
Performance Comparison of RTOS

Shahmil Merchant, Kalpen Dedhia
{Kmd83 and srm96}@columbia.edu

Dept Of Electrical Engineering
Columbia University

Abstract: Embedded systems are becoming an
integral part of commercial products today.
Mobile phones, watches, flight controllers etc
are to name a few. There is a strong and
compatible relationship between the system
hardware and the software, primarily the
operating system to ensure hard real time
deadlines. The real time operating system has to
interface/communicate well with the hardware
below it to prevent casualty.

We look into two such, freely available, real-time
operating systems ecos and rtlinux. We analyze
the real time attributes, like timing latency,
context switch latency and interrupt latency, of
these operating systems by means of simple
applications. We intend to give a better
understanding of the finer intricacies of ecos and
rttinux and study the pros and cons of them.

1. INTRODUCTION

Real time applications have become a very
common phenomenon these days. Developers
are given the enviable task of making software
with real time constraints. A large number of
RTOS are available in the market and one does
get confused as to which one to use such that it
provides the best over all benefits in terms of
cost and operability. There are set of certain
benchmarks, which one could examine in an
RTOS, such as latency, susceptibility to different
loads.

The main goal of our paper would be one of
providing a larger picture of the job at hand in
the form of an evaluation rather than providing a
detailed study of measurement. We chose Ecos
and Rtlinux due to the fact that they are free
ware and are stable Linux ports with POSIX
compliance. Obenland’s [5] paper looks at
POSIX in real-time systems and POSIX thread
extensions and compares the performance of two

general-purpose operating systems and two real-
time operating systems .

Stewart’s paper [4] illustrates different methods
for estimating execution time of both user level
and operating system overhead. Coarse grain
timing measurements is calculated in software
with time granularity in milliseconds. Hardware
must be used to accurately predict the execution
time. We are going to follow the software
approach.

The main goal of this project is to study and
analyze real-time operating systems and what
semantics go into developing one. This project
provides an initial approach about how to
compare real-time operating systems.

The organization of the paper is as follows: in
section 2 we survey the related work in
comparing real time operating systems, different
measurement approaches. Section 3, we explain
some characteristics of the two real time
operating systems and test metrics for comparing
RTOSes. Section 4 discusses the experimental
results and compares ecos and rtlinux based on
these results. Finally, in section 5 we provide a
summery and directions for future work.

2. RELATED WORK

Liu and Layland [3] came up with Rate
Monotonic scheduling (priority driven
scheduling) of real-time operating systems which
is premier scheduling algorithm implemented in
almost all the RTOSes. Better scheduling
algorithm - Earliest Deadline First (deadline
driven scheduling) is too complex to be
implemented in real-time operating system.
Keelings [2] article about the effects of priority
inversion and its solution gives an insight to the
hazards of priority inversion.

 Stewarts [4] explains different approaches to
calculate timing and performance, writing user
code to measure performance and identifying
timing errors. Manas [6] discusses Linux as real
time operating system and different approaches
for real-time Linux kernel. Timmerman [7]
describes the framework for evaluation of real-
time operating systems. This article makes a
really good point of comparing RTOS under
different load conditions.

3. RTOS AND TEST METRICS

Real time operating systems are systems, which
respond to any external unpredictable event in a
predictable way and with strict timing
constraints. Real time operating systems are
required to be very deterministic. Some other
important features of every RTOS are as follows:
1. It should have some support for multi-

tasking (threads) and it should be pre-
emptive priority driven system.

2. RTOS should support thread
synchronization using semaphores or
mutexes.

3. RTOS must have sufficient number of
priority levels.

4. RTOS must avoid priority inversion.

Edwards [1] book explains priority inversion in
brief.

Scheduling a task in RTOS is critical. RTOS
scheduler follows one of the following
mentioned scheduling polices: FIFO (First In-
First Out), STF (Shortest Time First), EDF
(Earliest Deadline First), Priority scheduling
defined by Liu and Layland [3], etc.

3.1 Test Metrics

RTOS has strict timing constraints and it should
respond, under all possible load condition, in a
very predictable way. This means different
latencies of the systems should be predictable.
Best operating system should have minimum
latency and least amount of standard deviation.
Following are the test metrics to evaluate eCos1
and Rtlinux2.

1. eCos is dis tributed by RedHat, Inc.
2. Rtlinux is distributed by Finite State

Machine Labs, Inc.

3.1.1 Thread Switch Latency

A thread is defined by different states such as
waiting, running, runnable etc. The time taken
for the thread to move between different states is
a parameter for testing RTOS performance. The
context switch overhead in switching from one
thread to another is lesser than a process as a
thread is a lightweight process.

3.1.2 Interrupt Latency

Probably the most important feature for
evaluating the performance of a RTOS is its
ability to respond to interrupts. The time taken
by the interrupt handler to deal with an interrupt
and get back to regular program execution is
extremely important in systems governed by
hard real time constraints.

3.1.3 Thread creation and destruction

The RTOS under study have POSIX 1.0
compatibility. One could use the time to create
the thread and destroy the thread as a good
metric due to the simple reason it would show
how well memory management would work in
the system under consideration.

3.1.4 File System management

File systems provide an abstraction to the higher
levels of software code the way as to which
programs are stored in disk. Files on disk could
be stored in the following manner:

Contiguous Allocation: Where processes are
stored one after the other in the form of a heap
and termination of a process could result in holes
being created on the File system.
Defragmentation is a solution.

Allocation table: A directory like structure
wherein the directory has a pointer to each
process on disk. FAT used in Window is an
example.

Indexed Allocation: Where indexes to a linked
list of processes exist. Best method allocation.

Hence by testing the time needed to create and
open close a file could test the feasibility of
different allocation schemes.

3.1.5 Synchronization

Shared resources form an integral part of an
Operating system. Great care has to be taken
when dealing with resources that can be used by
different objects. Semaphore and Monitor
implementation takes care of the Critical Section
Problem.

The way an RTOS behaves to different system
loads is an integral part of testing of an operating
system. We test the real-time operating system
under different load conditions.

3.2 RTOS under consideration

Both eCos and RTLinx are supplied as open
source.

3.2.1 eCos

eCos, developed by Cygnus (now owned by
Redhat), is distributed by Redhat, Inc. eCos
supports broad range of targets like ARM,
Hitachi SH3, Intel x86, MIPS, Matsushita
AM3x, PowerPC and SPARC including 16,32,
64 bit architectures and Digital Signal
Processors.

eCos meets the requirements of the real-time
systems that Linux cannot yet reach. eCos has
highly configurable kernel. You can build
application specific real-time operating system
with really small footprint. eCos has prioritized
FIFO and Bitmap scheduling policies with 32
priority levels. It also supports priority
inheritance and priority ceiling to tackle priority
inversion problem. eCos has only soft real-time
support for interrupt latency. All other latencies
are CPU dependent.

More about eCos real-time operating system,
development tools and device drivers can be
found on Redhat website [9].

3.2.2 RTLinux

RTLinux is developed and distributed by Finite
State Machine Labs, Inc. RTLinux support a
limited number of architectures, like x86,
PowerPC, MIPS, Alpha, unlike eCos. RTLinux
is a hard real-time kernel that co-exists with
linux kernel. Linux kernel is a lowest priority
task or RTLinux kernel and it can be fully pre-

empted. RTLinux kernel communicates with
Linux kernel using shared memory. This
approach allows real-time applications to take
advantage of non real-time features of Linux.

RTLinux supports prioritized FIFO scheduler
and extensible scheduler with 1024 priority
levels. Lock-free data structure and priority
ceiling are two approaches to avoid priority
inversion. RTLinux claims to have hard real-time
interrupt latency. All the other latencies are CPU
dependent.

Yodaiken’s [8] paper explains hard real-time
approach of RTLinux and its one of the first
papers written on RTLinux. More about
RTLinux can be found on Finite State Machine
Labs official website [10].

4. EXPERIMENTAL RESULTS

We have successfully installed both the
operating systems that are eCos and Rtlinux.
eCos was installed using a Linux synthetic
target. Rtlinux version 2.2a (pre-patched) was
used .The installation techniques are described in
the appendix as given later.

One of the most challenging aspects was just to
get these two real-time operating systems
working on the x86 architecture. We used AMD
K6 266 MHz processor and Redhat’s Linux
distribution 6.2 and kernel version 2.2.14.

For Rtlinux our approach to calculate the thread
creation and deletion latency is simple. We
create a thread and just before doing so we
measure the time and immediately after creation
of the thread we measure the time again. The
values that we got are given in the table below.

We also measure the context -switching overhead
between threads. We define a shared resource
and create two threads. We then create a lock on
it. Any thread that comes in acquires the lock
and using the resource. We calculate the time
required to access the lock and also the time
when the thread relinquishes the lock. Rtlinux
uses generic C libraries but provides a few API’s
for measuring real time issues. Programs require
one to build modules, which are added at run
time to the Linux kernel. Hence compiling
Rtlinux adds new modules.

eCos does provide an abstraction of a real time
operating system and its because of its wide
range of configuration options. Once the eCos
kernel has been configured and built it provides a
Hardware abstraction layer (HAL), which is a set
of binaries built above the Linux kernel, which
ensure the real time environment.eCos requires,
to build this binary Hardware Abstraction Layer
and run your application on either of the 2 targets
– A Linux synthetic target which is the same
machine and where the actually scheduling is
done by the Linux scheduler but with real time
support provided by the binaries or An external
target where in the you connect to it by means of
a serial port or Ethernet. The target machine was
booted using an image file that was created
during the eCos “stub” creation process. For
eCos we used a couple of files that we generated
during the installation process that enabled us to
calculate the thread creation switching etc time.
The values obtained have been tabulated below.

Test Metrics eCos RTLinux
Thread Creation

Latency
16130-

34300 ns
137216 ns

Thread Deletion
Latency

5350-6450
ns

8448 ns

Mutex latency 5043-25340
ns.

504346912
ns

Table 1

We can see from table, eCos has a range of
values and standard deviation is large. Thus, if
system requirement are hard real-time, you
should choose RTLinux as its latency values are
fairly predictable. We are yet at a nascent stage
of analysis and any assumptions would require
further probing.

5. CONCLUSION

Studying the differences between the two
RTOS, we came to the conclusion that
scheduling policies strictly dependent on
priorities and with built in priority inversion
avoidance. Hard real-time support for interrupt
latency in RTLinux is vital. We need to consider
the size of the kernel, its ability to support hard
real-time timing constraints and performance
under different load conditions before judging
which RTOS better than the other RTOS.

We have done the groundwork. We have tested
basic applications to measure semantics
regarding time. Other semantics such as support
for additional devices, drivers, portability to
different hardware and virtual memory issues
need to be discussed. Time and resource
constraints have really not given us much time
to study these issues. Our analysis does give the
reader a overview of what actually goes into
developing an operating system with real time
constraints and how similar operations on
different RTOS require different time to
execute. This does open room to think of
different ways of optimizing a Kernel for Real
time applications by taking the best features of
each.

6. ACKNOWLEDGEMENTS

We would like thanking Prof. Stephen Edwards
for giving us the opportunity to implement such
an interesting project and giving us valuable
guidance as and when required. We would also
like to thank Jonathan Larmour and Gary
Thomas from Redhat and Michael Berbanov
from FSM labs for their continuous support.

7. BIBLIOGRAPHY

[1] S Edwards. Languages for Digital Embedded

Systems. Kluwer, 2000.

[2] N.J. Keeling. How Priority Inversion messes

up real-time performance and how the
Priority Ceiling Protocol puts it right. Real-
Time Magazine 99(4): 46-50. April, 1999.

[3] C. Liu and James Layland. Scheduling

algorithm for multiprogramming in a hard
real-time environment. Journal of the
Association for Computing Machinery,
20(1): 46-61, January 1973.

[4] David Stewart. Measuring Execution Time

and Real-Time Performance. In Embedded
Systems conference, San Francisco, April
2001.

[5] K. Obenland. Real-Time Performance of

Standards based Commercial Operating

Systems. In Embedded Systems conference,
San Francisco, April 2001.

[6] Manas Saksens. Linux as Real-Time

Operating System. In Embedded Systems
conference, San Francisco, April 2001.

[7] Martin Timmerman. RTOS Evaluations

Kick Off. Real-Time Magazine 98(3): 6-10.
March 1998.

[8] Victor Yodaiken. RTLinuX approach to hard

real-time.
http://luz.nmt.edu/~rtlinux

[9] http://www.redhat.com/embedded

[10] http://www.fsmlabs.com

APPENDIX

Installing RTlinux

Download and tar

Download a clean prepatched kernel from Rtlinux.org. http://RTlinux.org/

rtlinux-2.0 is intended to be used with Linux 2.2.13
rtlinux-2.2 is intended to be used with Linux 2.2.14
rtlinux -2.2a is also intended to be used with Linux 2.2.14

I placed this file in the home directory of root.

 I want to untar it into /usr/src

tar xzvf /root/rtlinux-2.2a-prepatched.tar.gz /usr/src

Note 2.2/2.2a - Both use the same rtlinux-2.2 directory when taken out of the tar ball.

A whole bunch of stuff goes across the screen indicating all of the files that tar is placing
in /usr/src. This creates a new directory /usr/src/rtlinux-2.2 and sets up the new kernel
structure below it.

The linux link

 [root@localhost /root]# cd /usr/src

I see from the light red line that - linux ->linux-2.2.14. So the linux file in this directory
is a link. Since it is only a link I can delete it and then check to make sure it is gone.

[root@localhost src]# rm linux

Now if it is a real directory with a bunch of sub directories, I'd need to move it to some
other location. I'd do that by first seeing that it was a directory rather than a link to a
directory.

I see from the light red line that linux is a common directory -- its line begins with (d)
rather than (l) and it just has a (/) after its name. I need to move this linux directory out
of the way before I compile a new kernel. I'll called it linuxold . The mv command with
the linux name and linuxold as the new name does the deed for me.

Now you need to make a new link in place of the old /usr/src/linux

[root@localhost src]# ln -s rtlinux-2.2/linux linux

Make certain that the link goes from /usr/src/linux to the realtime/linux. Not the other
way round.

Configuring the kernel

 But at least I have a start at knowing what needs to be included when I run make
oldconfig, make config, make menuconfig, or make xconfig. I'm going to make sure
that I am in the correct directory before I enter the config command.

[root@localhost linux]# pwd
/usr/src/rtlinux-2.0/linux

Yes, I am in the correct location for the configuration process. So I need to select the
method that I will use. The possibilities again are:

• make oldconfig
• make config
• make menuconfig
• make xconfig

This is what each looks like. I use make menuconfig but it was just a matter of choice.

make menuconfig

 To start this method you can just enter make menuconfig at the prompt.

[root@localhost linux]# make menuconfig

After a bit of checking and compiling, the following window shows up.

This seems to be an easier option than the make config. It also allows you to skip around
among the many sections of the config file and repeat your work in each section. The
following screen shows the processor type and features menu.

You can navigate around the menu choices with the up and down arrow keys. You can
also navigate across the select, exit, and help items with the left and right arrow keys.

Whenever a parameter is highlighted, you can select it with (y), deselect it with (n), or
make it a module with (m). The help files are very helpful here.

Making the kernel

There are several things that you will need to do as a part of making the kernel. They
include:

• make dep
• make clean
• make bzImage
• make modules
• make modules_install
• move bzImage-RTL2.2 and System.map-RTL2.2
• make a new link from System.map

make dep

Now I am ready to begin to build the new kernel. At this point make is going to set up all
of the dependencies between the many files that will have to be compiled into the new
bzImage file.

[root@localhost linux]# make dep

make clean

This command cleans up the file system by removing any unnecessary files that were
created during the previous step.

[root@localhost linux]# make clean
[root@localhost linux]#

make bzImage

 [root@localhost linux]# make bzImage

This is the place where you really test that /usr/src/linux link to /usr/src/rtlinux-2.2/linux.
If that link is not correct. you may get the following error message.

[root@localhost linux]# make bzImage
In file included from /usr/include/errno.h:36,
 from scripts/split-include.c:26:
/usr/include/bits/errno.h:25: linux/errno.h: No such file

or directory
make: *** [scripts/split-include] Error 1

If you get a message like this, fix that link.

During this operation, the interpreter issues several warnings but none of them are fatal.
As it approaches the conclusion of this process I get the following lines.

 ...
Root device is (3, 5)
Boot sector 512 bytes.
Setup is 1308 bytes.
System is 584 kB
[root@localhost linux]

These messages are significant because they say that a kernel has been made and tell
what its size is. The size of your system will be different from that shown above. You
can see the result from the following link.

[root@localhost linux]# ls -l arch/i386/boot/bz*
-rw-r--r-- 1 root root 669362 Nov 5 14:22
arch/i386/boot/bzImage

And there it is. There should also be a new system map in the linux directory.

[root@localhost linux]# ls -l Sys*
-rw-r--r-- 1 root root 218189 Nov 5 14:22
System.map

These are the two files that we will need to copy into the /boot directory. This will be
done right after I make and install the kernel modules.

make modules

 [root@localhost linux]# make modules
make -C kernel CFLAGS="-Wall -Wstrict-prototypes - (much
more here)
...

There were a number of warning messages issued by the interpreter during this process.
There were no errors that caused the procedure to abort.

make modules_install

Now I need to move those modules in the right place so that the new kernel can find
them.

[root@localhost linux]# make modules_install
Installing modules under /lib/modules/2.2.14-rtl2.2/net

The returned lines indicate that modules were found and that they were installed in the
libraries.

Move bzImage and System.map

In the directory /boot, the file System.map-* is the currently running system map because
it is pointed to by the link from System.map. Also when lilo asks for vmlinuz it will get
vmlinux-*. I want to preserve some of the same ability to link simple file names to the
files that I just created. To do this, I am going to call them by their name and add the -
RTL2.2 suffix to each. Since I am still in the /usr/src/rtlinux-2.2/linux directory, I can
reference the new files from there.

[root@localhost linux]# pwd
/usr/src/rtlinux-2.2/linux
[root@localhost linux]# cp System.map /boot/System.map-
RTL2.2
[root@localhost linux]# cp arch/i386/boot/bzImage
/boot/bzImage-RTL2.2

and the file copy deed is done.

I can boot directly from bzImage-RTL2.0 as we will see in a minute when we edit
LILO.config. But I need to delete the old System.map link and make a link from
System.map to the new System.map-RTL22.

[root@localhost linux]# rm /boot/System.map
rm: remove `/boot/System.map'? y
[root@localhost linux]# ln -s /boot/System.map-RTL2.0
/boot/System.map

Look again at the directory of /boot to see that everything is okay.

Editing LILO

My system uses LILO to boot up. The file /etc/lilo.conf sets up LILO so I need to edit it
and include the new image

boot=/dev/hda
map=/boot/map
install=/boot/boot.b
vga=normal
default=linux
keytable=/boot/us.klt
prompt
timeout=150
message=/boot/message

image =/boot/bzImageRTL22
 label=rtl22
 root=/dev/hda5

 append="mem=63M" (this is the size of my ram memory
-1M for shared)
 read-only
image=/boot/vmlinuz
 label=mandrake
 root=/dev/hda5
 append=""
 read-only

Now with lilo.config set up like this, I need to run LILO to modify the boot sector.

[root@localhost linux]# /sbin/lilo
Added linux *
Added rtl22

LILO will report what it has done. The * shows that linux will be the default kernel. If it
doesn't report that it has added your new kernel you should edit /etc/lilo.conf and try
again.

Running the kernel

When LILO starts up it will wait a while before it loads the default kernel. During that
time you can press the tab key and get a list of possible entries. If your new kernel does
not come up properly, you can enter one of the other kernel names at that time and it will
be booted.

Making the rt modules

make modules

 [root@localhost /root]# cd /usr/src/rtlinux-2.2
[root@localhost rtlinux-2.2]# make
Kernel version 2.2.14-rtl2.2
...
make[1]: Leaving directory `/usr/src/rtlinux-
2.2/drivers/rt_printk'
Now you need to become root and do "make install"

make install

Make install is run from the same directory that the make command was run in.

Note 2.0 - The 2.0 report will show the rtl directory and other kernel names.

[root@localhost rtlinux-2.2]# make install

Testing for the mbuff device... mknod /dev/mbuff c 10 254
Testing for FIFOs... created /dev/rtf0 - 7 (major 150)

Instaling modules in /lib/modules/2.2.14-rtl2.2/misc
/sbin/depmod -a
Installing man pages to /usr/local/man
Installing header /usr/include/rtlinux
install -c -m 644 rtl.mk /usr/include/rtlinux;

After following all directions on installing the rtlinux-2.2 kernel, I had two files that
needed permissions changed before it would let me see the examples operate. Those files
are, rmrtl and insrtl and they are both in the rtlinux-2.2 directory.

[root@localhost rtlinux-2.2]# chmod -v a+rx insrtl rmrtl
mode of insrtl changed to 0755 (rwxr-xr-x)
mode of rmrtl changed to 0755 (rwxr-xr-x)
[root@localhost rtlinux-2.2]#

Installing ECOS for linux synthetic target.

Downloading eCos

The latest development versions of eCos are now provided via the eCos anonymous CVS
repository, and it is strongly recommended that wherever possible this mechanism is used
in preference to downloading eCos 1.3.1. eCos 1.3.1 does not have the functionality,
platform coverage, nor bug fixes that are available in the latest versions of eCos.

Installing the eCos RPM
To install the RPM format eCos distribution, you should first ensure that you have the
RPM tool. This tool is supplied by default on all Red Hat Linux distributions. The RPM
must be installed by the root user, so you may need to ask your systems administrator to
install it for you. To install it simply run the following command as root:

 rpm -i ecos-1.3.1-1.i386.rpm

On completion, the eCos repository will be found in the directory /opt/ecos/ecos-
1.3.1.

Users without root access may still be able to extract the files from the RPM by using the
following command:

 rpm2cpio ecos-1.3.1-1.i386.rpm | cpio -i -d

GCC 2.95.2 sources can be downloaded from the GCC page. Both the core distribution
and the C++ distribution files are required for eCos. Install either of the following
distributions.

• gcc-core-2.95.2.tar.gz
• gcc-core-2.95.2.tar.bz2
• gcc-g++-2.95.2.tar.gz
• gcc-g++-2.95.2.tar.bz2

Note that the instructions for building GCC here are only intended for use with eCos. In
any other environment, the tools may not function correctly

GNU Debugger

Instructions for downloading the GNU Debugger (GDB) are provided on the GDB home
page. However, Red Hat has also released an open source graphical front-end to GDB
based on Tcl/Tk called Insight, which has a separate home page

The Insight sources are a superset of the standard GDB sources. It is also still possible to
run GDB in command-line mode by using the -nw command-line option when invoking
GDB, so there is nothing to lose by using the Insight sources.

The latest release (version 5.0) is recommended and may be downloaded via the GDB
home page. Download the files directly:

• Insight-5.0.tar.bz2
• gdb-5.0.tar.bz2

Preparing the sources for building
Once the tools sources have been downloaded, they must be prepared before building.
These instructions assume that the tool sources will be extracted in the /src directory
hierarchy. Other locations may be substituted throughout. Similarly placeholders of the
form YYYYMMDD and YYMMDD should be replaced with the actual date of the downloaded
files. Ensure that the file system used has sufficient free space available. The contents of
each archive will expand to occupy approximately 6 times the space required by the
compressed archive itself.

The following steps should be followed at a sh, ksh or bash prompt. Users of the csh and
tcsh shells should replace 2>&1 with |& throughout:

1. Create a directory for each set of tool sources, avoiding directory names
containing spaces as these can confuse the build system:

2. mkdir -p /src/binutils /src/gcc /src/gdb
3. Extract the sources for each tool directory in turn. For bzip2 archives:

 cd /src/binutils
 bunzip2 < binutils-2.10.1.tar.bz2 | tar xvf -
 cd /src/gcc
 bunzip2 < gcc-core-2.95.2.tar.bz2 | tar xvf -
 bunzip2 < gcc-g++-2.95.2.tar.bz2 | tar xvf -
 cd /src/gdb
 bunzip2 < insight-5.0.tar.bz2 | tar xvf -

For gzip archives:

 cd /src/binutils
 gunzip < binutils-2.10.1.tar.gz | tar xvf -
 cd /src/gcc
 gunzip < gcc-core-2.95.2.tar.gz | tar xvf -
 gunzip < gcc-g++-2.95.2.tar.gz | tar xvf -
 cd /src/gdb
 gunzip < insight-5.0.tar.gz | tar xvf -

The following directories should be generated and populated during the extraction
process:

 /src/binutils/binutils-2.10.1
 /src/gcc/gcc-2.95.2
 /src/gdb/insight-5.0

If the standard GDB source distribution was downloaded rather than Insight, then
the GDB tools source directory will be /src/gdb/gdb-5.0 rather than
/src/gdb/insight-5.0.

4. You may now need to apply a small number of source patches that are required to
fix outstanding problems and add eCos support to the tools Download the ecos-
gcc-2952.pat patch to a file and apply it:

 cd /src/gcc/gcc-2.95.2
 patch -p0 < ecos-gcc-2952.pat

You must then reset the source file timestamps to ensure that makefile
dependencies are handled correctly:

 contrib/egcs_update --touch

If the patch utility reports the following message:

 Reversed (or previously applied) patch detected! Assume -R?
[n]

then type n because this indicates the patch has already been applied in the master
sources.

Building the tools

1. Configure the GNU Binary Utilities:

 mkdir -p /tmp/build/binutils
 cd /tmp/build/binutils
 /src/binutils/binutils-2.10.1/configure --target=i686-pc-
linux-gnu \
 --prefix=/tools \
 --exec-prefix=/tools/H-i686-pc-linux-gnu \
 -v 2>&1 | tee configure.out

If there are any problems configuring the tools, you can refer to the file
configure.out as a permanent record of what happened.

2. Build and install the GNU Binary Utilities:

 make -w all install 2>&1 | tee make.out

If there are any problems building the tools, you can use the file make.out as a
permanent record of what happened.

3. Configure GCC, ensuring that the GNU Binary Utilities are at the head of the
PATH:

 PATH=/tools/H-i686-pc-linux-gnu/bin:$PATH ; export
PATH (for sh, ksh and bash users)
 set path = (/tools/H-i686-pc-linux-gnu/bin $path
) (for csh and tcsh users)
 mkdir -p /tmp/build/gcc
 cd /tmp/build/gcc
 /src/gcc/gcc-2.95.2/configure --target=i686-pc-linux-gnu \
 --prefix=/tools \
 --exec-prefix=/tools/H-i686-pc-linux-gnu \
 --with-gnu-as --with-gnu-ld --with-newlib \
 -v 2>&1 | tee configure.out

4. Build and install GCC:

 make -w all-gcc install-gcc \
 LANGUAGES="c c++" 2>&1 | tee make.out

5. Configure Insight:

 mkdir -p /tmp/build/gdb
 cd /tmp/build/gdb
 /src/gdb/insight-5.0/configure --target=i686-pc-linux-gnu \
 --prefix=/tools \
 --exec-prefix=/tools/H-i686-pc-linux-gnu \
 -v 2>&1 | tee configure.out

6. Build and install Insight:

 make -w all install 2>&1 | tee make.out

On completion, the Intel x86 Linux development tool executable files will
be located at /tools/H-i686-pc-linux-gnu/bin. This directory should
be added to the head of your PATH.

Setting up the eCos environment
Having installed eCos and the development tools, the environment must be setup prior to
use.

1. Indicate the location of the eCos repository to the eCos host tools. For sh, ksh and
bash users:

 ECOS_REPOSITORY=/opt/ecos/ecos-1.3.1/packages
 export ECOS_REPOSITORY

For csh and tcsh users:

 setenv ECOS_REPOSITORY /opt/ecos/ecos-1.3.1/packages

2. Add the location of the eCos host tools and the build tools to the PATH. For sh,
ksh and bash users:

 PATH=/opt/ecos/ecos-1.3.1/tools/bin:$PATH
 PATH=/tools/H-i686-pc-linux-gnu/bin:$PATH
 export PATH

For csh and tcsh users:

 set path = (/opt/ecos/ecos-1.3.1/tools/bin $path)
 set path = (/tools/H-i686-pc-linux-gnu/bin $path)

The Build Process

Build Tree Generation

An eCos build actually involves three separate trees. The component repository acts as
the source tree, and for application developers this should be considered a read-only
resource. The build tree is where all intermediate files, especially object files, are created.
The install tree is where the main library libtarget.a, the exported header files, and
similar files end up. Following a successful build it is possible to take just the install tree
and use it for developing an application: none of the files in the component repository or
the build tree are needed for that. The build tree will be needed again only if the user
changes the configuration. However the install tree does not contain copies of all of the
documentation for the various packages, instead the documentation is kept only in the
component repository.

By default the build tree, the install tree, and the ecos.ecc savefile all reside in the same
directory tree.

I build 2 directories called ecos_app and ecos_src

In the ecos_src I do the following

 ecosconfig new linux //since the target is linux synthetic

 ecosconfig tree

ecosconfig check (this basically checks on any conflicts and modifies the configuration
file)

Once the build tree is made then we can just run “make” which will build the
corresponding directories.

The application directory.

Copy the makefile from the /examples directory into the application directory .Modify
the PKG_INSTALL_DIR to point to the build tree PATH. Also modify the makefile to
include the files to be executed.

Remote target procedure

In order to run the above for a remote target build another directory called ecos_stub and
do the following

ecosconfig new pc stubs

ecosconfig tree

make

copy the gdb_module.bin file using dd in linux into floppy.

The PATH and configuration would then accordingly change depending on the target you
have(whether i386 or arm etc)

Then boot your target machine from the floppy and connect your machine to the target
machine using a null modem serial line .

Run gdb on your machine and do the following:

i386-elf-gdb executable

At the gdb prompt run the following

Set remotebaud 38400

Set debug remote 1

Target remote /dev/yourserialport

Then once you get through this stage type

Load

Then continue

This is ensure the running of ecos applications.

