
Programming Languages and
Translators
COMS W4115

Prof. Stephen A. Edwards
Spring 2002

Columbia University
Department of Computer Science

Instructor
Prof. Stephen A. Edwards
sedwards@cs.columbia.edu
http://www.cs.columbia.edu/˜sedwards/
462 Computer Science Building
Office Hours: 4–5 PM Monday, Wednesday

Schedule
Mondays and Wednesdays 2:40 to 3:55 PM

Room 207, Mathematics

January 23 to May 6

Midterm 1: March 13

Spring Break: March 18 and 20

Midterm 2: May 1

Objectives
Theory of language design

• Finer points of languages

• Different languages and paradigms

Practice of Compiler Construction

• Overall structure of a compiler

• Automated tools and their use

• Lexical analysis to assembly generation

Required Text

Michael L. Scott.
Programming Language
Pragmatics.
Morgan Kaufmann, 2000.

Available from Papyrus, 114th and
Broadway.

Other Text
Andrew W. Appel.
Modern Compiler Implementation in Java.
Cambridge University Press, 1998.

Describes the Tiger language, which we are compiling.
Focuses more on compilers, less on languages.

Assignments and Grading
40% Programming Project
25% Midterm 1 (near middle of term)
25% Midterm 2 (at end of term)
10% Individual homework

Prerequisite: COMS W3156
Software Engineering
Teams will build a large software system.

Makefiles and possibly version control

Testing will be as important as development.

Prerequisite:
COMS W3261 Computability
You need to understand grammars.

We will be working with regular and context-free
languages.



Prerequisite: COMS W3824
Computer Organization
You need to be able to program in MIPS assembly
language.

Your compiler will generate MIPS assembly code.

Class Website
Off my home page,
http://www.cs.columbia.edu/˜sedwards/

Contains syllabus, lecture notes, and assignments.

Schedule will be continually updated during the semester.

Programming Project
Implement a compiler for the Tiger language.

Tiger is described in Appel, but we will deviate from the
assignments there.

Compiler implemented in Java.

Some code generated by ANTLR.

Generates MIPS assembly code.

Programming assignments
1. Lexer, parser, and AST generator

2. Perform type checking (semantic analysis)

3. Translate into three-address code

4. Generate MIPS assembly

Two weeks each.

Teams
Immediately, start thinking about forming 4- or 5-person
teams to do the programming project.

Each team will build its own compiler.

Think carefully about how you will divide the work.

Testing is as important as coding.

Late Policy
Very simple:

If you turn anything in late without
the instructor’s permission, you get
no credit.

Collaboration
Collaborate with your team on the programming
assignment.

Teams may share ideas, but not code. If I find two teams
submitting similar files, both teams will receive zero credit,
may flunk the class, and I may involve the dean.

Homework is to be done by yourself.

Tests: Will be closed book.

Topics
Syntax, Parsing, and ASTs

Names, Types, and Scopes

Control-flow and subroutines

Code generation

Functional and logic programming

Concurrency

Scripting languages

Types of Programming Langauges
The world does not revolve around Java.

Imperative langauges

Object-oriented languages

Functional languages

Logic languages

Dataflow langauges



Imperative (von Neumann) Languages
What you are familiar with. e.g., C

int gcd(int a, int b)

{

while (a != b) {

if (a > b) a -= b;

else b -= a;

}

return a;

}

Imperative (von Neumann) Languages
Computation is the sequential modification of variables.

Programs are sequences of steps that evolve state.

Everything interesting has a side effect.

Again: if (a == b) goto Done

if (a < b) goto ALess

a = a - b;

goto Again

ALess: b = b - a;

goto Again

Done:

Imperative (von Neumann) Languages
Virtually every assembly language

FORTRAN

C

Pascal

Modula-2

Algol

BASIC

Object-Oriented Langauges
Refinement of the imperative approach.

Memory partitioned into objects (small regions).

Objects have methods: imperative procedures to query or
modify object state.

More disciplined than simple imperative languages.

Naturally enforce information hiding.

Currently taking over the world.

Object-Oriented Language: Smalltalk
class name Polygon

superclass Object

instance variable names OurPen

numSides

new "Create an instance"

ˆ super new getPen

getPen "Get a pen for drawing polygons"

OurPen <- Pen new defaultNib: 2

draw "Draw a polygon"

numSides timesRepeat: [OurPen go: sideLength;

turn: 360 // numSides]

Object-Oriented Languages
Simula 67

C++

Java

Modula-3

Functional Languages
Computation based on recursive definition of functions.

Function: produce a consistent result based exclusively on
their arguments.

No side-effects. Mathematically very clean.

Declarative: program defines what the function is, not how
to evaluate it.

Allows certain optimizations (e.g., laziness).

Do people think this way?

Functional Language: ML
A list of the form (m, m + 1, . . . , n):

fun op through (m,n) =

if m > n

then nil

else m :: (m+1 through n)

Calculating area:

let

pi = 3.14159;

in

pi * radius * radius

end;

Functional Languages
LISP

ML

Haskell

Erlang



Logic Languages
Computation based on propositional logic.

You declare things; program execution is an attempt to
satisfy what you declare.

Goal-directed search.

Interesting for AI-type applications.

Logic Languages: Prolog
rainy(seattle). % clause

rainy(rochester).

cold(rochester).

snowy(X) :- rainy(X) , cold(X). % implication

?- snowy(C). % query

C = rochester % response

Dataflow Languages
Computation based on exchange of data tokens among
concurrently-running processes.

Nice match for engineering diagrams.

Fundamentally concurrent.

Awkward for decisions, modes, etc.

Dataflow Language: Lustre
Module counts edges: 0→ 1 transitions on the c input.

System is a collection of expressions evaluated in
lockstep. Order from data dependencies.

node EDGECOUNT(c : bool)

returns (count : int)

let

edge = false -> (c and not pre(c));

edgecount = 0 ->

if edge then pre(edgecount) + 1

else pre(edgecount);

tel

Next Time
Structure of a Compiler

Lexical Analysis

Parsing

Syntax


