
A Domain-Specific Language for Device Drivers

Christopher Conway

30 October 2002

1 Introduction

Device drivers have been noted as a major source of
faults in operating system code [2]. Largely for ef-
ficiency, device drivers and other systems code have
historically been written in low-level languages like
C. Unfortunately, these languages do not provide the
type safety and robustness one would expect in crit-
ical systems code. Work has been done to augment
the type safety of low-level languages [3, 6], but the
efficacy of this work is limited by both fundamental
and practical concerns.

In this paper, I will describe a domain-specific
language and compiler for network interface device
drivers. The language has been used to implement a
driver for NE2000 network cards, a widely available
class of inexpensive LAN adaptors. The language in-
cludes direct support for the operational semantics of
device drivers and provides a high level of type safety.
Concurrency semantics are included for the descrip-
tion of devices with multiple independent operational
units.

Though the language has been built for and tested
on network drivers, it is flexible enough to describe a
wider class of drivers. The compiler is also designed
to be readily ported to a wider class of operating
systems.

2 Related Work

A variety of approaches have been suggested to im-
prove the reliability of low-level software and de-
vice driver software in particular. Crary and Morris-
sett propose a typed assembly language (TAL) as a
compiler target for preserving type information from
higher-level languages [3]. Unfortunately, the most
common systems programming language, C, is not
much more strongly typed than a traditional assem-
bly language and there is little the compiler can do
to improve the type safety of C code.

Deline and Fähndrich use a similar typing system
in the C-like programming language, VAULT [4]. The
use of variables is controlled through type guards

which describe when an operation on a variable is
valid. In order for the compile to accept the pro-
gram, it must respect the type guards’ access specifi-
cations and types must match at program join points.
VAULT is not a domain-specific language, but its re-
strictive type system means it is not fully general
either—the use of alias types results in a loss of type
safety. The difficulty and lack of flexibility in pro-
gramming VAULT may prevent its wide adoption in
systems programming.

A more practical approach is static analysis of tra-
ditional C systems code. Ball and Rajamani devel-
oped a system, SLAM, that is currently in use in
the Microsoft Windows group [1]. SLAM operates
on a specification for correct behavior developed sep-
arately from the driver code. The result is very good
error detection at compile time for the properties cap-
tured by the specification. However, the analysis can
be slow and may take many iterations to complete.
In addition, the types of errors that may be detected
are restricted in principle, and limited as well by the
correctness of the behavior specification.

A group at the University of Rennes has done
work on domain-specific languages for device drivers.
Thibault, et al., developed GAL, a domain-specific
language for X Windows video drivers [7]. The
project combines a partial evaluation framework with
a language tailored to video driver operations to pro-
duce driver code that is nearly 90% smaller than the
equivalent C code and just as fast. This work is
promising, but the methodology may not be appli-
cable to device drivers as a whole.

Mérillon, et al., also of the University of Rennes,
designed a more general solution for device driver de-
velopment: the Devil interface definition language [5].
A Devil specification describes entities exposed for
interaction with a hardware device (e.g., I/O ports,
memory-mapped registers). The specification is com-
piled into a C module for manipulating the device, al-
lowing the driver programmer to write to a clean API
and avoid writing low-level code. This approach pre-
vents certain common low-level programming errors,
but it does not fully specify the protocol for using the

1



device, and it does not provide the type safety of a
higher-level solution.

References

[1] T. Ball and S. K. Rajamani. The SLAM project:
Debugging system software via static analysis. In
Symposium on Principles of Programming Lan-
guages, pages 1–3, Portland, Oregon, January
2002. ACM SIGPLAN-SIGACT.

[2] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. R.
Engler. An empirical study of operating system
errors. In Proceedings of the 18th ACM Sympo-
sium on Operating Systems Principles, pages 73–
88, Banff, Alberta, Canada, October 2001. ACM.

[3] K. Crary and G. Morrisett. Type structure for
low-level programming languages. In Interna-
tional Colloquium on Automata, Languages, and
Programming 1999, volume 1644 of Lecture Notes
in Computer Science, pages 40–54, Prague, Czech
Republic, July 1999. Springer Verlag.

[4] R. DeLine and M. Fähndrich. Enforcing high-level
protocols in low-level software. In Proceedings of
the ACM Conference on Programming Language
Design and Implementation, pages 59–69, Snow-
bird, Utah, June 2001. ACM SIGPLAN.

[5] F. Mérillon, L. Réveillère, C. Consel, R. Marlet,
and G. Muller. Devil: An IDL for hardware pro-
gramming. In Proceedings of the 4th USENIX
Symposium on Operating System Design and Im-
plementation, pages 17–30, San Diego, California,
October 2000. USENIX.

[6] G. Morrisett. Type checking systems code. In Eu-
ropean Symposium on Programming, volume 2305
of Lecture Notes on Computer Science, pages 1–5,
Grenoble, France, April 2002. Springer Verlag.

[7] S. Thibault, R. Marlet, and C. Consel.
Domain-specific languages: from design to
implementation–application to video device
drivers generation. IEEE Transactions on
Software Engineering, 25(3):363–377, May-June
1999.

2


