
Abstract – Real time applications have time requirements to
be accomplished. The missing of those deadlines make the
system incur in fatal errors. Many Operative Systems(OS)
have been upgraded to achieve preemption in order to offer
applications the capability of meeting their deadlines. Linux,
with its open source philosophy and robustness offers the
opportunity of kernel code manipulation, as well as straight
forward testing with the modules idea. This paper presents a
real-time application implementation using a real time Linux
kernel. The main goal is testing how well the real time OS
does in comparison to a non-preemptive OS.

1. INTRODUCTION

A Real Time (RT) system is one capable of guaranteeing
timing requirements of the processes under its control. It
must be fast and predictable. Fast meaning low latency,
that is, responds to external asynchronous events in a short
time. The lower the latency, the better the system will
respond to events which require immediate attention.
Predictable so as to be able to determine the task’s
completion time with certainty. A typical real time task will
have timing constraints, resource requirements,
communication requirements and concurrency constraints,
all of which has to be treated.
Linux is a POSIX 1003 compliant OS. Processes can be
locked into memory to prevent being paged to hard disk.
But a Linux kernel does not provide the required event
priorization and preemption functions needed by a real time
process.
RTAI[2], Montavista[9] and RTLinux[9] deal with the
implementation of real time Linux kernels. There are two
main approaches to the problem:

•The preemption improvements approach, makes
modifications in the original native Linux code so as to
reduce the time spent by the kernel in non-preemptive
sections of code. But, this approach only affords soft real
time since when Linux interruptions are disabled by
processes, no effective response is guaranteed. Montavista
implements a fully preemptive kernel with this approach.
Their Linux kernel is preemptive unless specified the
contrary.

•The interrupt abstractions approach defines a two layer
system where the standard Linux is run as a low priority
process along with all the RT high priority preemptive
processes, that are run in kernel space. The RT kernel will
handle all the interruptions directly. Standard Linux
interrruptions will be treated as soft. This approach
implements hard real time resolutions. The original
RTLinux and the RTAI offer currently this two layer
system.

2. RELATED WORK

Linux distributions do not differ in the main kernel, which
is common and unique for all of them, but in the
applications they include, their graphical environments and
other extras.
Open source implementations are being used by companies
to offer complemented-payable-kernels coupled with a
varied range of tools. The open source philosophy makes
Linux world more active and rich in developments.
Some real-time open source Linux kernels, like
RTLinux[13] or RTAI[2](Real Time Application Interface)
works on the philosophy of two-layer systems and
modules. Its main feature is that RT processes are
considered as loadable modules. Those OS achieve
response times of 15 µsecs compared to non real time
resolutions ranging from 10 to 40 ms. This is obtained
through running the RT processes in the kernel space. In
order to avoid possible memory intrusions, both offer the
possibili ty of user space execution. Both real time versions
emulate standard Linux interrupts enable/disable so as to
avoid the priority inversion problem between non-
preemptive and preemptive RT processes.
Mategazza[7] designed for RTAI a more detailed and clear
two layer system description known as HAL (Hardware
Abstraction Layer). It supports five core loadable modules
which provide the desired on-demand, real time capabili ty.
Those implement the scheduler, memory sharing, clocks
control and FIFOs implementation. This will be our base
system.
Andris[1] and Kupper[3] offer descriptions of real time
modules ranging from the simple control of a port dealing
with real time signals to the whole implementation of the
control for a PUMA robotic arm, including identification of
RT threads and RT Linux processes. Though, almost all the
approaches up to now, have been developed for specific
hardware and software problems.
Morgan K.[10] does a comparative study of the output of
an audio process in a preemptive and non-preemptive OS,
pinpointing the failures in the last one. But, is a local
comparisson with bechmarks specifically designed for the
problem.

3. RTAI ARCHITECTURE

RTAI implements a real time kernel where hardRT
applications can meet their deadlines. Its design implies the
modification of the current Linux kernel by adding some
lines to different files of its code.
Linux is the RT task of less priority. Non RT services are
to be executed by standard Linux. The communication
between RT and Linux processes is made by FIFOs or
shared memory. As for interruptions, the masking code has

Implementation of a Signal Control System in a Real Time Environment

Vanessa Frías Martínez
Computer Science Department

 Columbia University
110 Amsterdam Avenue, New York, NY 10027

e-mail: vf2001@cs.columbia.edu

been rewritten. Hard interruptions are redirected to the RT
layer. All the Linux interruptions are considered soft and
rerouted to the HAL layer. Standard Linux has no more
control over hard interruptions.
RTAI is designed under the philosophy of modules. RTAI
tasks are designed as dynamic extensible loadable modules.
RTAI is the central module. We can install other modules
on it, depending on the RT services we are interested in
using. The rtai_sched module when we need to work with
schedulers, rtai_fifos for FIFOs, rtai_shm for shared
memory,, rtai_watchdog , and rtai_pthread for POSIX
threads. Figure1 shows the basic architecture described
here.

Fig.1. Basic Architecture of RTAI.

The scheduler module allows the user to define one shot or
periodic tasks.They are controlled by means of the chip
8254.
The FIFO module allows us to create FIFOs at the user or
kernel space. We can access to them by name. They are
accessible at the device file system (/dev/rtfx,x=0...5).
Similarly, the shared memory module offers the possibility
of working in user or kernel space. This is more difficult ot
user, since two applications have to define a hand shaking
protocol.
One of the last successes of the RTAI developers has been
the LXRT services. This module, allows the use of all the
services made available by RTAI and its schedulers in the
user space, both soft and hard real time. All the
manipulations can be done without root permissions.
LXRT provides a family of real time scheduler services.
Those services are the same function calls that the ones in
the kernel space, with the difference that when called from
user space they are executed by some “angels” taking care
of each call . When defining an LXRT task, we need to fix a
name, that will correspond to the LXRT system call . LXRT
calls are implemented as soft interrupts(like the Linux
ones) but with higher priorities. When an LXRT system
call i s called by a user space process, the LXRT handler
will save everything onto the stack, change ds and es to
KERNEL_DS and then execute its own angel.

4. THE SIGNAL CONTROL SYSTEM

4.1. Our proposal
Our real time signal control system will develop a set of
loadable modules for the RTAI kernel[2]. The modules are
designed to be a template that will be used in the study of
resolutions of different RT Linux kernels. Those modules
will take control of a real time input periodic signal from
the parallel port and will implement a feedback control on
it. The output will be generated to the serial port.
Our set of modules will allow the user to test the RT
resolutions in different physical systems in order to do
similar studies on its outputs. A set of benchmark programs
is also designed to facil itate the test of the RT system in
confront to the standard Linux.

4.2. RTAI as a basis
We have chosen the RTAI architecture to implement this
system because of the advantages it offers. We have
guaranteed real time behavior with resolutions of
15microsecs. It is also designed with fully modularity and
scalabili ty so as to be complemented and modified as
desired. It’s a compact system in its codification, the patch
for the kernel adds only about 64K (100 lines) to the
vanilla kernel. On the other side, we also take advantage of
one of its lasts developments: the possibili ty of debugging
our RT programs in the user space.

4.3. Design of the signal control system
The control system has been implemented in two different
ways so as to offer a wide range of applications depending
on our physical system. Our main interest is to define a set
of modules and programs to process signals with
microsecond resolutions. The real time resolutions offered
by RTAI are in this range.
Our real time environment may allow us to be more or less
intrusive. In this way, we propose two different approaches
with similar time resolutions: a loadable module onto the
kernel and a user-space executable. The first approach can
reach times of 15 microseconds, whereas the second one,
may have some 3 or 4 more microsecs of delay.

4.4 The Kernel Space Approach
The RTAI was originally designed in such a way that the
real time programs had to be executed in the kernel space.
Our first approach to the problem has been implemented in
this way. Following the RTAI philosophy we have
developed a set of full-loadable modules to be installed
onto the patched RTAI kernel. These modules implement
the control system previously described.
We have two different modules. The parport_mod installs
on the system a function to read from the parallel port. The
serialport_mod once installed will offer the user the
possibili ty of using functions to write to the serial port. We
have taken the needed parts of the code from rt_com
program(using the LGPL license). This is a driver for the
serial port implemented by Jens Michaelsen and Jochen
Küpper. Finally, we have developped two kernel-user
modules that will use the functions previously defined in
order to test the RT application we want to. The

par_serial_user_mod will read from the parallel port and at
each change write to the serial port. The
timer_serial_user_mod allows the user to test our RT
system without using any parallel port input. This module
will periodically (using the timer chip 8254) write to the
serial port.
Our system control approach will periodically output a
signal to the serial port in real time resolutions of
15microsecs even when other I/O overhead linux
applications are being executed.

4.5. The User Space Approach.

We have developed this approach by implementing a user-
space executable RTAI file that uses the LXRT libraries.
Those applications can also be executed in microseconds
resolutions, implementing hardware real time control
systems. This is our second approach to the system control.
Executed in the user space, offers time resolutions of 19
microseconds without any dangerous intrusion into the
kernel. The resolutions are in real time, which means that
they are obtained even when executing I/O linux
applications that charge the system.
Similarly to the kernel space design, our user program will
periodically send an update signal to the serial port with the
timing guarateed by the real time background we are
working on. We also offer he possibili ty of controll ing the
serial output with the parallel input or with some periodic
task controlled by the timer. In this way, we define two
programs, user_space_par_ser and user_space_timer_ser.
Both of them are executed in user space, but using the
LXRT libraries means that the will have higher priority and
better scheduler granularity scheduling than Linux tasks.
Th Figure2 below, shows the LXRT environment executed
by the angels.

Fig.2. Modules, angels and tasks in RTAI.

5. ARCHITECTURE OF THE MODULES.

5.1. The Kernel space module.
The general algorithm for the process par_serial_user_lxrt
will follow the following structure,
(parallel_port new data HANDLER)
then

read parallel_data
manipulate_data (parallel_data)
send data to serial port

endif
The real time modules are implemented with the basic
init_module() and cleanup_module() directives. In the
configuration of the parallel port we define our device with
its IRQ number (#7), its io base port (0x378) and the
handler we associate to it. Then, we will check and request
for the io region,

dev.io_base = PARPORT_BASE_ADDRESS;
dev.irq = PARPORT_IRQ_NUMBER;
dev.handler = parport_irq_handler;
request_region(dev.io_base,dev.port_size, "rtai_parport");

As for the serial port control, we use the code from the
rt_com (RTLinux kernel module for communication across
serial li nes) designed by Jens Michaelsen and Jochen
Küpper. We will also install that module into the kernel.
The API of this module gives us some functions to
configure the serial port and to write to it,

rt_com_set_param(0, 0, 0);
rt_com_setup(0,38400,RT_COM_PARITY_NONE, 1, 8);
//write to the serial port.
n = rt_com_write(serial_port, data,size(data));

Our par_serial_user real time module, will load the main
RTAI module onto the kernel with the rtai_mount() system
call . By install ing this module, we can then install all the
others needed to use the new real time system calls
provided by RTAI for schedulers, timers, general real
time,ecc. Then, we associate a handler to the parallel port,
so as to detect each interruption. We do this by associating
a handler to the parallel port interruption,

rt_request_global_irq (dev.irq, dev.handler);

that will be fired when new data arrives, will be read and
written to the serial port. The way the data is manipulated
before being sent to the serial port, is specified by the
function manipulate_data(), that can be modified by the
user to do all the different testing experiments depending
on its system.
As for the timer_serial_user module, the serial part is the
same as explained above. The periodic part, was first
designed with the call offered by RTAI,
rt_task_make_periodic(). But since we want optimal
execution times, the final decision was that of controlli ng
directly the timer so as to associate to it a handler that will
be executed each fixed timer-period. The body of this
handler will communicate with the serial port.

RTAI
Kernel
Layer

user_par_se
rial task1.

Linux
Layer

I/O Linux task

rtai.o
rtai_sched.o
Parport_mod.o
serialport_mod.o

Serial Paralell
Port Port

kernel space

LXRT task

RTAI
angels

Using the rt_request_timer(serial_port,period,0), we
request a timer of period period and install the handler
routine serial_port as a real time interrupt service routine
for the timer based on the 8254 of our machine.

5.2. The User space application.
The application designed here, uses the system calls
allowed by the LXRT module(executed by its angels).
The communication with the serial and parallel port has
been implemented in two ways. The first approach, was
that of designing an LXRT process that would directly
manipulate the ports with the inb and outb directives. But
we come up with a problem: to execute outb from the user
space, we need to fix the permissions with ioperm() to
allow the user space application access the I/O ports. We
did so, but we found problems of accessibili ty to the port
when compil ing those applications. This problem was
solved by compil ing in an optimized way, but just with
some compilers and some kernel versions.
Since we are looking for more general solutions, we
decided to use higher system calls so as to compile easily
the programs and adapt them to any Linux platform. LXRT
modules are defined as normal kernel modules(with the
install_module, clean_up module), plus an identification
number that will recognize each of them in the lxrt system
calls table. The way we have implemented it is,

int init_module(void)
{
if(set_rt_fun_ext_index(parport, MYIDX))
printk("Recompile your module with a different index\n");
...
The rt_fun_entry table associates an identifier to each of
the functions in the module. Besides, each function needs
to be defined related to its id, size for the stack, and
arguments needed,

rtai_lxrt(MYIDX, SIZARG, RT_GET_PAR_DATA, &arg);

So, our user-space program, will l et the user test any
system with a parallel port input and a serial output.
The access to the parallel port has been done by
implementing an LXRT module (parport) that is loaded
into the kernel and executes the inb() directive itself. The
serial port communication is implemented using the
rt_com_lxrt API. This API is an adaptation of the rt_com
device driver module for the LXRT space. The API calls
for LXRT are similar to the kernel space ones.
So, the set of test programs designed for the user space, can
be used by loading the parallel functions module that allow
us to communicate with the parallel port, the serial
functions module, rt_com_lxrt, adapted version of rt_com
driver for lxrt, and executing our process. The process, will
continuosly check for changes in the parallel port. When
one is detected, it will communicate with the serial port.
The main difference with the kernel space execution is that
here the LXRT system calls are calls to ‘angels’ that will
execute the kernel space real system calls. In order to use
the same API, we need to fix the real time space of work
with,

 rt_make_hard_real_time();
For the timer_serial_user version, the parallel port is not
defined. Our process will periodically communicate with
the serial port. Our user space process, is defined as a
periodic task that will be set with the directive
rt_task_make_periodic(task, rt_get_time() + 5*period,
period). Its periodical execution will send data to the serial
port. That data may have been previously manipulated as
desired by the function manipulate_data().
The final resolution times, taking into account that the
LXRT module has to be executed, as well as the delays of
the serial port manipulation will be of about 19 to 20
microsecs.

6. NON RT MODULES.

As a complement to our system control modules, we have
also developed a set of non real time modules doing the
same functionali ty, in order to allow the user compare the
output of their systems in a real and non real time
environment.
The par_serial_linux_mod is very similar to the
par_serial_mod. When installed, this module wil l capture
the parallel interrupt and send it to our own interruption
handler. This one, will read the info from the I/O parallel
port and will manipulate the data and send it to the serial
port.

void init_module () {

serial_device = open ("/dev/ttyS0", O_RDWR);
request_irq (PAR_IRQ, parallel_irq_handler, SA_SHIRQ,
"parallel_handler", NULL);

}
void my_irq_handler () {

 par_info = inb (0x378);
 manip_info = manipulate_data (par_info);
 n = write(serial_device, manip_info, size(manip_info));
 if (n < 0)
 fputs("write() failed!\n", stderr);
}
As for the timer_serial_module, instead of using the
ineff icient crontab file, we have developed a module that
once loaded, will put our task in the tq_timer task queue so
as to be executed at each timer interrrupt.

void init_module () {

queue_task (&Task, &tq_timer);
}
where Task has in its struct the call to its interruption
handler, which will again manipulate data and send it to the
serial port in a similar way than the explained above.
In this way, a user-space program has been implemented in
non real time so as to be executed periodically or at each
parallel port interrupt and output a signal to the serial port.
Finally, we have also implemented an application to

overhead the system with I/O operations that will generate
continuous interruptions from the standard linux user
space. In order to make it optimal, the outb and inb have
been used, as well as the ioperm() to give user permissions
for the ports.

7. INSTALLATION OF THE SYSTEM.

The installation has been done on a 266MHz K6 processor.
This procedure can be a big deal. We have chosen the
RTAI real time application interface to patch our kernel so
as to make it real time by loading different modules.
Theoretically, any distribution can be used, though, we
have found problems working with Red Hat versions 7.0
and 7.2. Finally, we have installed a Mandrake 8.0. It is
highly important to know that the kernel to be patched,
can’ t be the one coming with the distribution. We need a
vanilla kernel. Our linux kernel is a vanill a 2.4.8 kernel
obtained free source from www.kernel.org.
Once we had the kernel and the patch, the first thing to do
is patch the kernel(with patch < name_patch). The patch
applied is the last version of the RTAI patches, the 2.1.9 of
Sept, 1st. After applying it, we can follow the normal
Linux installation procedure (make config, make install and
make modules_install). When configuring the system, it is
important to activate the loadable modules option, as well
as deactivating the high power option.
Another important feature arises in the compilation of the
kernel. When compil ing, we have to take into account that
our patched kernel won’ t compile with the gcc-2.96
compiler, because of the distribution we are using. We
managed though to compile it either with kgcc and gcc-
2.95 compilers.
It is interesting to browse through our kernel files and see
how small are the modifications done(about 70 lines, 64k
in irq.c, entry.S, smp.c, time.c io_apic.c and 386_ksyms.c).
Those modifications, constitute the HAL. Finally, we need
to compile the code for the loadable modules that will
implement the real time features of our system. Again, the
compilation has to be done with one of the defined
compiler above. Once compiled, we will have a set of
loadable modules defining the RTAI API for real time:
rtai.o itself, rtai_mem.o, rtai_shm.o, rtai_fifo.o,
rtai_sched.o and rtai_rpc.o.
Our kernel space module is designed so as to be executed
in any RTAI platform where all the real time system calls
can be recognized. It won’ t work on a i486 since is
programmed to manipulate directly the 8254, not present in
this architecture.
Our user space application will work in any rtai-lxrt-linux
system.
The nonRT applications are to be executed as standard
linux programs in the user space. Only compilation
features have to be taken into account.
The compilation of the code has to be done with the same
compiler used for the kernel to avoid any error. It is
important not to forget the –O optimization flag for the
compilation when necessary.

8. APPLICATIONS OF THE SYSTEM.

Our system, offers a set of real time modules and routines
so as to test the real time resolutions of any physical system
manipulating the serial port, either periodically or by some
signal from the parallel port. We also offer the same
routines for a non real time system so as to make
comparative studies of the resolution times of the system in
both real time and non real time cases.
Depending on the physical system we want to test, the user
can select a more or less intrusive installation. The kernel
space module version, will install some modules into the
kernel to control a signal coming from the parallel port and
sending some other signal to the serial port. We can
guarantee time responses of maximum 15 microseconds.
The user space application, will do the same task, but
without interfering directly into the kernel. In this case,
delays up to 20 microseconds.
A benchmark is also offered to the user: a non RT
application can be executed so as to see the delays of a non
real time system when reading from the parallel port and
writing onto the serial port.
Finally, an I/O program in standard linux user space can be
executed to overhead the system and calculate the
efficiency of the RT modules and non-real time programs,
in extreme system overhead situations.

9. CONCLUSIONS AND FUTURE WORK.

As a future work we propose the development of a real
hardware application so as to test the modules designed and
to physicall y see the comparisson between the RT and
nonRT outputs of the system.
We propose the design of an eight leds device that has to
do 3D designs in real time. The leds are distributed
longitudinally in a stick that is attached to the engine
always turning around itself.
The system will have an engine, whose input to the
computer will be by the parallel port. The engine will
communicate to the computer at each turning of 90
degrees. Each tick will go to the computer and will have to
be processed, real time, so as to switch on the appropriate
led in the stick to design the feature in 3D.
The proposal is that of using our real time modules to
receive the periodic signal from the parallel port and
manipulate the serial port as desired. This system is
supposed to work properly, even if executing our overhead
I/O program. This is thanks to the real time resolutions
guaranteed by our RTAI system.
Finally, we would also execute it with the non real time
modules so as to calculate resolutions and see how the 3D
feature in the leds is obtained in a non real time system
with the I/O overheading the system.
Besides, many other systems that need to manipulate
parallel or serial ports in real time, or wanting to test
whether their systems need or not real time resolution, can
use our set of modules to do so.

10. REFERENCES

[1] Andris P. Robot Control Using Real-Time Linux
Artiticulated body Movement Simulation, Proc. of the
Real-Time LINUX Workshop, Orlando, USA, 2000 .
[2] Dipartimento di Ingegneria Aerospaziale, Politecnico di
Milano, RTAI, www.rtai.org
[3] Kupper, J. The serial port driver of real time Linux.
Institut fur Physicalysche Chemic, Frankfurt, 2000.
[4] Küpper J. Real Time Linux driver for the serial port
 rt-com.sourceforge.com/rt_com.pdf, (on line manual).
[5] Lineo, www.lineo.com
[6] List, S. RTAI: définition et concepts, Alcôve. France,
2000, www.courseforge.org/courses/fr/rtai1/rtai.pdf (on
line manual).
[7] Mantegazza P.DIAPM-RTAI:why’s, what’s and how’s.
Proceedings of the Real Time Linux Workshop. Vienna,
Austria, 1999.
[8] Mantegazza P., Dozio L., A hard Real Time support for
LINUX, Dipartimento di Ingegneria Aerospaziale, Milano,
Italy,1999. www.rtai.org (on line manual)
[9] Montavista, www.mvista.com
[10] Morgan, K. in Linux Devices, www.linuxdevices.org
[11] Real Time Linux website, www.realtimelinux.org
[12] Robbins K.A, Practical UNIX Programming: a guide
to concurrency , communication and multithreading,
Prentice Hall , 1996.
[13] RTLinux, www.rtlinux.org
[14] Ward B., The Linux Kernel HowTo
(http://www.linuxdoc.org/HOWTO/Kernel-HOWTO.html)
[15] Waugh T., The Linux 2.4 parallel port subsystem,
people.redhat.com/twaugh/parport/html/parportguide.html
(on line manual).

