FUNCTIONAL PROGRAMMING (1)
PROF. SIMON PARSONS
• Imperative programming is concerned with “how”.
• *Functional* or *applicative* programming is, by contrast, concerned with “what”.
• It is based on the mathematics of the lambda calculus (Church as opposed to Turing).
• “Programming without variables”.
• It is inherently concise, elegant, and difficult to create subtle bugs in.
The main (good) property of functional programming is referential transparency.

Every expression denotes a single value.

This value cannot be changed by evaluating an expression or by sharing it between different parts of the program.

There can be no reference to global data.

(Indeed there is no such thing as global data.)

There are no side-effects, unlike in referentially opaque languages.
program example(output)
var flag: boolean

function f(n:int): int
begin
 if flag then f:= n
 else f := 2*n
 flag := not flag
end

begin
 flag := true
 writeln(f(1) + f(2))
 writeln(f(2) + f(1))
end
• What is the output?
• Okay, so the answer is 5 followed by 4.
• This is odd since if these were mathematical functions,
 \[f(1) + f(2) = f(2) + f(1) \]
 for any \(f \).
• But this is because mathematical functions are functions only of their inputs.
• They have no memory.
• We can always tell what the value of a mathematical function will be just from its inputs.
• At the heart of the “problem” is fact that the global data flag controls the value of f.
• In particular the assignment:

\[\text{flag := not flag} \]

is the thing that gives this behaviour.
• If we eliminate assignment, we eliminate this kind of behaviour.
• Variables are no longer placeholders for values that change.
• (They are much less variable than variables in imperative programs).
Simple functional programming in HOPE

- We start with a function that squares numbers.
- In the rather odd syntax of HOPE this is:
  ```
  dec square: num -> num;
  --- square(x) <= x * x;
  ```
- Since we aren’t really interested in HOPE, we won’t explain the syntax in any great detail.
- Note though that first line includes a type definition.
• HOPE is strongly typed.
• Other functional languages aren’t typed (LISP for example).
• We call the function by:
 \[
 \text{square}(3)
 \]
• Which evaluates to \(3 \times 3\) by definition, and then to 9 by the definition of \(\times\).
• Note only that, it will \textit{always} evaluate to 9.
• More complex functions:

```haskell
dec max : num # num -> num;
---- max(m, n) <= if m > n then m else n;
```

• and:

```haskell
dec max3 : num # num # num -> num
---- max3(a, b, c) <= max(a, max(b, c));
```

• The type definitions indicate that the functions take two and three arguments respectively.
Tuples

- Saying that these functions take two and three arguments is slightly misleading.
- Instead they both have one argument—they are both *tuples*.
- One is a two-tuple and one is a three-tuple.
- This has one neat advantage—you can get functions to return a tuple, and thus several values.

```haskell
dec IntDiv : num # num -> num # num;
--- IntDiv(m, n) <= (m div n, m mod n);
```

- And we can the compose `max(IntDiv(11, 4))`, which will give 3.
• Another function:

```haskell
dec analyse : real -> char # trueval # num;
---analyse(r) <= (if r < 0 then '−' else '+',
    (r > = −1.0) and (r<= 1.0),
    round(r));
```

• Applying

```haskell
analyse(−1.04)
```

• will give (′−′, false, −1)

• Note the overloading of >.
Recursion

- Without variables, we can’t write functional programs with loops.
- So to get iteration, we need recursion.

  ```
  dec sum : num -> num;
  ---sum(n) <= if n = 0 then 0
  else sum(n - 1) + n;
  ```

- Which works in the same way as recursion normally does.
- Recursion fits in perfectly with the functional approach.
- Each application of the recursive function is referentially transparent and easy to establish the value of.
• Here is a classic recursive function, with a twist.
• We can define functions to be *infix*.
• Here is the power function as an infix function:

  ```pado
  infix ^ : 7;
  ```

  ```pado
  dec ^ : num # num -> num;
  --- x ^ y <= if y = 0 then 1
  else x * x ^ (y - 1);
  ```

• Again, HOPE gives us a very elegant way of defining the function.
Qualified expressions

- Because we don’t have variables, sometimes it seems we have to do unnecessary work when evaluating functions:

```haskell
dec f: num -> num;
---f(x) <= g(square(max(x, 4))) +
  (if x <= 1 then 1
   else g(square(max(x, 4))));
```

- Here we have to evaluate `g(square(max(x, 4)))` twice in some situations.

- With variables, of course, we would have to do this just once.
• Once way around this would be to define the repeated bit as a new function:

\[
\text{dec } f: \text{ num } \to \text{ num;}
\]
\[
\text{--- } f(x) \leq f1(g(\text{square}(\text{max}(x, 4))))
\]

\[
\text{dec } f1: \text{ num } \to \text{ num;}
\]
\[
\text{--- } f1(a, b) \leq a + (\text{if } b \leq 1 \text{ then } 1 \text{ else } a)
\]

• Efficiency here relies on efficient evaluation in the language.
• Another way is to use qualified expressions.
• Consider:

```plaintext
decl f : num -> num
--- f(x) <= let a == g(square(max(x, 4)))
in a + (if x <= 1 then 1 else a)
```

• The `let` construct allows us to extend the set of parameters of a function.

• In general:

```plaintext
let <name> == <expression1> in <expression2>
```

• The first expression defines `<name>` and the second uses it.
• We also have:

\[\text{<expression2> where <name> == <expression1>} \]

• So we could also write:

```plaintext
dec f : num -> num
--- f(x) <= a + (if x <= 1 then 1 else a))
  where a == g(square(max(x, 4)))
```

• Note that == associates a name with an expression, it does not do assignment.
To see this:

```plaintext
let x == E1 in
    if (let x == E2 in E3)
        then x
        else 1 + x
```

• The first `let` associates `E1` with `x`.
• The second `let` doesn't change this.
• Instead it renames `E2` as `x` within `E3`.
• Outside `E3` `x` has its original meaning.
• So far we have used qualified expressions to save on evaluation.
• We also use them to clarify functions.
• A third use is to decompose tuples.

\[
\text{dec quot : num \# num -> num;}
\]
\[
\text{--- quot(q, r) \leq q;}
\]

\[
\text{dec rem : num \# num -> num;}
\]
\[
\text{--- rem(q, r) \leq r;}
\]

let pair == IntDiv(x, y) in quot(pair) \ast
\[
y + rem(pair)
\]

let(q, r) == IntDiv(x, y) in q \ast y + r

• This latter expression pattern matches \((q, r)\) with the result of calling \text{IntDiv}.
User defined data

- As in most languages, we can’t do much interesting stuff in HOPE without defining data.
- This is way simpler in HOPE than in other languages.
- Consider handling lists.
- In C, we have to use structs, and pointers and worry about memory.
- Even in Java we have to use the right constructors.
- In HOPE we just deal with the recursive definition of a list.
• A list is either empty or an element followed by a list.
 data NumList == nil ++ cons(num # NumList)
• Here nil and cons are constructors.
• A single element list is then:
 cons(3, nil)
• And the list comprising 1, 2 and 3 is:
 cons(1, cons(2, cons(3, nil)))
• To define another kind of list we just do something similar:

\[
\text{data CharList} \equiv \text{NilCharList} \quad ++ \quad \text{ConsChars(char \ # \ CharList)}
\]

• Note that there is nothing special about the names nil or cons.

• Note also that we don’t have to say anything about how these lists are represented internally.

• All we tell HOPE is that the list is either a something or a character followed by a list.
• The similarity of the definitions is intentional.
• All list definitions look like this.
• In fact, we can make a general definition:

```haskell
typevar any

data list(any) == AnyNil
    ++ AnyCons(any # list(any))
```

• This is a *polymorphic* definition.
• We parameterize the list by the kinds of objects contained in it.
• With this definition we can build lists of any type:

 AnyCons(1, AnyCons(2, nil))

 AnyCons('a', AnyCons('b', nil))

 AnyCons(AnyNil, AnyCons(AnyCons(1, nil)))

 AnyNil

• The last two are a list of lists, and a list of unspecified type.
• Lists are so common that they are built into HOPE.
 \[
 \text{infix :: : 7} \\
 \text{data list(alpha) == nil ++ alpha :: list(alpha)}
 \]
• We can also write lists as, for example \([1, 2, 3]\).
• Strings are lists of characters.
• With this information it is easy to write functions to handle lists.
dec join : list(alpha) # list(alpha)
 -> list(alpha);
--- join(nil, L) <= L;
--- join(x::y, L) <= x :: join(y, L)
dec rev: list(alpha) -> list(alpha);
--- rev(nil) <= nil;
--- rev(x::l) <= rev(l) join [x];

• Note that join is predefined in HOPE as the infix function <>.
Higher order functions

- Consider

\[
\text{dec IncList : list(num) -> list(num);} \\
\text{--- IncList(nil) <= nil;} \\
\text{--- IncList(x::l) <= } \\
\quad (x + 1)::\text{IncList(l);} \\
\text{dec MakeStrings : list(char) -> list(list(char));} \\
\text{--- MakeStrings(nil) <= nil;} \\
\text{--- MakeStrings(c::l) <= } \\
\quad [c]::\text{MakeStrings(l);} \\
\]

- While doing different things, these two functions have the same basic form.
• Both operate on a list and apply a function to every member of the list.

• The two functions are:

 \[
 \text{dec Inc} : \text{num} \rightarrow \text{num} \\
 \quad \text{--- Inc}(n) \leq n + 1
 \]

 \[
 \text{dec Listify} : \text{char} \rightarrow \text{list(char)} \\
 \quad \text{--- Listify}(c) \leq [c]
 \]

• We can capture this by defining a higher order function
• This takes a function and a list as arguments and applies the function to every member of the list.

\[
\text{dec map : (alpha \to beta) \# list(alpha) } \\
\quad \to \text{ list(beta);} \\
\text{--- map(f, nil) <= nil;} \\
\text{--- map(f, x :: l) <= f(x) :: map(f, l);} \\
\]

• We can then write down the equivalent of our two earlier functions.

\[
\text{map(Inc, L)} \\
\text{map(Listify, L)}
\]
• Of course, this relies on us having defined \texttt{Listify} and \texttt{Inc}.
• However, we don’t even have to do this.
• HOPE provides us with the means to write anonymous function bodies when and where we need them.
• For example:
 \begin{verbatim}
lambda x => x + 1
 \end{verbatim}
• Here we have to use the word \texttt{lambda}.
In general, we can replace any function with a \texttt{lambda} expression.

We replace:

\[f(x) \leq E \]

with

\[\lambda x \to E \]

Thus the function \texttt{IncList} is the same as:

\[\text{map}(\lambda x \to x + 1, L) \]
• Note that we have problems defining a recursive lambda because there is no name to use in the recursion.
• Instead we have to use a let or where.
• For example:

  ```
  let f == lambda x => if x = 0 then 0
     else x + f(x - 1)
  ```

 (which computes the sum of the first 3 numbers.)
• Such constructs are called recursive let and recursive where.
• Some functional languages make these separate constructs (eg letrec).

• In HOPE lambda expressions can also contain a number of parts.

 --- isEmpty(nil) <= true;
 --- isEmpty(_::_) <= false;

• becomes

 lambda nil => true | _::_ => false