
COMS W4115
Programming Languages and Translators

Programming Assignment 4: MIPS Tiger Compiler

Prof. Stephen A. Edwards Assigned April 17th 25th, 2002
Columbia University Due 11:59 PM on May 6th, 2002

For this assignment, you will be adding code to the
classes for the interpreter’s intermediate format that
translates it intoMIPS assembly code. To test your out-
put, you will execute thisMIPS assembly code on the
SPIM simulator. When you complete this assignment,
you will have a fully working Tiger compiler.

In the last assignment, you translated theAST you created in
the first assignment and tested in the second assignment into in-
structions for a virtual machine whose instructions knew how to
interpret themselves. In this assignment, you will write code that
translates each of those instructions intoMIPS assembly code
that can run on theSPIM simulator.

The quickest way to learn about theMIPS architecture is to
read through James Larus’s Appendix A of Patterson and Hen-
nessey’sComputer Organization and Design, second edition.
I’ve put aPDF version of this appendix at~cs4115/spim.pdf.

Your main challenge in this assignment is writing themips()
method for classes that represent instructions and operands that
returns a string containingMIPS instructions that implement the
instruction. For example, the Binop method should generate a
MIPS add instruction when it represents an addition instruction.

We will be generating slow but correctMIPS code. A good
compiler would try to use as many registers as possible and
only access memory when absolutely necessary. We, by con-
trast, will keep most information in memory (i.e., on the stack),
and only use registers as temporary scratchpads. This choice
makes it much easier to generate code, but would be an unac-
ceptable choice in a production compiler.

"Hello World" for the SPIM simulator

.data

st1:

.asciiz "Hello, World!\n"

.text

.globl main

main:

li $v0, 4 # Code for print_str

la $a0, st1 # Load address of string constant

syscall

li $v0, 10 # Code for exit

syscall # Terminate the program

Figure 1: “Hello World” inMIPS assembly code forSPIM.

We will not use theMIPS calling conventions of putting the
first four arguments in registers (see Appendix A of CO&D),
but instead pass them on the stack as we did with the interpreter.

1 Getting Started

I’ve installed theSPIM simulator and put the “Hello World” pro-
gram in~cs4115/prog4/hello-world.s. You can invoke the
text-mode simulator as follows:

$ cp -r ~cs4115/prog4 .
$ cd prog4
$ ~cs4115/bin/spim -file hello-world.s
SPIM Version 6.4a of January 12, 2002
Copyright 1990-2002 by James R. Larus.
All Rights Reserved.
See the file README for a full copyright notice.
Loaded: /u/4/c/cs4115/lib/trap.handler
Hello, World!

The xspim command (also in~cs4115/bin) is a graphi-
cal version of the same simulator that you might find easier
to use. It continually displays the state of the registers as well
as disassembled code near the program counter. Single-stepping
through code is usually a very good way to figure out what does
and does not work.

Page A-51 in Appendix A lists assembly directives. In Hello
World, the .data directive says the string constant is to be
placed in the data segment; similarly, the.text directive puts
code in the text segment. These directives can be interleaved.

The .globl directive marks its argument as being a global
label, one that is visible to other files.SPIM insists themain
label—the start of the program—be global.

Labels, such asst1 andmain start at the beginning of the
line and terminate with a colon. Note that all labels must be
unique, something the interpreter didn’t require (the names were
“just for show”). Callingnew Interp.Label() automatically
generates a unique label.

2 Generating Code

The MIPS processor has thirty-two “general-purpose” registers,
listed in Figure 2. Your code should probably restrict itself to us-
ing $t0–$t9, $zero, sp, andfp. We will not be using$a0–
$a3 for function arguments; these will be passed on the stack.
Similarly,$v0–$v1 will not be used to return a function’s value.

1

$zero 0 Hardwired constant 0
$at 1 Reserved for assembler
$v0–$v1 2–3 Temporaries & function return value
$a0–$a3 4–7 Function arguments
$t0–$t7 8–15 Temporaries not preserved across call
$s0–$s7 16–23 Temporaries you must preserve across calls
$t8–$t9 24–25 Temporaries not preserved across call
$k0–$k1 26–27 Reserved for OS Kernel
$gp 28 Pointer to global area
$sp 29 Stack Pointer
$fp 30 Frame Pointer
$ra 31 Function return address

Figure 2:M IPS registers.

8($fp) “fp(-2)”
4($fp) “fp(-1)”
0($fp) Return address

-4($fp) Static Link
-8($fp) Saved frame pointer

-12($fp) “fp(0)”
-16($fp) “fp(1)”

Figure 3: Activation Record Layout

Figure 3 shows the layout of the activation record. The func-
tion return address, static link, and previous frame pointer are
stored at the beginning of the activation record followed by the
actual data fields. Understanding this layout is critical for gen-
erating code forjsr andrts instructions, which must save and
restore this state properly. I’ve written the code for these two
instructions for you.

The MIPS only has one “complex” addressing mode: regis-
ter plus immediate offset, so the more complicated addressing
modes such asStackLinks must be simulated through addi-
tional instructions. For example, loading an operand such as
2*fp(3) into $v0 becomes the code sequence

mov $v0, $fp
lw $v0, -4($v0)
lw $v0, -4($v0)
lw $v0, -24($v0)

This first loads the current frame pointer into register$v0,
then follows the static link twice. Finally, it reads field 3, which
is at offset−12−3×4 =−24.

3 Putting it together

I’ve added a new instruction, Ent, that generates code for setting
up an activation record at the beginning of a function. I’ve mod-
ified RecordInto.java to insert this instruction just after the label
at the beginning of a function. If you modified RecordInfo.java,
you will want to merge in this change.

Broadly, you need to write or complete themips() methods
for the pseudo-instructions such as Jmp, Bnz, etc. I’ve written
them for Psh, Jsr, Rts, Ent, Mov, Label, and Binop, although
Binop is incomplete.

Things you will have to do:

• Write the mips() method for the remaining statements:
Neg, Jmp, Bnz, Bz, Rec, and Arr.

Of these, Rec and Arr will be the most challenging. Use the
sbrk system call (see theSPIM documentation) to allocate
memory (you pass it the number of bytes you want, it re-
turns the starting address of your new block). With the Arr
command, you will also have to generateMIPS code that
initializes the contents of the array. This should be a simple
counted loop that can be done in registers.

• Write themipsGet() andmipsSet() code for BlockRel.
Use the code in FrameRel and StackLinks as a starting
point.

• Complete the code for Binop. It should work for most
operands, but you need to write a variant for string compar-
isons. Create a “Binopstr” class specifically for string com-
parisons and modify your translator to generate the right
instruction depending on the type of the operands for=,
etc.

• Write code for the standard library functions. I’ve done two
of these for you already (print and printi). Note that func-
tions that return new strings should use thesbrk system
call supplied bySPIM to allocate space for their results.

• Test your code. You should be able to use many of the same
test cases that you used for the third programming assign-
ment. In fact, you can compare the output of the interpreter
with the output of your compiler by runningSPIM on the
assembly you generate and comparing the results. This is
how we will test your code.

4 Deliverables

Feel free to use, modify, or ignore any of the files I give you.
Ultimately, you will only be graded on whether the simple test
programs on which we run your interpreter produce the correct
results. Make the print and printi standard library functions work
correctly.

As before, use~cs4115/bin/submit_code to submit

• All the .java files you created or modified in the Interp
package.

• All other .java files (and .class files for the parser) you use
or create, including those we gave you.

• A README file describing your compiler. I want to hear
how you dealt with

– Code for Rec and Arr

– String comparisons in Binop

– The standard library functions

• A file calledMEMBERS that contains a space-separated list
of the uni IDs of each of the members in your group.

Make sure we can build your compiler by runningANTLR on
TigerTranslate.g and thenjavac on TC.java. Your com-
piler should take a Tiger source file and print assembly code
that can be run directly onSPIM on the standard output. We do
not want a Makefile.

2

