The Synchronous Language erel
COMS W4995-02

Prof. Stephen A. Edwards
Fall 2002
Columbia University
Departmen Science

a )




The Esterel Language

Developed by Gérard Berry
starting 1983

Originally for robotics applicat/i/eﬁé
Imperative, textual Ianguagé”

Synchronous model of time like
that in digital circuits

Concurrent

Deterministic




A Simple Example

The specification:

The output O should occur wh
have both arrived. The R input should restart this
behavior.




A First Try: An FSM

\
\
\
\
\
|
|
|
|
|
|
AJ /
\ /ﬁ‘
—




The Esterel Version

nodul e ABRO < Esterel programs
| nput A B, R

5 \ built from modules
out put Q I
P Ea?lvmodule has an |nterfa§

| oop of input and output signals
[ await A || await B ];
emt O

each R

end nodul e

d T~
P N

Much simpler since language includes notions of signals,
waiting, and reset. \ |

‘\ \\\ | ///
|

. _
~ | -




The Esterel

Version

nmodul e ABRO
| nput A B, R
out put O

| oop
[ await A ||
emt O
each R

end nodul e

loop...each statement
implements reset

e NG

await waits for the

awal t Bq;/ next cycle where
its signal is presen

N || runs the two awaits

B
7\

/ ~in paraﬁr\
: \

~

~r




The Esterel Version

nodul e ABRO
| nput A B, R
out put O

_— —

| oop

Parallel terﬁﬁatﬁs when
/ all its threads ha
| await A || await B ];

emt O / \
each R / \

\

end nodul e

it O makes signal O present
when it runs |




Basic Ideas of Esterel

Imperative, textual language
Concurrent

Based on synchronous model of time:

* Program execution synchronlzed to an external clock\\@_

e Like synchronous dlgltal logic

e Suits the cyclic executive approach

Two types of statements

e Combinational statements WhICh take “zero time”
(execute and terminate |n same instant, e. g., emit)

e Sequential statements, Whlch delay one or more

cycles (e.qg., \awalt)




Uses of Esterel

Wristwatch

\
\
|
|
|
|
|
|
|
|
/
/
/’
/
/
/

e Canonical example —
* Reactive, synchronous, hard real-time

Controllers, e.g., for communication protocols

Avionics |

* Fuel control system

e ™~

e Landing gear cﬁoller \

\

e Other user mterface tasks \

Processor components (cache ontroller etc)

/

/




Advantages of Esterel

Model of time gives programmer precise timing control
Concurrency convenient for specifying control systems

Completely deterministic |

e Guaranteed: no need for locks, semaphores, etc.
Finite-state language

e Easy to analyze P

e Execution time predl/ ctable \

e Much easier to verify formally

Amenable to both hardware and@goftware implementrati/él

N




Disadvantages of Esterel

Finite-state nature of the language limits flexibility
* No dynamic memory allocation
* No dynamic creation of p/mé’ésses

Little support for handling déta; limited to simple
decision-dominated controllers

Synchronous model of time can lead to overspecification
\

Semantic challenges:
e Avoiding causallty V|olat|ons often dlffICU|t
 Difficult to compile |

Limited number of users, tools, etc.




Esterel’s Model of Time

The standard CS model (e.g., Java’s) is asynchronous:
threads run at their own rate. Synch/r{onizatienis \th\rough
calls to wait() and notify(). :

Esterel’s model of time is synchronous like that used in

hardware. Threads march in lockstep to a global clock.
: : : : : : > Time

yd | \\\ | |

VR Clock tick




Signals

Esterel programs communicate through signals

These are like wires T

e N
~ .

\\\

Each signal is either present pr/ ébsent In each cycle
Can’t take multiple values y(//ithin a cycle
Presence/absence not he'/ld between cycles
Broadcast across the prdgram

NG

Any process can rega” or erte a S|gnal \

~
///




Basic Esterel Statements

emt S
Make signal S present in the current cycle
A signal is absent unless emitted in that cycle.
pause /
Stop for this cycle and r/esume In the next.

present S then s; él/zseszi\e nd

Run s; immediately if signal S is prée\w In the curren
cycle, otherwise run so \

(o




Simple Example

nodul e Exanpl el:
out put A, B, C

emt A
present A then
emt B
end;
pause;
emt C

end nodul e




Signal Coherence Rules

Each signal is only present or absent in a cycle,never bo
All writers run before any readersdo
Thus

present A el se

emt A /
end

. |
IS an erroneous program. (Deadlocks.)

The Esterel compile/{jeqts this progr}r\

/
/

—
-




Advantage of Synchrony

Easy to regulate time

Synchronization is free (e.g., no Bakers ‘algorithm) N
Speed of actual computatlon /ﬂéarly uncontrollable \
Allows function and tlmlng/to be specified independently
Makes for deterministic cdncurrency \

Explicit control of “before” “after” “at the same time”

et ~

-




Time Can Be Controlled

This guarantees every 60th S an M is emitted
every 60 S do
emyt S~ everyi okes its body eve\/@th S
end emt takes no time (cycles)
S S s,ff \\\\
M M
1 59 ﬁ({ 61 12& |




The || Operator

Groups of statements separated || by run concurrently
and terminate when all groups have terminated

emt A, pause; emt B;

|
pause; emt C, pause; emt D
. |

enit E

|
A B
C




pause; emt A, pause;

pause; present A then emt B end

]

- |

A A | \
B

I I
| | >




Bidirectional Communi

Processes can communicate back and forth in the same
cycle I

[
pause; emt A
present
pause; emt

7 \\
; | pause; present A then em —B end |
A A \\\ \ /
B / \
C /’/ \\\
—i —>
B | —
\ /



Concurrency and Determi

Signals are the only way for concurrent processes to
communicate L

Esterel does have variables, 941 they cannot be shared\
Signal coherence rules ensﬂre deterministic behavior

Language semantics clearly defines who must
communicate with whom when
|

-




The Awalit Statement

The await statement waits for a particular cycle await S
waits for the next cycle in which S is present

emt A ; pause ; se;, emt A

Iawait A emt B
A A
B




The Awalit Statement

Awalit normally waits for a cycle before beginning to check
awai t i mmedi at e also checks the initial cycle
L _
emt A ; pause ; pause; emt A
|
awai t i nmrediate A, emt B \
A A ‘\‘ - - //
3 | |
—t—t—
\
\
| |
\\ . \//, o
\ /




Loops

Esterel has an infinite loop statement
Rule: loop body cannot terminate instantly
Needs at least one pause, await, etc.
Can’t do an infinite amount of work in a single cycle

| oop
emt A, pause; @use emt B
end —

A A g/ A \
N

N J //
. | o




Loops and Synchroniza

|
|
\

Instantaneous nature of loops plus await provide very

powerful synchronization mechanisms
| oop
awalt 60 S
emt M
end / \
S S S S S
M
| | \ —
1 59 120
|
B | —
| /
\ /




B 0
D 0
D 0
D 0
PreemptiOn B 0
I

Often want to stop doing something and start doing

something else e
E.g., Ctrl-C in Unix: stop the currently-running m\

Esterel has many constructs for handling preemption




The Abort Statement

Basic preemption mechanism

General form:

abort
statement
when condition

Runs statement to comp;/etion. If condition ever holds,
abort terminates immediately. |
ey




The Abort Statement

A Normal Termination
abort C -
pause, —
ause; .
gm’ t A B / Aborted termﬁon
V\hen B’ ] (;: /I ] \\
emt C ' T 1 >
B Aborted termination:;
c emit A preempted

B not checked
in first cycle
-~ (like await

>

P/ A \Normal Termination
/ \ /

,’/"



Strong vs. Weak Preemptio

Strong preemption:

e The body does not run when the preemptlon
conditionholds /

e The previous example’//i"’l/lustrated strong preemption
Weak preemption:

 The body is allowed to run even when the
preemptloncondltmn holds but is ter\mlnated
thereafter /

\\\ \\\ ///
\ \\ /

e “weak abort”implementé\mis in Esterel

| \ |
| N |
| h |
| ~

|

S | rd




Strong vs. Weak Abort

Strong abort
emit A does not run

abort
pause;
pause;
emt A
pause

when B;

emt C

Weak abort

emit Aruns

ak abort
pause;
pause;

/ emt A

pause
when B;

O © >

—




Strong vs. Weak Pree

Important distinction

Something may not cause its own

Erroneous

abort weak abort
pause; emt A | pause; emt A

when A  when A




The Trap Statement

Esterel provides an exception facility for weak preemption
Interacts nicely with concurrency

Rule: outermost trap takes precedence




The Trap Statement

trap T iIn
[
pause;
emt A
pause;
exit T
|
awal t B:;
emt C
]
end trap;
emt D

Second process

A D
A
B
C L
A B
C
I

Normal termination
from first process

Emit C also runs \

™S
NN

allowed to run
evemg h /

\

first process

has exited
|

~— | -
S~ i —

//’J



Nested Traps

trap T1 in
trap T2 In

[
exit T1

|
exit T2

]
end:
emt A
end:
emt B

Outer trap takes

precedence; control
transferred directly to t
uter trap statement.

em t Anot allowed to run.




The Suspend Statement

Preemption (abort, trap) terminate something, but what i
you want to resume it later? L

_ ~_
- .

Like the unix Ctrl-Z /
Esterel's suspend statement pauses the execution of a

group of statements

Only strong preemption: statement does not run when
condition holds L —

—




The Suspend Statement

suspend
| oop
enit A pause; pause
end
when B
A A B A B A

\
\
\
|
|
|
|
|
Y |
|
/
|
/r‘
/

//\B prevents A
| from being emitted he
resumed next cycle

re;

1/

\
\
\

delays emission
of A by one cycle

~_ _—

,,,,,77777777 f P
/

\ /
\ /




Causality

Unfortunate side-effect of instantaneous communication
coupled with the single valued signal rule

Easy to write contradictory prgg’féms, e.g.,

present A else emt A end
abort pause; emt A when A

present A then not hi ng end; emt A

These sorts of programs are eIroneous: ﬂ;he Esterel
compiler refuses to complle them \

\\
\\
AN
AN
N
N




Causality

Can be very complicated because of instantaneous
communication I

_— T~
— ™~

For example, this is also erroneous

abort o
pause; _ Emission of B
emt B« Indirectly causes
when A emission of A
pause; \

present B then emt

/ \




Causality

Definition has evolved since first version of the language

Original Compiler had COncept of "pOtentials”

Static concept: at a particula/r/ﬁ?ogram point, which
signals could be emitted alp”hg any path from that point

Latest definition based on “constructive causality”

Dynamic concept: whether there’s a “guess-free proof”

that concludes a signal is absent




Causality Example

Red statements

emt A

’ / .
present B’then emm end; / reachable
present A else enmit B end; T

Considered erroneous undemh/e original compiler
-

After emit A runs, there’s a/static path to emit B Therefor
the value of B cannot be ecided yet

Execution procedure deadlocks: program is bad

7\ .

////

\
e ] \\\




Causality Example

emt A Red statements

present B then enit C end; /" reachable
present A else enmit B end;, N

\\\

Considered acceptable to th/e/étest compiler

After emit A runs, it is clea,r/that B cannot be emitted
because A’s presence runs the “then” branch of the

second present

B declared absent, bo/th/*rzesentsté“t\em\ents run

/
\

%
~ — :

\\
\
\
N\

N

. | P
L S

S | rd




Compiling Esterel

Semantics of the language are formally defined and
deterministic [

_— T

It is the responsibility of the compiler to ensure the
generated executable behaves correctly w.r.t. the
semantics

Challenging for Esterel




Compilation Challenges

e Concurrency
* Interaction between exceptions and concurrency
* Preemption /
 Resumption (pause, a&?&ait, etc.)
e Checking causality
|
e Reincarnation T

Loop restriction pr vents most statement\from executing
more than once ina cycle\

//

Complex mteractlon betweengncurrency, traps and loops
allows certain statements to ex cute twice or more

///




Automata-Based Compilati

Key insight: Esterel is a finite-state language

Each state Is a set of program counter values where the
program has paused between ﬁycles

Signals are not part of thes/e states because they do not
hold their values between ‘cycles

Esterel has variables, but these are not considered part of
the state




loop
emit A;
await C;
emit B;
pause
end




emit A;

emit B;

await C;

emit D;

present E then
emit B

end

case O:




Automata Compilation Consid

Very fast code (Internal signaling can be compiled away)

Can generate a lot of code because concurrency can
cause exponential state growth

n-state machine |nteract|ng~W|th another n-state machine -
can produce n? states

Language provides input constraints for reducing states

“these inputs are mutually excluswe
relatlonA#B#C |

* “if this input arrives, this one does, t00”
relation D => E |




Automata Compilation

Not practical for large programs

Theoretically interesting, but don't
longer than 1000 lines

for mos grams

slower code

All other techniques produ




Netlist-Based Compilatio

Key insight: Esterel programs can be translated into
Boolean logic circuits L

//// \\\\
~ ~

Netlist-based compiler: n/
Translate each statement into a small number of logic

gates, a straightforward, rﬁechanical process

Generate code that simulates the netlist
|

//T/ ~
e I

/ \ \
\
\
\
\
\
/ \ :
/ \
/
/
/




Netlist Example

emt AL emt B await C
emt D present E then emt B end

/// \\\

Entry

V7

/// i
| O




Netlist Compilation Considere

Scales very well
e Netlist generation roughly linear in program size
* Generated code roughly linear in program size
Good framework for analyzirtg causality
e Semantics of netlists straightforward

e Constructive reasonlng equivalent to three-valued
simulation |

Terribly inefficient code
e Lots of time wasted computlng |rrelevant values

e Can be hundreds of time slower than automata

e Little use of condrtronals



Netlist Compilation

Currently the only solution for large programs that appear
to have causality problems JENSE—

Scalability attractive for industrial users

Currently the most widely-used technigue




Control-Flow Graph-Based

Key insight: Esterel looks like a imperative language, so
treat it as such e

// \\

Esterel has a fairly natural traoslatlon into a concurrent
control-flow graph

///

Trick is simulating the concurrency

Concurrent instructions in most Esterel programs can be
. |
scheduled statically o

,//T *‘\

Use this schedule tO/bund code with exph(nt context

\

switches in it




Overview

every R do
loop
await A,;
emit B;
present C then
emit D end;
pause
end
[
loop
present B then
emit C end;
pause
end
end

Esterel
Source

if (sl >>1)
sl = 3
el se {

if ((sO & 3) == 1) {
if (S {

/S:‘l =1 s2 =
2

} else

1, s1 = 1;

if ((s3 &3) == 1) {

s3 = 2;
} else {

t3 = L2;
}

C code

t3 = LI1;




Translate every

every R do
loop
await A,
emit B;
present C then
emit D end;
pause
end
||
loop
present B then
emit C end;
pause
end
end




Add Threads

every R do
loop
await A,
emit B;
present C then
emit D end;
pause
end
|
loop
present B then
emit C end;
pause
end
end




Split at Pauses

every R do
loop
await A,
emit B;
present C then
emit D end;
pause
end
||
loop
present B then
emit C end;
pause
end S s=1
end

=

)




Add Code Between Pau

every R do
loop .
await A;
emit B;
present C then
emit D end, |
pause / \
end
| | e |
loop |
present B thg/ \ /
emit C end; |
pause /
end
end |
\



Translate Second Thread

every R do
loop
await A;
emit B;
present C then
emit D end,;
pause
end

loop | [B)
present B the’r/
emit C end \

pause
end

end




Finished Translating

every R do

loop
await A,
emit B;
present C then

emit D end,;

pause

end

loop

emit C end;
pause ”
end
end

|

|

|

| - —
N\

present B then




Add Dependencies and Sch

every R do
loop
await A;
emit B;
present C then
emit D end,;
pause |
end
loop
present B then
emit C end;
pause ”
end
end




Run First Node




Run First Part of Left Thread = —




Context Switch

t=0




Run Right Thread




Context Switch




Finish Left Thread




Completed Example




Control-flow Approach Considere

.[

Scales as well as the netlist compiler, but produces much
faster code, almost as fast as automata

Not an easy framework for checking causality

Static scheduling requirement more restrictive than netlist
compiler

This compiler rejects some programs the others accept

Only implementation hiding within Synopsys’ CoCentric
System Studio. Will probably never be used industrially.

See my recent IEEE Transactions on Computer-Aided
Design paper for details



S

What To Understand About Esterel

Synchronous model of time
* Time divided into sequence of discrete instants

* Instructions either run an/d/’términate in the
sameinstant or explicitly in later instants

|dea of signals and broadcast

e “Variables” that take exactly one value each instant
and don't persist -

e Coherence rule: all writers run before any readers
Causality Issues

e Contradictory programs

 How Esterel decides whether a program is correct



What To Understand Ab

Compilation techniques

|
|
|
|
|
|
|
|
/
/ﬁ
/

\\

Automata: Fast code, Doesn’t scal

Netlists: Scales well, Slow code, Good for causality

Control-flow: Scales well, Fast code, Bad at causality




