
Einsterel: A Dynamically Scheduled Compiled Event-Driven
Simulator for Esterel

Michael O’Malley Halas Vimal M. Kapadia

 Columbia University Columbia University
 IBM IBM

Abstract
The performance of compiled Esterel code is sub-optimal.
Faster simulation of Esterel programs is needed. This paper
presents a high-performance compiled event driven simulator
for the Esterel language.

The main contribution is the scheduling of events at run-time;
contrasting other Esterel compilers, which scheduled at
compile-time. Only a portion of the Esterel language is
implemented, but it is a large enough portion to decisively
demonstrate the advantages and potential of using compiled
event-driven simulation for the Esterel language.

Einsterel is able to simulate Esterel code faster Berry’s V5
compiler. The speed increase is in the range of 21% to 171%,
and the executable code size is slightly smaller. Our compile
time is significantly longer. However, future work will be able
to reduce it.

Introduction

We propose a new compiler for Esterel language, called
Einsterel. It is the first compiled event-driven simulator that
schedules events at run-time for the Esterel language.

 Some aspects of EVCF (Event-Driven Conditional-Free)
simulation, introduced by Maurer [1], are used for performance
gains. EVCF offers improved performance over other event-
driven simulation techniques, by avoiding loops and
conditionals. Instead of having a type code for each node it has
a list of function addresses. This is used to distinguish the node
type. The function addresses are branched to directly using
computed goto’s. This avoids the decoding of the type code
and the overhead of function calls [1].

Edwards [2] wrote ESUIF, an open Esterel compiler built on
the SUIF 2 system. The ESUIF front-end builds a very high-
level abstract syntax-tree-like representation of the source
Esterel program [2]. This is stored in SUIF format. Because
the front-end is separate, it allows for different compilation
paths, making it a good front-end for Einsterel, as well. The
SUIF is then used as input to Einsterel, which produces
autonomous C code.

Being event-driven enables Einsterel to skip work on threads
that are waiting for a signal, as they do not have to be
scheduled until that signal changes. For blocks of code that are

not being exercised, Einsterel will do essentially no work. The
work by Bertin, et al [3] and any statically scheduled compilers
suffer from wasting time on code that does not need to be run.

All of Esterel’s kernel statements are implemented in Einsterel
with the exception of trap and exit. This includes: nothing,
emit, present, loop, “;”, pause, suspend/when, and “||”. The
derived statement, await, is also implemented in its simple
form as well as the Boolean operations (and, or, not).

Event Graph Structure
The event graph for Einsterel is called EinGraph. It consists of
an array of EinNode’s. An EinNode consists of an array of
fan-ins and fan-outs, two integers giving the number of fan-ins
and fan-outs, an integer storing the level, and a pointer to the
address of a label. Fan-ins are inputs to a node; they are used
to calculate its next value. The expression (A or B) would
create a node of type “or” with fan-ins of nodes A and B. Fan-
outs indicate which nodes a node can schedule. If a node “D”
has a fan-in of “C” it does not imply that “C” has “D” as a fan-
out. The “present” node in (present A then emit B) would have
the “emit” as its fan-out, and A as its fan-in. However A would
not have a fan-out of “present” and emit would not have a fan-

in of “present”. This is because A cannot schedule the
“present” and emit once scheduled doesn’t care about
“present’s” value. Figure 1 shows an EinNode.

Building the Event Graph

To further ESUIF, its pass on SUIF that decomposes the SUIF
into Esterel code was used as a skeleton for constructing
Einsgraph. As ESUIF’s print code passes over the SUIF,
Einsterel constructs and inserts the nodes into EinGraph. The
fan-ins and fan-outs are also assigned during this process.
When this pass on the SUIF is complete the levelization can
occur because all nodal relationships have been resolved. The
levelizing algorithm is as follows:

struct EinNode
{
 int numFanIns ;
 int numFanOuts ;
 int level ;
 int *fanIns ;
 int *fanOuts ;
 void *pFunc ;
} ;
Figure 1: EinNode

There are some special cases that are not shown in the above
figures. Some nodes, such as pause, have fan-outs in a lower
level than themselves. When a node has a fan-out in a lower,
level it means it schedules that fan-out for the next cycle.
These fan-outs should not be moved to a higher level, and thus,
are treated specially.

Event Wheel Structure

The event wheel is implemented as a two dimensional array.
Each level in the array has space allocated only for the number
of nodes that reside in that level. Accompanying the wheel are
two arrays used for managing the wheel. The first,
inWheel[nodeNumber], marks if the node is currently present
in the wheel. The Second, numSched[levelNumber], tells the
number of nodes scheduled in a level, and thus, doubles as a
pointer to the last node in the level. Figure 4 shows the wheel
structure loaded in an example state.

Using this structure gives a significant performance advantage
over a using a link list for each level. Memory doesn’t need to
be constantly allocated and deallocated when adding and
deleting nodes from the wheel, and fewer operations are

performed. An insertion of a node consists of two assignments
and an addition. Only one assignment and a decrement are
necessary for deletion of a node. Testing if a node is scheduled
consists only of checking the value of inWheel[nodeNumber].
Finally the label pointer points to the address of the code that
evaluates the node. Insertion and deletion of a node are shown
in figures 5 and 6.

Scheduling and Running

The simulation of a cycle starts with the primary inputs being
driven from <stdin>. A cycle is defined as one iteration over
the wheel, and begins when a semicolon is received from
<stdin>. If an input is driven with a different value then it had
been driven with in the previous cycle, then its value is
updated, and its fan-outs are scheduled. Then, each level in the
wheel is iterated over; for each node in a wheel level, its new
value is calculated. If this new value is different than the last
cycle’s value, then its fan-outs are scheduled.

The new value of a node is calculated by calling a node’s
“function”. To avoid the overhead of a function call for
evaluating every scheduled node, we use indirect goto’s. To
get the new value of a node, the code residing at the address
pointed to by funcLabel is jumped to. This “function” sets a
shared variable with the new value, and then jumps back. This
is especially helpful because for most nodes the number of
instructions run to calculate it’s new value is very small and
thus the function calls would largely dominate the evaluation
time

The scheduling algorithm discussed up to this point does not
cover all node types. For these types, extra work must be done.
The scheduling code assumes that if the new value of a node is
the same as the old value, the node need not be scheduled.

changed=1;
while someone’s level has changed
 changed=0;
 for every node
 for every fanout of this node
 FixLevel(parents_level*);
Figure 2: Levelizing Algorithm
* - Exceptions exist.

highest_level_seen = parents_level
for each fanin
 if fanin_level > highest level_seen
 highest_level_seen = fanin_level
endfor
if highest_level_seen >= my_level
 my_level = highest_level_seen + 1
 changed=1;
Figure 3: FixLevel(parents_level)

numScheduled[level]--;
inWheel[nodeNumber] = 0;
Figure 6: Deleting a node from the wheel

for each level in the wheel
 while there are nodes scheduled in this level then
 for each node in this level
 delete it from the wheel
 goto (its evaluation code) and set eval
 if (eval != last cycle’s eval) then
 schedule it’s unscheduled fan-outs
Figure 7: Basic simulation algorithm

Figure 4. Loaded Event Wheel

numScheduled[level]++;
wheel[level][numScheduled[level]]=nodeNumber;
inWheel[nodeNumber] = 1;
Figure 5: Inserting a node to the wheel

While this works very well for logic gates, it does not cover the
behavior of all Esterel statements.

Furthermore some nodes require the ability to schedule nodes
in the next cycle. Allowing a node to schedule other nodes in a
level less than its own accomplishes this. A node that is
scheduled in a level less than the current level is thus being
scheduled in a level that was already processed this cycle. As
such, it will not be evaluated until the following cycle.

By creating a reschedule buffer, the ability for nodes to
schedule themselves for the following cycle is also added. If a
node needs to be rescheduled, its evaluation code pushes it into
the reschedule buffer. When a level is done being processed,
any nodes in the reschedule buffer get pushed back into the
level, where they will be waiting until next cycle.

Nodes may not schedule nodes, other than themselves, in their
own level. The levelizing code makes this ability unnecessary.
If a node needs to schedule a fan-out in the current cycle, the
fan-out is guaranteed to reside in a higher level. If it needs to
schedule a fan-out in the next cycle, it is guaranteed to be in a
lower level. Two examples will be explained to illustrate this.

Pause is a node requiring the ability to schedule another node
in the next cycle. A pause is broken down into a pause1 node
and a pause2 node. When a pause1 is scheduled, it schedules
its pause2 into a level below its own. The next cycle the pause2
schedules the statement following the original pause in the
Esterel code. This makes that branch of the event graph pause
here and continue the following cycle.

Await nodes are also composed of 2 nodes (await1 and await2).

Await1, when scheduled, simply schedules the await2 into a
level below itself. The await2 is what checks the await
condition, needs to be able to reschedule themselves. The
algorithm for this is simple. If an await2 evaluates to false,
then it reschedules itself using the reschedule buffer, so it can
check the condition again next cycle. If it evaluates to true,
then it is done waiting, and does not schedule itself; instead, its
fan-outs will be scheduled.

Figure 8 gives a cycle-by-cycle analysis of the scheduling of a
loop containing an emit and two pauses.

Synthesizing C
Einsterel produces C code broken up into two main sections.
The first section builds the compiled simulator’s EinGraph by
looping over the compiler’s EinGraph. The event wheel and
EinNode’s get declared and initialized.

The simulation kernel is the second part of the generated C.
The Esterel input file does not affect the simulation code or the
“functions” for evaluating the nodes. This code is simply
printed out at the end of the target C.

Comments are also outputted in the resulting code, and debug
flags are included as preprocessor directives, but are turned off
by default. This allows someone to recompile the code in
“trace mode”, allowing the user to see what code actually gets
exercised, and to watch the scheduling process. This makes its
easier for others to understand the inner workings of the
scheduler, and makes for a more open compiler. Since trace
code is “hidden” by preprocessor directives, it has no affect on
normal performance.

Figure 8 : Running a sample program cycle-by-cycle

Results

Figure 9 shows the percentage speed increase of Einsterel over
Berry’s v5 compiler. The testbench consists of 34 programs of
varying size and parallelism. Two trends can be observed by
examining this chart. The first demonstrates that Einsterel’s
performance advantage grows as the number of cycles run
increases. This is due to Einsterel having a larger start up time
then v5, and as the programs runs this initial load-time
becomes less important.

0%

20%

40%

60%

80%

100%

120%

%
 s

pe
ed

 u
p

10
00

 c
yc

le
s

10
00

0
cy

cl
es

10
00

00
 c

yc
le

s

10
00

 c
yc

le
s

10
00

0
cy

cl
es

10
00

00
 c

yc
le

s

10
00

 c
yc

le
s

10
00

0
cy

cl
es

10
00

00
 c

yc
le

s

None A lot Few

Bias number of inputs towards

Figure 9

The second trend is that Einsterel’s performance advantage
grows as the number of inputs driven shrinks. This can be seen
by looking at the results for 100,000 cycles. On average, when
a program is run with large number of inputs driven most
cycles, we are 83% faster. However, when only a few inputs
are driven on most of the cycles, we are 120% faster. This
jump is explained by the fact that Einsterel is event driven; this
speed increase was expected to be seen in the results. When
few inputs are driven, less of the Esterel code is exercised.
Einsterel will not spend time doing anything to code whose
inputs have not changed, v5 will. Thus, the less of the code
structure that is exercised the more the performance gap will be
apparent. Since most code spends the majority of its time in
same segments, this is to Einsterel’s advantage.

Figure 10 isolates the situations just described. Programs
100_g1 and 100_g2 are examples of code where most nodes
will be scheduled every cycle. This contrasts 10_15, which has
15 concurrent threads, of which, only a small fraction run each
cycle. One clearly sees the advantage of being event driven for
programs where only small sections run at a time.

It also important to note that even for the programs where most
of the code is exercised, Einsterel is still usually faster. This is

also shown in Figure 10; even 100_g1 and 100_g2 show
Einsterel being quicker.

0%

50%

100%

150%

200%

250%

300%

%
 S

pe
ed

 In
cr

ea
se

10
0_

g1

10
0_

g2

10
_1

5

10
0_

g1

10
0_

g2

10
_1

5

10
0_

g1

10
0_

g2

10
_1

5

None Alot Few

Figure 10

Conclusions and Future Work

This paper has presented a way to compile Esterel into a
compiled event-driven simulator. It has demonstrated that
event-driven simulation is both a feasible and efficient method
of simulating Esterel code. The performance advantage over
Berry’s v5 compiler was clearly shown.

Compile time is one issue that must be handled; currently,
compiling an Esterel file with Einsterel will take an order of
magnitude longer than with Berry’s v5. This is due to the way
we initialize the data structures in the outputted C code. It is
overly verbose, making up the vast majority of the resulting C
file. The bottleneck in the compile process is the C compiler
(g++) processing the initialization code.

Additional future work involves implementing the full
functionality of Esterel. One of the challenges involved in that
is creating an efficient algorithm for handling trap/exit. It is
nontrivial, because it involves unscheduling nodes from the
event wheel. To implement this, the trap/exit needs to know
who to unscheduled, and who to leave alone. Tradeoffs may
have to be made between making the common case fast and
reducing the timing penalty of handling an exit for a trap.

Performance can be improved even further, with additional
compile-time analysis; presents with only one condition can be
treated separate from presents with multiple conditions, as you
do not need to loop over your fan-ins if you have only one
condition. Boolean/expression nodes can be collapsed into one
node, to avoid the overhead of extra scheduling. Currently
expressions are a series of binary/unary expression nodes. An
optimizing pass can be added to collapse those nodes into a
smaller number of nodes.

Lastly, work needs to be done on the detection of illegal cycles
and instantaneous loops. Part of this analysis will most likely
be done during the levelization process, and the rest may
require a separate pass. Currently, the compiler assumes any
code passed to it is valid code.

References
1. Peter M. Maurer: Event Driven Simulation Without Loops or
Conditionals. ICCAD 2000: 23-26
2. Stephen A. Edwards, “ESUIF: An Open Esterel Compiler in
Proceedings of Synchronous Languages, Applications, and
Programming (SLAP),” Electronic Notes in Theoretical
Computer Science (ENTCS) 65(5), April 2002
3. BERTIN, V., POIZE, M., AND PULOU, J. 1999. Une
nouvellem´ethode de compilation pour le language ESTEREL
[A new method for compiling the Esterel language]. In
Proceedings of GRAISyHM-AAA. (Lille, France, March
1999).

