides a high degree of redundancy. This inherent
redundancy may provide a platform for survivability. Furthermore,
we should observe that embedded networks contain many highly
specialized components that already require diverse configuration
and management.

Employing process migration in a network of
embedded devices is a highly desirable and cost effective method of
assuring the survivability of this network. The PCXSES protocol
performs this task.

2. The PCXSES Protocol
The PCXSES protocol is a straightforward series of

steps that borrows from general principles of network routing

protocols and the idea of timeouts as presented in Lamport et al [6].
The protocol has four phases:

The PCXSES protocol is a straightforward series of
steps that borrows from general principles of network routing

protocols and the idea of timeouts as presented in Lamport et al [6].
The protocol has four phases:

1. GOOD MORNING phase (walk in the door)
2. PARTY phase (continuously greet host)
3. RECOVERY phase (host gives keys to sober friend)
4. GOODBYE phase (people leave party)

The underlying idea is that the AC can stores definitions (object
code) for every process running on the devices, but needs to be
alerted to changes in state. Each device joins the network with a
GOOD MORNING message. The device then periodically updates
the AC with altered state information via a HELLO or STATE
message. Finally, if the AC has determined that a device has failed,
it will enter the RECOVERY phase with that failed device and a
target device. It will send a MORPH (Mobile Object RePlacement
Header) message to the target device. The target device does not
implicitly trust any MORPH message. Entering the RECOVERY
phase with one device does not require the AC to abandon the
PARTY phase or GOOD MORNING phase with other devices.

Figure 1: Protocol Sketch

[Client] [AC]
GMP -------- GOOD MORNING, mode -------->>
GMP <<----- GOOD MORNING, params --------
PP -------- STATE | HELLO ----------------->> (no ack)
RP <<---- MORPH (# obj, #bytes/obj, ctrl sigs -----
RP <-------- object def #1 --------------
RP <-------- object def #2 --------------
RP <-------- object def #n --------------
RP ---------- MORPH (ack) --------------->>

GBP --------------- GOODBYE ------------>>
GBP <<------------- GOODBYE -----------

2.1 Protocol Phases

2.1.1 Good Morning Phase
This phase allows a device to join the federation or

network by contacting the AC. Thus, the AC does not have to poll
the network and solicit new devices for their connectivity
information.

2.1.2 Party Phase
In the party phase, each device sends notifications to

the AC that the device is still alive. The device may also send
updated state information as part of the notification or as part of a
different message.

2.1.3 Recovery Phase
Naturally, the RECOVERY phase is the most

interesting. [details of recovery phase...]

2.1.4 Goodbye Phase
This phase allows the protocol to terminate gracefully.

If this phase were not included in the protocol, the AC would
assume that a device had failed and being a needless Recovery
Phase. [more]

2.2 Message Formats

All messages are encapsulated in a BOTTLE object
with appropriate type identifiers. There are five types of messages:

1. GOOD_MORNING message
2. HELLO message
3. STATE message
4. MORPH message
5. GOODBYE message

The GOOD_MORNING message is used by the client to notify the
AC of its existence and to negotiate parameters to be used in the
rest of the protocol. The HELLO message is used to notify the AC
that the device is still active, and may be used to pass state
information. The STATE message is an optional message used to
pass state information. Providing the option of separating state
from the HELLO message is a performance enhancement; it also
provides the device programmer more control over network traffic.
The MORPH message is used to migrate a process to a target
device and acknowledge that the migration has successfully
completed. Finally, the GOODBYE message offers a graceful
mechanism for a device to notify the AC that it has left the network
and does not need to be "recovered."
[specific format of messages here]

3. Results
The protocol proof of concept and development

environment was implemented using the Java 1.4.1 platform. The
AreaController was hosted on a dual Xeon 2.0 GHz RedHat Linux
platform with 1 gigabytes of RAM. The host machine had a
number of other processes running, and it is anticipated that the
protocol does not require such firepower to perform in a reasonable
manner. Test devices were hosted on weaker workstations and some
network cluster machines, running a variety of Microsoft Windows
and Solaris operating systems. Of course, future testing will be
performed on smaller devices and embedded platforms.

Three important results are the realization of additional
requirements for survivable networks of embedded systems: the
development of a clear, concise, and powerful policy language, the
need to recognize and prevent "failure chaining", and the need to
detect Byzantine failure, perhaps through some peer-based
mechanism.

The protocol functions as anticipated and the table
below details some test processes that were successfully migrated.
In addition, the graph displays some measurements of the time it
took to migrate the different processes. The protocol adds no
significant amount of lag. In addition, the protocol adds only a
medium amount of network traffic and should scale through X # of
nodes.

4. Conclusions and Future Work
The PCXSES protocol is a first general solution to the

problem of process migration and fault tolerance in embedded
networks. Successive transformation of the protocol for
performance and security is anticipated. Most notably, a
challenge-response protocol will be integrated into the GOOD
MORNING phase.

In addition, since the protocol currently assumes a
common virtual machine layer on each device (to simplify the
restart of processes), the protocol will be adjusted to account for
different hardware targets. Perhaps standardization of lifecycle

methods (in addition to saving state variables) can help achieve
some level of granularity by presenting well-known hooks into
object code, thus making transfer of a program counter unnecessary.

In addition, since the protocol currently assumes a
common virtual machine layer on each device (to simplify the
restart of processes), the protocol will be adjusted to account for
different hardware targets. Perhaps standardization of lifecycle

methods (in addition to saving state variables) can help achieve
some level of granularity by presenting well-known hooks into
object code, thus making transfer of a program counter unnecessary.

5. References

[1] Allen Downey and Mor Harchol-Balter. "A note on
'The Limited Performance Benefits of Migrating Active
Processes for Load Sharing'," University of California at
Berkeley Technical Report. UCB/CSD-95-888,
November 1995

[2] A. Keromytis, S. Edwards, V. Prevelakis, and M.
Hicks. TC: Open and Survivable Embedded Systems
(OASES). NSF Grant Proposal and Project Summary.
2002.

[3] Barak A. and La'adan O., The MOSIX Multicomputer
Operating System for High Performance Cluster
Computing , Journal of Future Generation Computer
Systems, Vol. 13, No. 4-5, pp. 361-372, March 1998.

[4] D. Eager and E. Lazowska and J. Zahorjan: The
Limited Performance Benefits of Migrating Active
Processes for Load Sharing. In Conf. on Measurement
& Modelling of Comp. Syst., (ACM SIGMETRICS), May
1988, pages 63--72.

[5] J. M. Smith. A Survey of Process Migration
Mechanisms. ACM Operating Systems Review, SIGOPS,
22(3): 28-40, 1988.

[6] L. Lamport, R. Shostak, and M. Pease. The Byzantine
Generals Problem. ACM Transactions on Programming
Languages and Systems, Vol. 4, No. 3, July 1982, Pages
382-401.

[7] M. Hicks. Dynamic Software Updating. PhD thesis,
Department of Computer and Information Science,
University of Pennsylvania, August 2001.

[8] P. Smith and N. C. Hutchinson. Heterogeneous
Process Migration: The Tui System. Software - Practice
and Experience 28(6): 611-639, 1998.

[9] S. Edwards, L. Lavagno, E. Lee, and A.
Sangiovanni-Vincentelli. Design of Embedded Systems:
Formal Models, Validation, and Synthesis. Proceedings
of the IEEE 85(3): 366-390, March 1997.

[10] R.J. Ellison, D. Fisher, R.C. Linger, H.F. Lipson, T.
Longstaff, and N. R. Mead. Survivable Network
Systems: An Emerging Discipline (CMU/SEI-97-TR-013)
Pittsburgh, PA: Software Engineering Institute,
Carnegie Mellon University, 1997.

[11] W. Du and M. J. Atallah. Secure Multi-Party
Computation Problems and Their Applications: A Review

and Open Problems. In Proceedings of the New Security
Paradigms Workshop, pages 13-22, Cloudcroft, New
Mexico, 2001.

[11] W. Du and M. J. Atallah. Secure Multi-Party
Computation Problems and Their Applications: A Review

and Open Problems. In Proceedings of the New Security
Paradigms Workshop, pages 13-22, Cloudcroft, New
Mexico, 2001.

[12] Y. Artsy and R. Finkel. Designing a Process
Migration Facility: The Charlotte Experience. IEEE
Computer 22(9): 47-56, September 1989.

[13] Y. Zhang, H. Vin, L. Alvisi, W. Lee, and S. K. Dao.
Heterogeneous Networking: A New Survivability
Paradigm. In Proceedings of the New Security Paradigms
Workshop, pages 33-39, Cloudcroft, New Mexico,
2001.

[14] http://www.mosix.org/ The official MOSIX website.

