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Abstract  
The performance of compiled Esterel code is sub-optimal. 
Faster simulation of Esterel programs is needed.  This paper 
presents a high-performance compiled event driven simulator 
for the Esterel language.    
 
The main contribution is the scheduling of events at run-time; 
contrasting other Esterel compilers, which scheduled at 
compile-time.  Only a portion of the Esterel language is 
implemented, but it is a large enough portion to decisively 
demonstrate the advantages and potential of using compiled 
event-driven simulation for the Esterel language.  
 
Einsterel is able to simulate Esterel code faster Berry’s V5 
compiler.  The speed increase is in the range of 21% to 171%, 
and the executable code size is slightly smaller.  Our compile 
time is significantly longer.  However, future work will be able 
to reduce it. 
 
Introduction  
 
We propose a new compiler for Esterel language, called 
Einsterel.  It is the first compiled event-driven simulator that 
schedules events at run-time for the Esterel language. 
 
 Some aspects of EVCF (Event-Driven Conditional-Free) 
simulation, introduced by Maurer [1], are used for performance 
gains. EVCF offers improved performance over other event-
driven simulation techniques, by avoiding loops and 
conditionals.  Instead of having a type code for each node it has 
a list of function addresses. This is used to distinguish the node 
type. The function addresses are branched to directly using 
computed goto’s.  This avoids the decoding of the type code 
and the overhead of function calls [1].  
 
Edwards [2] wrote ESUIF, an open Esterel compiler built on 
the SUIF 2 system. The ESUIF front-end builds a very high-
level abstract syntax-tree-like representation of the source 
Esterel program [2]. This is stored in SUIF format.  Because 
the front-end is separate, it allows for different compilation 
paths, making it a good front-end for Einsterel, as well.  The 
SUIF is then used as input to Einsterel, which produces 
autonomous C code.  
 
Being event-driven enables Einsterel to skip work on threads 
that are waiting for a signal, as they do not have to be 
scheduled until that signal changes.  For blocks of code that are 

not being exercised, Einsterel will do essentially no work.  The 
work by Bertin, et al [3] and any statically scheduled compilers 
suffer from wasting time on code that does not need to be run. 
 
All of Esterel’s kernel statements are implemented in Einsterel 
with the exception of trap and exit.  This includes:  nothing, 
emit, present, loop, “;”, pause, suspend/when, and “||”.  The 
derived statement, await, is also implemented in its simple 
form as well as the Boolean operations (and, or, not). 
 
Event Graph Structure 
The event graph for Einsterel is called EinGraph.  It consists of 
an array of EinNode’s.  An EinNode consists of an array of 
fan-ins and fan-outs, two integers giving the number of fan-ins 
and fan-outs, an integer storing the level, and a pointer to the 
address of a label.  Fan-ins are inputs to a node; they are used 
to calculate its next value.  The expression (A or B) would 
create a node of type “or” with fan-ins of nodes A and B. Fan-
outs indicate which nodes a node can schedule.  If a node “D” 
has a fan-in of “C” it does not imply that “C” has “D” as a fan-
out.  The “present” node in (present A then emit B) would have 
the “emit” as its fan-out, and A as its fan-in.  However A would 
not have a fan-out of “present” and emit would not have a fan-

in of “present”.  This is because A cannot schedule the 
“present” and emit once scheduled doesn’t care about 
“present’s” value.  Figure 1 shows an EinNode. 
 
Building the Event Graph 
 
To further ESUIF, its pass on SUIF that decomposes the SUIF 
into Esterel code was used as a skeleton for constructing 
Einsgraph.  As ESUIF’s print code passes over the SUIF, 
Einsterel constructs and inserts the nodes into EinGraph.  The 
fan-ins and fan-outs are also assigned during this process.  
When this pass on the SUIF is complete the levelization can 
occur because all nodal relationships have been resolved.  The 
levelizing algorithm is as follows: 

struct EinNode   
{   
  int numFanIns ; 
  int numFanOuts ; 
  int level ;   
  int *fanIns ;    
  int *fanOuts ; 
  void *pFunc ; 
} ; 
Figure 1:  EinNode 
 



 

 
 
There are some special cases that are not shown in the above 
figures.  Some nodes, such as pause, have fan-outs in a lower 
level than themselves.  When a node has a fan-out in a lower, 
level it means it schedules that fan-out for the next cycle.  
These fan-outs should not be moved to a higher level, and thus, 
are treated specially.   
 
Event Wheel Structure 
 
The event wheel is implemented as a two dimensional array.  
Each level in the array has space allocated only for the number 
of nodes that reside in that level.  Accompanying the wheel are 
two arrays used for managing the wheel.  The first, 
inWheel[nodeNumber], marks if the node is currently present 
in the wheel. The Second, numSched[levelNumber], tells the 
number of nodes scheduled in a level, and thus, doubles as a 
pointer to the last node in the level.  Figure 4 shows the wheel 
structure loaded in an example state. 

 
 
 
Using this structure gives a significant performance advantage 
over a using a link list for each level.  Memory doesn’t need to 
be constantly allocated and deallocated when adding and 
deleting nodes from the wheel, and fewer operations are 

performed. An insertion of a node consists of two assignments 
and an addition. Only one assignment and a decrement are 
necessary for deletion of a node.  Testing if a node is scheduled 
consists only of checking the value of inWheel[nodeNumber].  
Finally the label pointer points to the address of the code that 
evaluates the node.  Insertion and deletion of a node are shown 
in figures 5 and 6.   

 
 
Scheduling and Running 
 
The simulation of a cycle starts with the primary inputs being 
driven from <stdin>.  A cycle is defined as one iteration over 
the wheel, and begins when a semicolon is received from 
<stdin>.  If an input is driven with a different value then it had 
been driven with in the previous cycle, then its value is 
updated, and its fan-outs are scheduled.  Then, each level in the 
wheel is iterated over; for each node in a wheel level, its new 
value is calculated.  If this new value is different than the last 
cycle’s value, then its fan-outs are scheduled.   
 
The new value of a node is calculated by calling a node’s 
“function”.  To avoid the overhead of a function call for 
evaluating every scheduled node, we use indirect goto’s.  To 
get the new value of a node, the code residing at the address 
pointed to by funcLabel is jumped to. This “function” sets a 
shared variable with the new value, and then jumps back.  This 
is especially helpful because for most nodes the number of 
instructions run to calculate it’s new value is very small and 
thus the function calls would largely dominate the evaluation 
time 
 

 
The scheduling algorithm discussed up to this point does not 
cover all node types.  For these types, extra work must be done.  
The scheduling code assumes that if the new value of a node is 
the same as the old value, the node need not be scheduled.  

changed=1; 
while someone’s level has changed 
    changed=0; 
    for every node 
      for every fanout of this node 
        FixLevel(parents_level*);    
Figure 2: Levelizing Algorithm 
* - Exceptions exist. 

highest_level_seen = parents_level 
for each fanin 
    if fanin_level > highest level_seen 
        highest_level_seen = fanin_level 
endfor 
if highest_level_seen >= my_level 
    my_level = highest_level_seen + 1 
    changed=1; 
Figure 3: FixLevel(parents_level)  

numScheduled[level]--;  
inWheel[nodeNumber] = 0; 
Figure 6:   Deleting a node from the wheel 

for each level in the wheel  
  while there are nodes scheduled in this level then 
    for each node in this level 
      delete it from the wheel 
      goto (its evaluation code) and set eval 
      if (eval != last cycle’s eval) then 
        schedule it’s unscheduled fan-outs 
Figure 7:  Basic simulation algorithm 
 

 
Figure 4. Loaded Event Wheel 

numScheduled[level]++;  
wheel[level][numScheduled[level]]=nodeNumber; 
inWheel[nodeNumber] = 1; 
Figure 5:  Inserting a node to the wheel 
 



While this works very well for logic gates, it does not cover the 
behavior of all Esterel statements.   
 
Furthermore some nodes require the ability to schedule nodes 
in the next cycle.  Allowing a node to schedule other nodes in a 
level less than its own accomplishes this.  A node that is 
scheduled in a level less than the current level is thus being 
scheduled in a level that was already processed this cycle. As 
such, it will not be evaluated until the following cycle.   
 
By creating a reschedule buffer, the ability for nodes to 
schedule themselves for the following cycle is also added.  If a 
node needs to be rescheduled, its evaluation code pushes it into 
the reschedule buffer.  When a level is done being processed, 
any nodes in the reschedule buffer get pushed back into the 
level, where they will be waiting until next cycle.   
 
Nodes may not schedule nodes, other than themselves, in their 
own level. The levelizing code makes this ability unnecessary.  
If a node needs to schedule a fan-out in the current cycle, the 
fan-out is guaranteed to reside in a higher level.  If it needs to 
schedule a fan-out in the next cycle, it is guaranteed to be in a 
lower level.  Two examples will be explained to illustrate this. 
 
Pause is a node requiring the ability to schedule another node 
in the next cycle.  A pause is broken down into a pause1 node 
and a pause2 node.  When a pause1 is scheduled, it schedules 
its pause2 into a level below its own. The next cycle the pause2 
schedules the statement following the original pause in the 
Esterel code.   This makes that branch of the event graph pause 
here and continue the following cycle. 
 
Await nodes are also composed of 2 nodes (await1 and await2).  

Await1, when scheduled, simply schedules the await2 into a 
level below itself.  The await2 is what checks the await 
condition, needs to be able to reschedule themselves.  The 
algorithm for this is simple.  If an await2 evaluates to false, 
then it reschedules itself using the reschedule buffer, so it can 
check the condition again next cycle.  If it evaluates to true, 
then it is done waiting, and does not schedule itself; instead, its 
fan-outs will be scheduled.   
 
Figure 8 gives a cycle-by-cycle analysis of the scheduling of a 
loop containing an emit and two pauses.  
 
Synthesizing C 
Einsterel produces C code broken up into two main sections.  
The first section builds the compiled simulator’s EinGraph by 
looping over the compiler’s EinGraph.  The event wheel and 
EinNode’s get declared and initialized. 
 
The simulation kernel is the second part of the generated C.  
The Esterel input file does not affect the simulation code or the 
“functions” for evaluating the nodes.  This code is simply 
printed out at the end of the target C. 
 
Comments are also outputted in the resulting code, and debug 
flags are included as preprocessor directives, but are turned off 
by default.  This allows someone to recompile the code in 
“trace mode”, allowing the user to see what code actually gets 
exercised, and to watch the scheduling process.  This makes its 
easier for others to understand the inner workings of the 
scheduler, and makes for a more open compiler.  Since trace 
code is “hidden” by preprocessor directives, it has no affect on 
normal performance. 
 

 
Figure 8 :  Running a sample program cycle-by-cycle 



Results  
 
Figure 9 shows the percentage speed increase of Einsterel over 
Berry’s v5 compiler.  The testbench consists of 34 programs of 
varying size and parallelism.  Two trends can be observed by 
examining this chart.  The first demonstrates that Einsterel’s 
performance advantage grows as the number of cycles run 
increases.  This is due to Einsterel having a larger start up time 
then v5, and as the programs runs this initial load-time 
becomes less important. 
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Figure 9 
 
The second trend is that Einsterel’s performance advantage 
grows as the number of inputs driven shrinks.  This can be seen 
by looking at the results for 100,000 cycles.  On average, when 
a program is run with large number of inputs driven most 
cycles, we are 83% faster.  However, when only a few inputs 
are driven on most of the cycles, we are 120% faster.  This 
jump is explained by the fact that Einsterel is event driven; this 
speed increase was expected to be seen in the results.  When 
few inputs are driven, less of the Esterel code is exercised.  
Einsterel will not spend time doing anything to code whose 
inputs have not changed, v5 will.  Thus, the less of the code 
structure that is exercised the more the performance gap will be 
apparent.  Since most code spends the majority of its time in 
same segments, this is to Einsterel’s advantage. 
 
Figure 10 isolates the situations just described.  Programs 
100_g1 and 100_g2 are examples of code where most nodes 
will be scheduled every cycle.  This contrasts 10_15, which has 
15 concurrent threads, of which, only a small fraction run each 
cycle.  One clearly sees the advantage of being event driven for 
programs where only small sections run at a time. 
 
It also important to note that even for the programs where most 
of the code is exercised, Einsterel is still usually faster.  This is 

also shown in Figure 10; even 100_g1 and 100_g2 show 
Einsterel being quicker. 
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Figure 10 
 
Conclusions and Future Work 
 
This paper has presented a way to compile Esterel into a 
compiled event-driven simulator.  It has demonstrated that 
event-driven simulation is both a feasible and efficient method 
of simulating Esterel code.  The performance advantage over 
Berry’s v5 compiler was clearly shown. 
 
Compile time is one issue that must be handled; currently, 
compiling an Esterel file with Einsterel will take an order of 
magnitude longer than with Berry’s v5.  This is due to the way 
we initialize the data structures in the outputted C code.  It is 
overly verbose, making up the vast majority of the resulting C 
file.  The bottleneck in the compile process is the C compiler 
(g++) processing the initialization code.   
 
Additional future work involves implementing the full 
functionality of Esterel.  One of the challenges involved in that 
is creating an efficient algorithm for handling trap/exit.  It is 
nontrivial, because it involves unscheduling nodes from the 
event wheel.  To implement this, the trap/exit needs to know 
who to unscheduled, and who to leave alone.  Tradeoffs may 
have to be made between making the common case fast and 
reducing the timing penalty of handling an exit for a trap. 
 
Performance can be improved even further, with additional 
compile-time analysis; presents with only one condition can be 
treated separate from presents with multiple conditions, as you 
do not need to loop over your fan-ins if you have only one 
condition.  Boolean/expression nodes can be collapsed into one 
node, to avoid the overhead of extra scheduling.  Currently 
expressions are a series of binary/unary expression nodes.  An 
optimizing pass can be added to collapse those nodes into a 
smaller number of nodes. 
 



Lastly, work needs to be done on the detection of illegal cycles 
and instantaneous loops.  Part of this analysis will most likely 
be done during the levelization process, and the rest may 
require a separate pass.  Currently, the compiler assumes any 
code passed to it is valid code.   
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