| mplementation of a Signal Control System in a Real Time Environment

Vaness Frias Martinez
Computer Science Department
Columbia University
110 Amsterdam Avenue, New York, NY 10027
e-mail: vf2001@cs.columbia.edu

Abstract — Real time applications have time requirements to
be accomplished. The missing of those deadlines make the
system incur in fatal errors. Many Operative Systems(OS)
have been upgraded to achieve preemption in order to offer
applications the capability of meeting their deadlines. Linux,
with its open source philosophy and robustness offers the
opportunity of kernel code manipulation, as well as straight
forward testing with the modules idea. This paper presents a
real-time application implementation using a real time Linux
kernel. The main goal is testing how well the real time OS
doesin comparison to a non-preemptive OS.

1. INTRODUCTION

A Red Time (RT) system is one cgable of guaranteeng
timing requirements of the proceses under its control. It
must be fast and predictable. Fast meaning low latency,
that is, responds to external asynchronous events in a short
time. The lower the latency, the better the system will
respond to events which require immediate d&tention.
Predictable so as to be &le to determine the task’s
completion time with certainty. A typicd red time task will
have timing constraints, resource requirements,
communicdion requirements and concurrency constraints,
all of which hasto be treaed.

Linux is a POSIX 1003 compliant OS. Processs can be
locked into memory to prevent being paged to hard disk.
But a Linux kernel does not provide the required event
priorization and preemption functions needed by ared time
process

RTAI[2], Montavista]9] and RTLinux[9] ded with the
implementation of red time Linux kernels. There ae two
main approadches to the problem:

*The preemption improvements approadh, makes
modificaions in the origina native Linux code so as to
reduce the time spent by the kernel in non-preemptive
sedions of code. But, this approach only affords ft red
time since when Linux interruptions are disabled by
processs, no effedive response is guaranteed. Montavista
implements a fully preemptive kernel with this approach.
Their Linux kernel is preemptive unless sedfied the
contrary.

*The interrupt abstradions approach defines a two layer
system where the standard Linux is run as a low priority
process along with al the RT high priority preemptive
processes, that are runin kernel space The RT kernel will
handle dl the interruptions diredly. Standard Linux
interrruptions will be treaed as ft. This approach
implements hard red time resolutions. The origina
RTLinux and the RTAI offer currently this two layer
system.

2. RELATED WORK

Linux distributions do not differ in the main kernel, which
is common and unique for al of them, but in the
applicaions they include, their graphicd environments and
other extras.

Open source implementations are being used by companies
to ofer complemented-payable-kernels coupled with a
varied range of todls. The open source philosophy makes
Linux world more adive and rich in developments.

Some red-time open source Linux kernels, like
RTLinux[13] or RTAI[2](Red Time Application Interface
works on the philosophy of two-layer systems and
modules. Its main feature is that RT proceses are
considered as loadable modules. Those OS adieve
response times of 15 psecs compared to non red time
resolutions ranging from 10 to 40 ms. This is obtained
through running the RT processs in the kernel space In
order to avoid possble memory intrusions, both offer the
possbility of user space &eaution. Both red time versions
emulate standard Linux interrupts enable/disable so as to
avoid the priority inverson problem between ron-
preenptive and preemptive RT processs.

Mategazz47] designed for RTAI a more detailed and clea
two layer system description known as HAL (Hardware
Abstradion Layer). It supparts five core loadable modules
which provide the desired on-demand, red time caability.
Those implement the scheduler, memory sharing, clocks
control and FIFOs implementation. This will be our base
system.

Andrig1] and Kupper[3] offer descriptions of red time
modules ranging from the simple @ntrol of a port deding
with red time signals to the whole implementation of the
control for aPUMA robatic am, including identification of
RT threads and RT Linux processes. Though, amost all the
approaches up to now, have been developed for spedfic
hardware and software problems.

Morgan K.[10] does a comparative study of the output of
an audio processin a preemptive and non-preemptive OS,
pinpainting the failures in the last one. But, is a locd
comparisson with bechmarks sedficdly designed for the
problem.

3. RTAI ARCHITECTURE

RTAI implements a red time kernel where hardRT
applicaions can mee their deadlines. Its design implies the
modificaion of the aurrent Linux kernel by adding some
linesto different files of its code.

Linux is the RT task of less priority. Non RT services are
to be eeauted by standard Linux. The @mmunication
between RT and Linux processs is made by FIFOs or
shared memory. As for interruptions, the masking code has

been rewritten. Hard interruptions are redireded to the RT
layer. All the Linux interruptions are @wnsidered soft and
rerouted to the HAL layer. Standard Linux has no more
control over hard interruptions.

RTAI isdesigned under the philosophy of modues. RTAI
tasks are designed as dynamic extensible |oadable modules.
RTAI isthe central module. We can ingtall other modules
on it, depending on the RT services we ae interested in
using. The rtai_sched module when we need to work with
schedulers, rtai_ fifos for FIFOs, rtai_shm for shared
memory,, rtai_watchdog , and rtai_pthread for POSIX
threads. Figurel shows the basic achitecture described
here.

Espacc ufilizarcor

B . % s
! Prvcessind Liniie - | rl-’zmﬂ.LouL |
P

) [\

i, iuecpéimion e Smées) e
¢ i i i . L
g =TT | Mlixhiiles
Thiche v | Lino
Tetn g el 3 . —
LAl temps ige)
appleafion y——
Lok & :
|, R — — R
) 1 | :
Thche ¥ Thoke Liux
Lezmps néeel 1 e weal 2 it e 1|
s Himal <71 L,
s) S| et
T Inerniphinrs Tapcislle T)

glmartuptions marsrisllas

Moyau temms el - RTLinuxMTA

L]
| Maréricl — contrdlour ri"zn'.u:r.'l;mi:unsJ

Fig.1. Basic Architecture of RTAI.

The scheduler modue dlows the user to define one shot or
periodic tasks.They are cntrolled by means of the dip
8254

The FIFO module dlows us to creae FIFOs at the user or
kernel space We can access to them by name. They are
accesshle & the devicefile system (/dev/rtfx,x=0...5).
Similarly, the shared memory module offers the posshility
of working in user or kernel space Thisis more difficult ot
user, since two applications have to define ahand shaking
protocol.

One of the last successes of the RTAI developers has been
the LXRT services. This module, allows the use of al the
services made available by RTAI and its shedulers in the
user space both soft and hard red time. All the
manipulations can be done withou root permissions.
LXRT provides a family of red time scheduler services.
Those services are the same function cdls that the ones in
the kernel space with the difference that when cadled from
user spacethey are executed by some “angels’ taking care
of ead cdl. When defining an LXRT task, we need to fix a
name, that will correspond to the LXRT system cdl. LXRT
cdls are implemented as <ft interrupts(like the Linux
ones) but with higher priorities. When an LXRT system
cdl is cdled by a user space process the LXRT handler
will save everything onto the stack, change ds and es to
KERNEL_DS and then execute its own angel.

4. THE SIGNAL CONTROL SYSTEM

4.1. Our proposal

Our red time signal control system will develop a set of
loadable modules for the RTAI kernel[2]. The modules are
designed to be atemplate that will be used in the study of
resolutions of different RT Linux kernels. Those modues
will take aontrol of a red time input periodic signal from
the parallel port and will implement a feedbadk control on
it. The output will be generated to the serial port.

Our set of modules will alow the user to test the RT
resolutions in different physicad systems in order to do
similar studies on its outputs. A set of benchmark programs
is also designed to fadlitate the test of the RT system in
confront to the standard Linux.

4.2. RTAIl asabasis

We have dosen the RTAI architedure to implement this
system because of the alvantages it offers. We have
guaranteed red time behavior with resolutions of
15microsecs. It is also designed with fully modularity and
scdability so as to be cmplemented and modified as
desired. It's a mompad system in its codificaion, the patch
for the kernel adds only about 64K (100 lines) to the
vanilla kernel. On the other side, we dso take advantage of
one of its lasts developments: the posshility of debugging
our RT programs in the user space

4.3. Design of the signal control system

The @ntrol system has been implemented in two dfferent
ways D as to offer awide range of applications depending
on our physicd system. Our main interest isto define aset
of modules and programs to process s$gnals with
microsecond resolutions. The red time resolutions offered
by RTAI arein this range.

Our red time environment may allow us to be more or less
intrusive. In this way, we propose two dfferent approaches
with similar time resolutions. a loadable module onto the
kernel and a user-space aecutable. The first approach can
read times of 15 microsemnds, whereas the second one,
may have some 3 or 4 more microsecs of delay.

4.4 TheKernel Space Approach

The RTAI was originally designed in such a way that the
red time programs had to be exeauted in the kernel space
Our first approach to the problem has been implemented in
this way. Following the RTAI philosophy we have
developed a set of full-loadable modules to be installed
onto the patched RTAI kernel. These modues implement
the control system previously described.

We have two dfferent modules. The parport_mod installs
on the system a function to read from the parallel port. The
serialport_mod once installed will offer the user the
possbility of using functions to write to the serial port. We
have taken the needed parts of the ade from rt_com
program(using the LGPL license). This is a driver for the
serial port implemented by Jens Michadsen and Jochen
Kupper. Finaly, we have developped two kernel-user
modules that will use the functions previously defined in
order to test the RT applicion we want to. The

par_serial_user_mod will read from the parallel port and at
eatch change write to the seriad pot. The
timer_serial_ user_mod alows the user to test our RT
system without using any parallel port input. This module
will periodicdly (using the timer chip 8254 write to the
seria port.

Our system control approach will periodicdly output a
signa to the serial port in red time resolutions of
15microsecs even when other 1/O overhead linux
applicaions are being exeauted.

4.5. The User Space Approach.

We have developed this approach by implementing a user-
spaceexeatable RTAI file that uses the LXRT libraries.
Those gplicdions can also be exeauted in microsemnds
resolutions, implementing herdware red time @ntrol
systems. Thisis our second approadc to the system control.
Exeauted in the user space offers time resolutions of 19
microseands without any dangerous intrusion into the
kernel. The resolutions are in red time, which means that
they are obtained even when executing /O linux
applications that charge the system.

Similarly to the kernel spacedesign, our user program will
periodicdly send an update signal to the serial port with the
timing guarateed by the red time badground we ae
working on. We dso dffer he passhility of controlling the
seria output with the parallel input or with some periodic
task controlled by the timer. In this way, we define two
programs, user_space par_ser and user_space timer_ser.
Both of them are eecuted in user space but using the
LXRT libraries means that the will have higher priority and
better scheduler granularity scheduling than Linux tasks.
Th Figure2 below, shows the LXRT environment executed
by the angels.

LXRT task I/O Linux task
\ 2 ¥
RTAI Linux
angels Layer
v
user_par_se RTAI
rdtaskl. | #» Kemne
Layer
rtai.o
rtai_sched.o
Parport_mod.o
kernel space seriaport_mod.o

Fig.2. Modules, angels and tasksin RTAI.

5.ARCHITECTURE OF THE MODULES.

5.1. The Kernel space module.

The general algorithm for the processpar_serial_user_Ixrt
will foll ow the foll owing structure,

(parallel_port new data HANDLER)

then
read parallel_data
manipulate data (parallel_data)
send data to serial port

endif

The red time modules are implemented with the basic
init_module() and cleanup_module() diredives. In the
configuration of the parallel port we define our device with
its IRQ number (#7), its io base port (0x378) and the
handler we associate to it. Then, we will check and request
for theio region,

dev.io_base = PARPORT BASE ADDRESS

dev.irqg = PARPORT_IRQ_NUMBER;

dev.handler = parport_irq_handler;
request_region(dev.io_base,dev.port_size, "rtai_parport");

As for the seria port control, we use the cde from the
rt_com (RTLinux kernel module for communicaion acoss
seria lines) designed by Jens Michadsen and Jochen
Kiupper. We will also install that module into the kernel.
The APl of this module gives us me functions to
configure the serial port and to writeto it,

rt com set param(0,0,0);
rt_com_setup(0,38400,RT_COM_PARITY_NONE, 1, 8);
/Iwrite to the serial port.

n=rt_com write(serial_port, data,size(data));

Our par_serial_user red time module, will load the main
RTAI module onto the kernel with the rtai_mount() system
cdl. By ingtalling this module, we cn then install al the
others needed to use the new red time system cdls
provided by RTAI for schedulers, timers, general red
time,ecc Then, we asciate ahandler to the parallel port,
S0 asto deted ead interruption. We do this by associating
ahandler to the parallel port interruption,

rt_request_global _irq (dev.irq, dev.handler);

that will be fired when new data arives, will be read and
written to the serial port. The way the data is manipulated
before being sent to the serial port, is Pedfied by the
function manipulate_data(), that can be modified by the
user to do all the different testing experiments depending
on its system.

As for the timer_serial_user modue, the serial part is the
same & explained above. The periodic part, was first
designed with the cdl offered by RTAI,
rt task make periodic(). But since we want optimal
exeadtion times, the final dedsion was that of controlli ng
diredly the timer so as to associate to it a handler that will
be exeaited ead fixed timer-period. The body of this
handler will communicate with the serial port.

Using the rt request_timer(serial_port,period,0), we
request a timer of period period and install the handler
routine serial_port as a red time interrupt service routine
for the timer based on the 8254 d our machine.

5.2. The User space application.

The @plicaion designed here, uses the system cdls
allowed by the LXRT module(executed by its angels).

The communication with the serial and paralel port has
been implemented in two ways. The first approadh, was
that of designing an LXRT process that would dredly
manipulate the ports with the inb and outb diredives. But
we @mme up with a problem: to execute outb from the user
space we nedl to fix the permissions with ioperm() to
allow the user space pplicaion accessthe 1/0 ports. We
did so, but we found problems of accesibility to the port
when compiling those @plicaions. This problem was
solved by compiling in an optimized way, but just with
some aompil ers and some kernel versions.

Since we ae looking for more general solutions, we
dedded to use higher system cdls 9 as to compile eaily
the programs and adapt them to any Linux platform. LXRT
modules are defined as normal kernel modules(with the
install_module, clean_up modue), plus an identificaion
number that will recognize eab of them in the Ixrt system
cdlstable. The way we have implemented it is,

int init_modul e(void)

{
if(set_rt_fun_ext_index(parport, MYIDX))
printk(" Recompile your module with a different index\n");

The rt_fun entry table asciates an identifier to ead of
the functions in the module. Besides, ead function needs
to be defined related to its id, size for the stadk, and
arguments needed,

rtai_Ixrt(MYIDX, SIZARG, RT_GET_PAR_DATA, &arg);

So, our user-space program, will let the user test any
system with a parallel port input and a serial output.

The acces to the pardlel port has been done by
implementing an LXRT module (parport) that is loaded
into the kernel and executes the inb() diredive itself. The
serial port communicaion is implemented using the
rt_ com_Ixrt API. This APl is an adaptation of the rt_com
device driver module for the LXRT space The API cdls
for LXRT are similar to the kernel spaceones.

So, the set of test programs designed for the user space can
be used by loading the parallel functions module that all ow
us to communicate with the paralel port, the seria
functions module, rt_com_Ixrt, adapted version of rt_com
driver for Ixrt, and executing our process The process will
continuosly check for changes in the paralel port. When
one is deteded, it will communicae with the seria port.
The main difference with the kernel space eeaution is that
here the LXRT system cdls are cdls to ‘angels that will
exeaute the kernel spacered system cdls. In order to use
the same API, we ned to fix the red time spaceof work
with,

rt_ make hard real_time();

For the timer_serial_user version, the parallel port is not
defined. Our process will periodicdly communicae with
the serial port. Our user space process is defined as a
periodic task that will be set with the diredive
rt_task make periodic(task, rt _get time() + 5*period,
period). Its periodica exeaution will send data to the seria
port. That data may have been previously manipulated as
desired by the function manipulate_data().

The final resolution times, taking into acount that the
LXRT module has to be executed, as well as the delays of
the serial port manipulation will be of about 19 to 20
microsecs.

6. NON RT MODULES.

As a ommplement to our system control modules, we have
also developed a set of non red time modules doing the
same functionality, in order to alow the user compare the
output of their systems in a red and non red time
environment.

The par_serial_linux mod is very similar to the
par_serial_mod. When install ed, this module will capture
the parallel interrupt and send it to our own interruption
handler. This one, will rea the info from the I/O parallel
port and will manipulate the data and send it to the seria
port.

void init_module () {

serial_device = open ("/devittyS0", O_RDWR);
request_irq (PAR_IRQ, parallel_irq_handler, SA SHIRQ,
"parallel_handler", NULL);

}
void my_irg_handler () {

par_info = inb (0x378);
manip_info = manipulate data (par_info);
n = write(serial_device, manip_info, size(manip_info));
if (n<0)
fputs("write() failed!\n", stderr);

As for the timer_serial_module, instead of using the
inefficient crontab file, we have developed a module that
once loaded, will put our task in the tq_timer task queue so
asto be exeauted at ead timer interrrupt.

void init_module () {
queue_task (& Task, &tq_timer);

where Task has in its struct the cdl to its interruption
handler, which will again manipulate data and send it to the
serial port inasimilar way than the explained above.

In this way, a user-spaceprogram has been implemented in
non red time so asto be exeauted periodicdly or at eat
paralel port interrupt and output a signal to the seria port.
Finaly, we have dso implemented an applicaion to

overhea the system with 1/0O operations that will generate
continuous interruptions from the standard linux user
space In order to make it optimal, the outb and inb have
been used, as well as the ioperm() to give user permissions
for the ports.

7. INSTALLATION OF THE SYSTEM.

The install ation has been done on a 266MHz K6 processor.
This procedure can be abig ded. We have cosen the
RTAI red time gplication interfaceto patch our kernel so
asto make it red time by loading different modules.
Theoreticdly, any distribution can be used, though, we
have found problems working with Red Hat versions 7.0
and 7.2. Finally, we have installed a Mandrake 8.0. It is
highly important to know that the kernel to be patched,
can't be the one coming with the distribution. We need a
vanilla kernel. Our linux kernel is a vanilla 2.4.8 kernel
obtained freesource from www.kernel.org.

Once we had the kernel and the patch, the first thing to do
is patch the kernel(with patch < name_patch). The patch
applied isthe last version of the RTAI patches, the 2.1.9 o
Sept, 1st. After applying it, we an follow the normal
Linux installation procedure (make config, make install and
make modules_install). When configuring the system, it is
important to adivate the loadable modules option, as well
as deadivating the high power option.

Another important fedure aises in the compilation of the
kernel. When compiling, we have to take into acount that
our patched kernel won't compile with the gcc-2.96
compiler, because of the distribution we ae using. We
managed though to compile it either with kgcc ad gcc-
2.95 compilers.

It is interesting to browse through our kernel files and see
how small are the modificaions done(about 70 lines, 64k
inirg.c, entry.S, smp.c, time.c io_apic.c and 386 ksyms.c).
Those modifications, congtitute the HAL. Finally, we need
to compile the mde for the loadable modues that will
implement the red time feaures of our system. Again, the
compilation has to be done with one of the defined
compiler above. Once @mmpiled, we will have a set of
loadable modules defining the RTAI API for red time:
rta.o itself, rta_mem.o, rta_shm.o, rta_fifo.o,
rtai_sched.o and rtai_rpc.o.

Our kernel spacemodule is designed so as to be exeauted
in any RTAI platform where dl the red time system cdls
can be reowognized. It won't work on a i486 since is
programmed to manipulate diredly the 8254 not present in
this architedure.

Our user space pplicaion will work in any rtai-Ixrt-linux
system.

The nonRT applicaions are to be exeauited as gandard
linux programs in the user space Only compilation
fedaures have to be taken into acount.

The compilation of the mde has to be done with the same
compiler used for the kernel to avoid any error. It is
important not to forget the —O optimization flag for the
compil ation when necessary.

8. APPLICATIONSOF THE SYSTEM.

Our system, offers a set of red time modules and routines
S0 asto test the red time resolutions of any physicd system
manipulating the serial port, either periodicdly or by some
signal from the paralel port. We also dfer the same
routines for a non red time system so as to make
comparative studies of the resolution times of the systemin
bath red time and non red time ases.

Depending on the physicd system we want to test, the user
can seled a more or lessintrusive installation. The kernel
space module version, will install some modues into the
kernel to control asignal coming from the parallel port and
sending some other signal to the serial port. We can
guarantee time responses of maximum 15 microsemnds.
The user space a@plicaion, will do the same task, but
without interfering diredly into the kernel. In this case,
delays up to 20microsemnds.

A benchmark is also dffered to the user: a non RT
applicaion can be exeauted so as to seethe delays of anon
red time system when reading from the parallel port and
writing onto the serial port.

Finaly, an 1/O program in standard linux user space @n be
exeatted to overhead the system and cdculate the
efficiency of the RT modules and non-red time programs,
in extreme system overhead situations.

9. CONCLUSIONS AND FUTURE WORK.

As a future work we propcse the development of a red
hardware gplicaion so as to test the modules designed and
to physicdly see the comparisson between the RT and
nonRT outputs of the system.

We propose the design of an eight leds device that has to
do 3D designs in red time. The leds are distributed
longitudinally in a stick that is attached to the engine
always turning around itself.

The system will have an engine, whose input to the
computer will be by the paralel port. The engine will
communicade to the mmputer at ead turning of 90
degrees. Each tick will go to the computer and will have to
be processed, real time, so as to switch on the gpropriate
led in the stick to designthe feaurein 3D.

The propacsal is that of using our red time modules to
receve the periodic signa from the paralel port and
manipulate the serial port as desired. This system is
supposed to work properly, even if executing our overhead
I/O program. This is thanks to the red time resolutions
guaranteed by our RTAI system.

Finaly, we would aso exeaute it with the non red time
modules D as to cdculate resolutions and see how the 3D
feaure in the leds is obtained in a non red time system
with the 1/0O overhealing the system.

Besides, many other systems that need to manipulate
paralel or serial ports in red time, or wanting to test
whether their systems need or not red time resolution, can
use our set of moduesto doso.

10. REFERENCES

[1] Andris P. Roba Control Using Red-Time Linux
Artiticulated bod/ Movement Simulation, Proc. of the
Red-Time LINUX Workshop, Orlando, USA, 2000.

[2] Dipartimento di Ingegneria Aerospazale, Politemico di
Milano, RTAI, www.rtai.org

[3] Kupper, J. The seria port driver of red time Linux.
Institut fur Physicdysche Chemic, Frankfurt, 2000

[4] Kipper J. Red Time Linux driver for the serial port
rt-com.sourceforge.com/rt_com.pdf, (on line manual).

[5] Lineo, www.lineo.com

[6] List, S. RTAI: définition et concepts, Alcdve. France,
2000 www.courseforge.org/courses/fr/rtai1l/rtai.pdf (on
line manual).

[7] MantegazzaP.DIAPM-RTAI:why’s, what's and how’s.
Proceedings of the Red Time Linux Workshop. Vienna,
Austria, 1999

[8] MantegazzaP., Dozio L., A hard Red Time suppart for
LINUX, Dipartimento di Ingegneria Aerospazale, Milano,
Italy,1999 www.rtai.org (on line manual)

[9] Montavista, www.mvista.com

[10] Morgan, K. inLinux Devices, www.linuxdevices.org
[11] Red Time Linux website, www.redtimelinux.org

[12] Robbins K.A, Pradicd UNIX Programming: a guide
to concurrency , communicaion and multithreading,
PrenticeHall, 1996

[13] RTLinux, www.rtlinux.org

[14 Wad B., The Linux Kernel HowTo
(http://www.linuxdoc.org/HOWTO/K ernel-HOWTO.html)
[15] Waugh T., The Linux 2.4 paralel port subsystem,
people.redhat.com/twaugh/parport/html/parportguide.html
(on line manual).

