
' $

FUNCTIONAL PROGRAMMING (2)
PROF. SIMON PARSONS

& %

' $

• Last lecture I introduced functional programming using the
language HOPE.

• This allows us to write functions like:

dec map : (alpha -> beta) # list(alpha)
-> list(beta);

--- map(f, nil) <= nil;
--- map(f, x :: l) <= f(x) :: map(f, l);

• This lecture will look at the mathematical underpinning of
functional languages.

• But first we will look at some more typical things one can do
with them.

Functional Programming Lecture 2 2& %

' $

• One important property of functional languages is the way they
handle parameters.

• We are used to passing parameters using call-by-value.

• You may even have come across call-by-reference.

• Call by value is good for efficiency.

• It may, however, result in redundant computation.

• So we also consider call-by-need where arguments are passed
unevaluated and evaluated when required.

Functional Programming Lecture 2 3& %

' $

• The advantage of call-by-need is that we waste no computation.

• The disadvantage is the expense of implementation.

• In general with functional languages we distinguish between
eager and lazy evaluation.

• Eager evaluation does everything as soon as possible without
worrying whether it is useful.

• Lazy evaluation only does things when absolutely necessary.

• They roughly correspond to call-by-value and call-by-need.

Functional Programming Lecture 2 4& %

' $

• However, there is more to eagerness and laziness than just these
efficiency issues.

• Their effect permeates the whole of functional programming.

• In particular they determine what it is possible to do at the
extreme limits of the language.

• (For example, handling infinite data structures.)

• Let’s start by considering the limitations that strictness imposes
on a language.

Functional Programming Lecture 2 5& %

' $

Strictness

• The function + is strict.

• It requires that both its arguments are known before it can be
called.

• More precisely any function which requires at least one of its
arguments have known value before it can be called is strict.

• + is strict in both arguments.

• Some functions work perfectly well without being strict.

Functional Programming Lecture 2 6& %

' $

• One such is:

--- f(x, y) <= if x < 10 then x else y

• This does not always need the value of y, but does need the
value of x.

• It is thus strict in x.

• And non-strict in y.

• Thus when x < 10, we waste computation evaluating y since
there is no need to know its value.

Functional Programming Lecture 2 7& %

' $

• As an extreme, consider:

f(4, <non-terminating expression>)

• Here, an eager implementation would cause the program to fail,
whereas a lazy one would give us 4.

• Of course, this does not help us when we have:

f(<non-terminating expression>, 4)

Functional Programming Lecture 2 8& %

' $

• To see how laziness can eliminate redundant computation,
consider the function:

dec reduce : (alpha # beta -> beta)
beta # list(alpha) -> beta

--- reduce(f, b, nil) <= b;
--- reduce(f, b, x::l) <= f(x, reduce(f, b, l));

• This function takes a function as an argument and applies it to
reduce a list to a single element.

• b is what you use as an argument when you get to the end of the
list.

• Thus reduce(+, 0, L) sums the elements of L and
reduce(*, 1, L) computes their product.

Functional Programming Lecture 2 9& %

' $

• Writing b for:

lambda(el, isthere) => if isthere then true
else (1 = el)

we can use reduce(b, false, List) to test if 1 is in List.

• Consider doing this for the list [1, 3, 5, 7].

• For eager evaluation we would get:

Functional Programming Lecture 2 10& %

' $

reduce(b, false, [1, 3, 5, 7]
b(1, b(3, b(5, b(7, false))))
b(1, b(3, b(5, false)))
b(1, b(3, false))
b(1, false)
true

• If the implementation were lazy, we would get:

reduce(b, false, [1, 3, 5, 7]
b(1, b(3, b(5, b(7, false))))
true

since in this case the second argument never has to be evaluated.

Functional Programming Lecture 2 11& %

' $

Lambda calculus

• The lambda calculus is the calculus of anonymous functions.

• It provides a means of representing functions and a means of
transforming them.

• Let’s consider a very simple function:

--- double(x) <= 2 * x

• We write this in lambda notation as:

λx. ∗ 2 x

• Dropping the name anonymises the function.

• Note that we use the prefix form of the * function.

Functional Programming Lecture 2 12& %

' $

• We read this lambda expression as follows.

• The λ we read as “The function of”.

• The dot we read as “which returns”.

• So, the whole thing is:

The function of x which returns x times 2.

• Of course it is very similar to:

lambda x => 2 * x

Functional Programming Lecture 2 13& %

' $

• The x in the lambda abstraction is called the bound variable.

• This corresponds to the idea of a formal parameter.

• The bit of the lambda abstraction to the right of the dot is the
body.

• The body can be any valid lambda expression, so it can be
another lambda abstraction.

λx.λy. ∗ (+x y)2

“ The function of x which returns the function of y which returns
the sum of x and y multiplied by 2.”

Functional Programming Lecture 2 14& %

' $

• This is just the lambda calculus version of:

lambda x => lambda y => (x + y) * 2

• All lambda calculus functions have just a single argument.

• So multi-argument functions become multiple applications of
single-argument functions.

• This is known as “currying”.

• Although we should write brackets between the different
functions:

(λx.(λy. ∗ (+x y)2))

by convention we don’t.

Functional Programming Lecture 2 15& %

' $

• When we call a lambda function we place it in brackets before its
argument.

• Thus calling:
λx. ∗ 2 x

on the value 4 is done by writing:

(λx. ∗ 2 x)4

and we call:
(λx.(λy. ∗ (+x y)2))

with y as 2 and x as 3 by:

(λx.(λy. ∗ (+x y)2) 2) 3

Functional Programming Lecture 2 16& %

' $

• This is all there is to the syntax of the lambda calculus.

• The BNF is:

<exp> ::=λ<id>.<exp>|<id>
|<exp><exp>|(<exp>)|<con>

<id> ::= any identifier
<con> ::= constant

• There is a suprising amount that you can put together with such
a simple syntax.

Functional Programming Lecture 2 17& %

' $

• The syntax shows us how to build valid lambda expressions.

• But how do we evaluate them?

• We have conversion rules which do this.

• The first rule is the simplest.

• Constants evaluate to constants.

• Other functions are reduced using the δ-rules.

• These allow us to replace function applications with their values.

Functional Programming Lecture 2 18& %

' $

• For example:
+1 3 →δ 4

we read this as “+ 1 3 reduces to 4”.

• To do this we have to have the arguments of the function be
themselves already reduced.

• So we cannot directly reduce:

∗(+1 2)(−4 1)

• Instead we have to reduce each argument of the outer * first.

Functional Programming Lecture 2 19& %

' $

• So we have:

∗(+1 2)(−4 1)

→δ (+1 2)3

→δ ∗3 3

→δ 9

• This reduction then evaluates simple functions.

• To evaluate lambda abstractions we need a β-reduction

Functional Programming Lecture 2 20& %

' $

• A β-reduction replaces the value of the bound variables with the
values they are called with.

• Thus evaluating:
(λx. ∗ x x)2

we have:

(λx. ∗ x x)2 →β ∗2 2

→δ 4

• This kind of reduction might end up having to be repeated.

Functional Programming Lecture 2 21& %

' $

• For example:
((λx.λy. + x y)7)8)

will reduce as:

((λx.λy. + x y)7)8) →β (λy. + 7 y)8

→β +7 8

→δ 15

• However, we have to be careful in doing this.

Functional Programming Lecture 2 22& %

' $

• Consider:
λx.(λx.x)(+1 x)

• Here we have two distinct xs.

• There is the inner one, in the (+1 x), and the one referred to in
the outer λx.

• Thus it would be wrong to do a β-reduction for the argument 1
as:

(λx.(λx.x)(+1 x))1

→ (λx.1)(+1 1)

→ 1

Functional Programming Lecture 2 23& %

' $

• We have to be careful not to substitute inside an abstraction if the
bound variable has the same name as the variable being
substituted.

• The easiest way to do avoid this is to do α-conversion.

• This is to rename the bound variables to make them have
different names.

• The same thing as standardising variables in logic.

• Applying this to our previous example, gives:

λx.(λy.y)(+1 x)

Functional Programming Lecture 2 24& %

' $

• There is one other form of reduction

• η-reduction allows the reduction:

λx.E x →η E

if x does not occur free in E since:

(λx.E x)A

is just
E A

• This is not widely used.

• (It is a compile-time feature rather than a run-time one.)

Functional Programming Lecture 2 25& %

' $

• Sometimes we have a choice in the order we apply reductions.

• This can have a big impact on the result.

• Consider:
(λx.λy.y)((λz.z z)(λz.z z))

• Here we end up either trying to reduce:

(λz.z z)(λz.z z)

or
(λx.λy.y)((λz.z z)(λz.z z))

Functional Programming Lecture 2 26& %

' $

• If we try to reduce the first one we get:

(λz.z z)(λz.z z)

→ (λz.z z)(λz.z z)

→ (λz.z z)(λz.z z)
...

which does not terminate.

• IF we reduce the other we get:

(λx.λy.y)((λz.z z)(λz.z z))

→ λy.y

which does terminate.

• So, order matters.

Functional Programming Lecture 2 27& %

' $

• We call the expression being reduced the redex.

• Then we have:

• The leftmost redex is the one whose λ is to the left of all other
redexes in the expression.

• The rightmost is similarly defined.

• The outermost redex is a redex not contained in any other redex.

• The innermost redex is one which contains no other.

• We can then define two ways of reducing expressions.

Functional Programming Lecture 2 28& %

' $

• Applicative order reduction (AOR) says you should always reduce
the leftmost innermost redex first.

• Normative order reduction (NOR) says you should always reduce
the leftmost outermost redex first.

• So in our example,
(λz.z z)(λz.z z)

is the leftmost innermost, and

(λx.λy.y)((λz.z z)(λz.z z))

is the leftmost outermost.

Functional Programming Lecture 2 29& %

' $

• Thus AOR will try to evaluate:

(λz.z z)(λz.z z)

and so fail to terminate, while:

(λx.λy.y)((λz.z z)(λz.z z))

will be evaluated by normal order reduction and this will
terminate.

• Do not infer from this that NOR is better than AOR.

• While NOR plays safe, and avoids evaluating any expressions
until it has to, AOR is more efficient on conventional computers.

• Of course, AOR is related to eager evaluation, and NOR to lazy
evaluation.

Functional Programming Lecture 2 30& %

' $

• A lambda expression is said to be in normal form when it can be
reduced no more.

• Thus:
λy.y

is the normal form of:

(λx.λy.y)((λz.z z)(λz.z z))

• It turns out that there is something special about the normal
form, and normal order reduction.

• Basically we can use NOR to get the same normal form
expression whatever way we do the reduction.

Functional Programming Lecture 2 31& %

' $

• The Church-Rosser theorem has as a consequence:

If an expression E can be reduced in two different ways to two
normal forms, then these normal forms are the same up to
alphabetical equivalence.

• The last bit means you can change variable names to make them
identical.

• The standardization theorem says:

If an expression E has a normal form then reducing the leftmost
outermost redex at each stage in the reduction of E guarantees to
reach that normal form (up to alphabetical equivalence).

Functional Programming Lecture 2 32& %

' $

• Thus the normal form is unique.

• (Which is exactly what we want— it would be a shame if
different implementations of the same function could give us
different results.)

• We also have the diamond property for reductions.

If you can reduce E to E1 and E2 by applying any reduction
operation several times, then by applying the same operation
some more, you can reduce both E1 and E2 down to some
expression N .

Functional Programming Lecture 2 33& %

