FUNCTIONAL PROGRAMMING (2)
PROF. SIMON PARSONS
• Last lecture I introduced functional programming using the language HOPE.

• This allows us to write functions like:

 dec map : (alpha -> beta) # list(alpha)
 -> list(beta);
 --- map(f, nil) <= nil;
 --- map(f, x :: l) <= f(x) :: map(f, l);

• This lecture will look at the mathematical underpinning of functional languages.

• But first we will look at some more typical things one can do with them.
• One important property of functional languages is the way they handle parameters.
• We are used to passing parameters using call-by-value.
• You may even have come across call-by-reference.
• Call by value is good for efficiency.
• It may, however, result in redundant computation.
• So we also consider call-by-need where arguments are passed unevaluated and evaluated when required.
The advantage of call-by-need is that we waste no computation.
The disadvantage is the expense of implementation.
In general with functional languages we distinguish between *eager* and *lazy* evaluation.
Eager evaluation does everything as soon as possible without worrying whether it is useful.
Lazy evaluation only does things when absolutely necessary.
They roughly correspond to call-by-value and call-by-need.
• However, there is more to eagerness and laziness than just these efficiency issues.
• Their effect permeates the whole of functional programming.
• In particular they determine what it is possible to do at the extreme limits of the language.
• (For example, handling infinite data structures.)
• Let’s start by considering the limitations that strictness imposes on a language.
Strictness

- The function + is strict.
- It requires that both its arguments are known before it can be called.
- More precisely any function which requires at least one of its arguments have known value before it can be called is strict.
- + is strict in both arguments.
- Some functions work perfectly well without being strict.
• One such is:

 \[f(x, y) \leq \text{if } x < 10 \text{ then } x \text{ else } y \]

• This does not always need the value of \(y \), but does need the value of \(x \).

• It is thus strict in \(x \).

• And non-strict in \(y \).

• Thus when \(x < 10 \), we waste computation evaluating \(y \) since there is no need to know its value.
• As an extreme, consider:
 \[f(4, \text{<non-terminating expression>}) \]
• Here, an eager implementation would cause the program to fail, whereas a lazy one would give us 4.
• Of course, this does not help us when we have:
 \[f(\text{<non-terminating expression>}, 4) \]
To see how laziness can eliminate redundant computation, consider the function:

```haskell
dec reduce : (alpha # beta -> beta)
    # beta # list(alpha) -> beta
--- reduce(f, b, nil) <= b;
--- reduce(f, b, x::l) <= f(x, reduce(f, b, l));
```

- This function takes a function as an argument and applies it to reduce a list to a single element.
- `b` is what you use as an argument when you get to the end of the list.
- Thus `reduce(+-, 0, L)` sums the elements of `L` and `reduce(*, 1, L)` computes their product.
• Writing \(b \) for:

\[
\text{lambda}(el, \text{isthere}) \Rightarrow \text{if isthere then true}
\]

\[
\text{else (}1 = \text{el})
\]

we can use \(\text{reduce}(b, \text{false}, \text{List}) \) to test if \(1 \) is in \(\text{List} \).

• Consider doing this for the list \([1, 3, 5, 7]\).

• For eager evaluation we would get:
reduce(b, false, [1, 3, 5, 7])
b(1, b(3, b(5, b(7, false))))
b(1, b(3, b(5, false)))
b(1, b(3, false))
b(1, false)
true

- If the implementation were lazy, we would get:

reduce(b, false, [1, 3, 5, 7])
b(1, b(3, b(5, b(7, false))))
true

since in this case the second argument never has to be evaluated.
Lambda calculus

- The lambda calculus is the calculus of anonymous functions.
- It provides a means of representing functions and a means of transforming them.
- Let’s consider a very simple function:
 --- double(x) <= 2 * x
- We write this in lambda notation as:
 \[\lambda x. \ast 2 \, x \]
- Dropping the name anonymises the function.
- Note that we use the prefix form of the * function.
- We read this lambda expression as follows.
- The λ we read as “The function of”.
- The dot we read as “which returns”.
- So, the whole thing is:
 The function of \(x \) which returns \(x \) times 2.
- Of course it is very similar to:
 \[\text{lambda } x \Rightarrow 2 \times x \]
• The x in the lambda abstraction is called the bound variable.
• This corresponds to the idea of a formal parameter.
• The bit of the lambda abstraction to the right of the dot is the body.
• The body can be any valid lambda expression, so it can be another lambda abstraction.

$$\lambda x. \lambda y. * (\times y \times 2)$$

“ The function of x which returns the function of y which returns the sum of x and y multiplied by 2.”
• This is just the lambda calculus version of:
 \(\lambda x \Rightarrow \lambda y \Rightarrow (x + y) \times 2 \)

• All lambda calculus functions have just a single argument.

• So multi-argument functions become multiple applications of single-argument functions.

• This is known as “currying”.

• Although we should write brackets between the different functions:

 \((\lambda x. (\lambda y. \times (+x y)2)) \)

 by convention we don’t.
• When we call a lambda function we place it in brackets before its argument.

• Thus calling:

\[\lambda x. \ast 2 \ x \]

on the value 4 is done by writing:

\[(\lambda x. \ast 2 \ x)4 \]

and we call:

\[(\lambda x. (\lambda y. \ast (+x \ y)2)) \]

with \(y \) as 2 and \(x \) as 3 by:

\[(\lambda x. (\lambda y. \ast (+x \ y)2) \ 2) \ 3 \]
• This is all there is to the syntax of the lambda calculus.

• The BNF is:

\[
\begin{align*}
\text{<exp>} & ::= \lambda \text{id}. \text{<exp>} | \text{id} \\
& \quad | \text{<exp>\text{<exp>}} | (\text{<exp>}) | \text{<con>}
\end{align*}
\]

\[
\begin{align*}
\text{id} & ::= \text{any identifier} \\
\text{con} & ::= \text{constant}
\end{align*}
\]

• There is a surprising amount that you can put together with such a simple syntax.
• The syntax shows us how to build valid lambda expressions.
• But how do we evaluate them?
• We have conversion rules which do this.
• The first rule is the simplest.
• Constants evaluate to constants.
• Other functions are reduced using the δ-rules.
• These allow us to replace function applications with their values.
• For example:

\[+1 \ 3 \rightarrow^\delta 4 \]

we read this as "+ 1 3 reduces to 4".

• To do this we have to have the arguments of the function be themselves already reduced.

• So we cannot directly reduce:

\[*(+1 \ 2)(-4 \ 1) \]

• Instead we have to reduce each argument of the outer * first.
• So we have:

\[\ast(1 + 2)(-4 1) \]
\[\rightarrow_{\delta} (1 + 2)3 \]
\[\rightarrow_{\delta} \ast3 3 \]
\[\rightarrow_{\delta} 9 \]

• This reduction then evaluates simple functions.

• To evaluate lambda abstractions we need a \(\beta\)-reduction
• A β-reduction replaces the value of the bound variables with the values they are called with.

• Thus evaluating:

$$(\lambda x. \ast x x)2$$

we have:

$$(\lambda x. \ast x x)2 \rightarrow_\beta \ast 2 2$$

$$\rightarrow_\delta 4$$

• This kind of reduction might end up having to be repeated.
• For example:

\((\lambda x. \lambda y. + x y)7)8\)

will reduce as:

\[\begin{align*}
((\lambda x. \lambda y. + x y)7)8) & \rightarrow_\beta (\lambda y. + 7 y)8 \\
& \rightarrow_\beta +7 8 \\
& \rightarrow_\delta 15
\end{align*}\]

• However, we have to be careful in doing this.
• Consider:
 \[\lambda x. (\lambda x.x)(+1 \ x) \]

• Here we have two distinct \(x \)s.

• There is the inner one, in the \((+1 \ x)\), and the one referred to in the outer \(\lambda x \).

• Thus it would be wrong to do a \(\beta \)-reduction for the argument 1 as:

 \[
 (\lambda x. (\lambda x.x)(+1 \ x))1 \\
 \rightarrow (\lambda x.1)(+1 \ 1) \\
 \rightarrow 1
 \]
• We have to be careful not to substitute inside an abstraction if the bound variable has the same name as the variable being substituted.

• The easiest way to do avoid this is to do α-conversion.

• This is to rename the bound variables to make them have different names.

• The same thing as standardising variables in logic.

• Applying this to our previous example, gives:

$$\lambda x. (\lambda y. y)(+1 \ x)$$
• There is one other form of reduction
• η-reduction allows the reduction:

$$\lambda x.E \ x \rightarrow_\eta \ E$$

if x does not occur free in E since:

$$(\lambda x.E \ x)A$$

is just

$$E \ A$$

• This is not widely used.
• (It is a compile-time feature rather than a run-time one.)
Sometimes we have a choice in the order we apply reductions.
This can have a big impact on the result.
Consider:
\[(\lambda x.\lambda y.y)((\lambda z.z z)(\lambda z.z z))\]
Here we end up either trying to reduce:
\[(\lambda z.z z)(\lambda z.z z)\]
or
\[(\lambda x.\lambda y.y)((\lambda z.z z)(\lambda z.z z))\]
• If we try to reduce the first one we get:

\[
(\lambda z.z \ z)(\lambda z.z \ z)
\]

\[
\rightarrow (\lambda z.z \ z)(\lambda z.z \ z)
\]

\[
\rightarrow (\lambda z.z \ z)(\lambda z.z \ z)
\]

\[
\vdots
\]

which does not terminate.

• IF we reduce the other we get:

\[
(\lambda x.\lambda y.y)((\lambda z.z \ z)(\lambda z.z \ z))
\]

\[
\rightarrow \lambda y.y
\]

which does terminate.

• So, order matters.
• We call the expression being reduced the \textit{redex}.

• Then we have:

 • The \textit{leftmost} redex is the one whose λ is to the left of all other redexes in the expression.

 • The rightmost is similarly defined.

 • The \textit{outermost} redex is a redex not contained in any other redex.

 • The \textit{innermost} redex is one which contains no other.

• We can then define two ways of reducing expressions.
• **Applicative order reduction** (AOR) says you should always reduce the leftmost innermost redex first.

• **Normative order reduction** (NOR) says you should always reduce the leftmost outermost redex first.

• So in our example,

\[(\lambda z. z \ z)(\lambda z. z \ z)\]

is the leftmost innermost, and

\[(\lambda x. \lambda y. y)((\lambda z. z \ z)(\lambda z. z \ z))\]

is the leftmost outermost.
Thus AOR will try to evaluate:

\[(\lambda z. z z)(\lambda z. z z) \]

and so fail to terminate, while:

\[(\lambda x. \lambda y. y)((\lambda z. z z)(\lambda z. z z)) \]

will be evaluated by normal order reduction and this will terminate.

- Do not infer from this that NOR is better than AOR.
- While NOR plays safe, and avoids evaluating any expressions until it has to, AOR is more efficient on conventional computers.
- Of course, AOR is related to eager evaluation, and NOR to lazy evaluation.
• A lambda expression is said to be in normal form when it can be reduced no more.

• Thus:

$$\lambda y. y$$

is the normal form of:

$$(\lambda x. \lambda y. y)((\lambda z.z \ z)(\lambda z.z \ z))$$

• It turns out that there is something special about the normal form, and normal order reduction.

• Basically we can use NOR to get the same normal form expression whatever way we do the reduction.
• The Church-Rosser theorem has as a consequence:

 If an expression E can be reduced in two different ways to two normal forms, then these normal forms are the same up to alphabetical equivalence.

• The last bit means you can change variable names to make them identical.

• The standardization theorem says:

 If an expression E has a normal form then reducing the leftmost outermost redex at each stage in the reduction of E guarantees to reach that normal form (up to alphabetical equivalence).
• Thus the normal form is unique.
• (Which is exactly what we want—it would be a shame if different implementations of the same function could give us different results.)
• We also have the diamond property for reductions.

If you can reduce E to E_1 and E_2 by applying any reduction operation several times, then by applying the same operation some more, you can reduce both E_1 and E_2 down to some expression N.