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Abstract 
 
High-level abstraction and formal modeling of reactive real-time embedded systems is an integral part of the 
embedded system design process. Such models allow designers to perform rigorous verification of the final 
product before manufacturing, thus ensuring that the final product is error-free.  This paper outlines the process 
of creating a formal software model of the PIC16F84 microcontroller using the synchronous, event-driven 
Esterel-C (ECL) language.   In addition, it describes the results of performing verification of this model using the 
XEsterel Verification Environment (XEVE) open-source software package.  Finally, it offers a critical analysis of 
the verification results and suggestions to improve the verification process.  
 
 
 
Introduction 

Currently, real-time reactive embedded 
systems are used extensively.  Given the mission-
critical nature of such systems, designers cannot 
afford to have any errors in the final product.  As 
a result, all errors and behaviors of the system 
have to be verified and corrected at the design 
level.  The verification process of such models 
must be rigorous and as automated as possible, to 
save design time, and to ensure that the model is 
error-free.  This paper describes the process of 
designing a software model (simulator) of the 
PIC16F84 microcontroller using the synchronous, 

even-driven Esterel-C Language (ECL).  More 
importantly, it describes and analyzes the results 
of performing formal verification on the model 
using the X Esterel Verification Environment 
(XEVE).   
 
 
Related Research and Products 

Existing hardware simulators utilize one of 
two simulation techniques: circuit simulation and 
functional modeling [1].  Circuit simulation 
involves creating a SPICE model (transistor-level 
model) of the target hardware.  Simulation is 

Figure 1: Functional units and their interconnections 
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performed by measuring the voltage and current 
outputs of the model in response to different 
input signals.  This is fundamentally different from 
functional modeling, which involves decomposing 
the hardware into high-level functional units.  In 
this kind of simulation, the target hardware is 
treated as collection of interconnected “black-
boxes” that all have different functionalities. 

Despite the fundamental difference in 
simulation techniques, hardware simulators tend 
to have similar underlying architectures.  The most 
widely used architecture for microprocessor 
simulators is the discrete-event architecture (DEA).  
Every decision in DEA simulators is in response 
to an event, which could be a new instruction or 
an external stimulus [2].  Events are triggered in 
response to an internal clock or some form of 
discrete time system and the result of processing 
the event are to change the overall state of the 
system. 

Currently, there are three main software 
simulators for the PIC16F8X family of chips.  All 
of these three simulators allow only functional 
modeling type of simulation to be performed 
based DEA.  These are: 

? MPSIM: Discrete-event simulator [3] 
designed for debugging software 
applications made for the PIC16FXX family 
of chips.  It offers the user the ability to 
place breakpoints in the code and perform 
step-by-step execution of programs.  In 
addition, it offers a register-browser, code-
browser and I/O pin monitor.  Program 
execution can be frozen midway and 
instructions can be changed on the fly.  
Contents of the execution stack can be 
observed at all times. 

? GPSIM: Full-featured simulator [4] for the 
PIC microcontrollers distributed under the 
GNU General Public License.  It includes 
simulation of all the core I/O pins and can 
be subject to external stimuli.  It also 
includes a register state browser, code 
browser, debugger and I/O pin monitor.  It 
is implemented entirely in C and can be used 
only on a Linux system.  

? Universal Microprocessor Program 
Simulator: This simulator has the ability to 
model a variety of existing microcontrollers 
in addition to the PIC series [5].  It 
possesses all the functionality of GPSIM, 
but also includes a variety of hardware 

external devices (such as a 7-segment LED 
and D/A converter) that are not specific 
to the PIC chips.  

 
 
 
Design – Decisions and Rationale 

Unlike the simulators described above, this 
implementation (hereto referred to as ESIM) 
does not encompass the complete functionality 
of the PIC16F84 microcontroller.  Since the 
ultimate goal of this project is to perform formal 
verification, complete emulation is be beyond the 
scope of this research.  Functionality that has 
been sacrificed includes the ability to define and 
use subroutines and the ability to perform 
external I/O. 

The other simulators are meant to be 
complete debugging environments for PIC16F84 
assembly programs.  They have been created 
after rigorous verification of their target hardware.  
In contrast, ESIM is meant to be an example of a 
foolproof model against which the final hardware, 
or its circuit simulation can be crosschecked.  
This also explains why ESIM is implemented in 
ECL, as opposed to an inherently 
nondeterministic language like C, or C++.  
Determinism allows the verification of the model 
to be automated, reliable and thorough.   

ESIM consists of six Esterel modules 
(Figure 1): master, loader (Program Memory), 
decoder (Instruction Decode and Control), 
reader, ALU (Arithmetic Logic Unit) and writer 
(EEPROM Data Memory).  The names of the 
actual functional units on the chip are in 
parentheses [6].  Modules communicate 
exclusively through Esterel signals.  When 
multiple modules are signaled successively, the 
“calling” module waits for a return response 
from the first “callee” module before emitting its 

par loader(READY, INST_DONE, DECODE, 
DONE); 
par decoder(DECODE, READ_DONE, 
ALU_DONE, WRITE_DONE, DOREAD, DOALU, 
DOWRITE, INST_DONE); 
par reader(DOREAD, OP, W, D, F_VAL, B, 
L, READ_DONE, REG); 
par ALU(DOALU, W, OP, B, F_VAL, L, 
RESULT_OUT, ALU_DONE); 
par writer(DOWRITE, D, REG, RESULT_OUT, 
WRITE_DONE); 

Figure 2: Instantiation of the modules in parallel 
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next signal.  In all cases, the wait for the return 
signal has been implemented as an “await 
immediate”.  This makes sure that a callee module 
does not indefinitely await a signal that was 
present in the previous cycle and that there is no 
possibility for race conditions on global variables.  
More importantly, this correctly emulates the serial 
behavior of the processor. 

Esterel’s synchronous model does not allow 
state preservation, since a signal only exists in the 
context of one instant.  Hence, elements of 
memory such as the code memory, program 
counter and register file are modeled as different 
kinds of C variables.  They are all declared in 
global scope so that all appropriate modules can 
access them when needed.  Since no two modules 
will ever be executing at the same time, there is no 
fear of the variable being overwritten with the 
wrong value.  

The master module instantiates all the 

modules in parallel (Figure 2).  It sets up the 
inter-module communication pathways.  The 
loader is then activated (via the READY signal), 
reads in the assembly program (using C file 
access routines) and stores it in an array of 
instructions.  It iterates through this array 
emitting the DECODE signal for each 
instruction (Figure 3).  The current instruction is 
stored in a global variable.  The decoder module, 
upon receiving the DECODE signal, sets up to 
signal the reader, ALU, and the writer modules  
(Figure 4).  The current instruction determines 
which modules are signaled.  For instance, in the 
bit-oriented operations (BTFSC BTFSS, BCF and 
BSF) the writer module is not signaled since no 
registers need to be updated.   

Control is then passed to the reader module  
(Figure 5), by the decoder’s emission of the 
DOREAD signal.  The reader gets the 

appropriate values (from registers or instruction 
memory) and emits them as valued signals for use 
by the ALU.  In addition, depending on the 
instruction, a signal indicating the write 
destination of the ALU computation may also be 
emitted.  In the ALU module, the result of 
computation on the input valued signals is 
emitted  (Figure 6).  At the same time, a signal 

indicating ALU completion is also emitted so that 
the decoder can then signal the writer module (if 
necessary).   

Finally, the decoder signals the writer 
module with the DOWRITE signal.  Using the 

while (PC < num_instructions) 
{ 
instruction_buffer = prog[PC]; 
emit(DECODE); 
await(); 
if (PC_MODIFIED == 0) 
PC++; 

else 
PC_MODIFIED = 0; 

} 

Figure 3: Emission of DECODE signal for each 
instruction 

opcode = instruction_buffer-
>instruction.byte_instruction.opcode; 
 
if (opcode == 0x7 || opcode == 0x5 || 
opcode == 0x3 || opcode == 0x2 
|| opcode == 0x9 || opcode == 0x6 || 
opcode == 0xB  ||  
opcode == 0xA || opcode == 0xF || opcode 
== 0x4 || opcode == 0x8 
|| opcode == 0x1 || opcode == 0xD || 
opcode == 0xC ||  
opcode == 0xE || opcode == 0x6 || opcode 
== 0x0) 
{ 
  emit(DOREAD); 
  await(immediate(READ_DONE)); 
  emit(DOALU); 
  await (immediate(ALU_DONE)); 
  emit(DOWRITE); 
  await(immediate(WRITE_DONE)); 
  emit(INST_DONE); 
} 

Figure 4: Signaling the reader, ALU, and writer 
modules  

w = REGS[W_REG]; 
f = REGS[instruction_buffer-
>instruction.byte_instruction.f]; 
emit(OP, instruction_buffer-
>instruction.byte_instruction.opcode); 
emit(D, instruction_buffer-
>instruction.byte_instruction.d); 
emit(W, w); 
emit(F, f); 
emit(REG, instruction_buffer-
>instruction.byte_instruction.f); 
emit(READ_DONE); 

Figure 5: Emission of valued signals in reader 
module 

if ( B != 0) 
 B = B - 1; 
F_VAL = F_VAL | (0x1 << B);  
emit(RESULT_OUT, F_VAL); 

Figure 6: Emission of computation result in 
ALU 
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destination indicator signal (emitted in the reader 
module), the result of the ALU calculation is 
written to the appropriate register  (Figure 7).  
Control is returned to the loader module via the 
INST_DONE signal, where the next instruction is 
fetched from the program memory (array).  The 
PC variable is also incremented at this stage. 
 

Simulation and Verification 
Verifying that the model meets its 

specification is the most important part of the 
design process.  If the model is completely 
accurate, then the output of the model can be used 
as a reference point to compare the output of a 
circuit simulation of the hardware.  Any possible 
inconsistencies in the outputs can be used to 
correct the errors in the circuit simulation, thus 
ensuring that the final hardware will be reliable.  In 
order for model verification to be performed 
rigorously, the model should be defined in a 
language that ensures determinism.  This 
eliminates the possibility of unpredictable 
behaviors and allows the designers to 
systematically test the model against all possible 
inputs.  

ECL, the language used to design our model, 
is completely deterministic. This is a result of the 
inherent determinism of Esterel.   Signals, which 
are the only means of communication in Esterel, 
can either be present or absent in any given cycle.  
In addition, signals do not persist across cycles 
and there are no shared variables.  These 
properties of the language ensure that our model is 
completely deterministic. 

Verification of our model was a two-step 
process.  First, we verified that the model 
accurately met its specifications in terms of 
processing all necessary assembly instructions 
correctly.  Second, we verified the consistency and 
accuracy of signal emission in each component 
module of the model.  In hardware terms, we 

verified that the “wires” in our circuit were 
carrying the correct values at all times. 

For the first part of the verification, we 
used the executable program created by the ECL 
compiler.  We ran simple test assembly programs 
in our simulator.  As far as possible, we tried to 
include (in varying combinations) all 35 
instructions in the processor’s instruction set.  In 
all test cases, the computed output was accurate, 
and the correct registers were read and written.  
Appendix 2 shows a sample run of the simulator.  
The assembly code used in this sample run, 
implements a 2-bit binary down counter that 
counts down from 7 to 0.   

The second part of the verification 
involved testing the accuracy of signal emissions 
in the model.  To automate this process, a GUI-
based tool called X-Esterel Verification 
Environment (XEVE) was used.  This tool reads 
in the finite-state machine (FSM) representation 
of an Esterel program and gives the user the 
ability to check the emission of output signals for 
different combinations of input signals.  A 
graphical representation of the finite state 
machine, created using a program called ATG, is 
shown in Appendix 1.  In the case of our model, 
since the functionality is divided into six 
independent units, verification of the model as a 
whole is inadequate, as we would lose all internal 
signal information.  Hence, six independent 
modules were written, by separating out the 
appropriate code sections from the simulator 
code.  Verification was then performed on each 
one of these modules and output signals were 
observed.   

All six modules behaved as expected.  In 
the case of the master, loader, decoder and writer 
modules, we successfully verified that the output 
signals (READY, DECODE, DO_READ, 
DO_WRITE, DO_ALU, WRITE_DONE) were 
present.  For the reader, writer and ALU, we 
verified that the various signals that carried the 
computation results were emitted.  Figures 8 and 
9 show screenshots of the verification process of 
the ALU and reader respectively. 

await(DOWRITE); 
if (D == 0) 
{ 
 REGS[W_REG] = WRITE_VAL; 
 emit(WRITE_DONE); 
} 
else if (D == 1) 
{ 
 REGS[REG] = WRITE_VAL; 
 emit(WRITE_DONE); 
} 

Figure 7: Signaling the reader, ALU, and writer 
modules  
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Due to the design of our model, all signals 

emitted by the reader and ALU modules (with the 
exception of READ_DONE and ALU_DONE) 
had integer values.  Verification for these modules 
would be through only when the values of each 
one of these signals were tested for different input 
values.  Here, we ran into a serious limitation of 
XEVE, namely that we could only check for the 
“possible emission” of output signals and not the 
values (if any) of those signals.  This limitation is 
largely due to the fact that finite state machine 
(FSM) model that is used by XEVE is incapable of 
representing value-based states.  As seen in the 
FSM in Appendix 1, each state is a Boolean 
function of the possibly emitted signals.   
 
 
Verification Issues 

The verification process of our model 
exposed two major inadequacies of XEVE as a 
verification environment for complex functional 
models.  First, there is no means by which we can 
check the values of the signals.  This poses a 
serious problem in the case when the signal values 
are critically important to the functioning of the 
system.  Inability to verify them might lead to the 
overlooking of major errors.      

       XEVE has no means to allow complete 
automation of the verification process.  In order 
to perform verification, the set of input and 
output signals that are present/absent have to be 
manually selected.  Our model was designed in 
ECL to enable us to model memory and the PC.  
Hence, we did not have a very large number of 
signals in the entire system.  However, in any 
event-driven system that is designed solely using 
signals, i.e. solely in Esterel, there is the 
likelihood of using a very large number of signals.  
For instance, in a processor simulator, every bit 
of all the registers, the main memory and the 
program counter would have to be represented as 
separate signals.  In such a system, making sure 
that all combinations of inputs yield the correct 
outputs can be a very difficult task.  Not only will 
valuable design time be wasted, but there is also a 
very high probability of undetected errors in the 
high-level model. 
 
 
The Ideal Verification Environment 

XES is a graphical simulator for Esterel 
programs.  Unlike XEVE, there is no form of 
automation in XES.  However, the designer has 
the ability to specify the values of the input 
signals and monitor the values of the output 
signals.  Thus, XES is ideal for verifying those 
models that do not utilize too many signals for 
internal communication thus do not require 
automated verification.   

Ideally, a verification environment would 
have similar functionality to XES.  To give the 
designer full flexibility over monitoring the values 

Figure 8: Verification of ALU module.  
The inadequacy of XEVE is evident since 

we cannot check the signal values 

Figure 9: Verification of reader module.   
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of signals, the verifier should be a fully functional 
simulator of the model.  More importantly, the 
verifier must have the ability to automate the 
entire verification process.  To this end, the 
verifier should be able to create an FSM 
representation of the model that takes into 
account the values of the signals when creating the 
various states as opposed to just the 
absence/presence of the signals.  This kind of 
FSM will be more succinct (Figure 10) than the 
FSM for a purely signal based model and will have 
equal computational capability.  Moreover, 
rigorous verification will be made easier since all 
possible states and paths in the model can be 
examined.  
 
 
Conclusion 

A functional model of the PIC16F84 
microcontroller was created using the ECL 
language.  The model was created to represent the 
various functional units of the microcontroller.  
The model was verified in two stages.  First, the 
overall functionality of the model was verified by 
running a test program.  Then, the signal emission 
of each of the component modules was verified 
using the XEVE tool.  The verification 
environment provided by XEVE is not adequate 

enough for rigorous verification, as the values of 
signals cannot be monitored or assigned.  
Moreover, since the finite state machine that 
XEVE uses is too large, fully automated 
verification is not supported.  An ideal 
verification environment is one that allows signal 
assignment and monitoring and that provides for 
complete verification of the model.   Current 
verification technologies for models created in 
event-based languages such as ECL are lacking in 
functionality.  Since languages such as ECL are 
very useful for creating high-level models of 
hardware, it is in the best interest of designers to 
make existing verification technologies more 
efficient and rigorous.  Ultimately, this will 
accelerate the entire hardware creation process by 
leaps and bounds.     

A 
C = {0, 1, 2, 3} 

B 

Figure 10: In the signal-based FSM, the four target states (B1-B4) represent the four possible Boolean combinations of 
the output signals X and Y.  Using value-based signals, these states can be reduced to one state (B) that represents the 
value of the emitted signal.  If the signals X and Y were the individual bits of some 2-bit register, then we can see the 
considerable reduction that can be achieved on the large scale 

Value-based FSM 

A 

XY = 11  B1 

Purely signal-based FSM 

B2 

XY = 10  

XY =01  B3 

B4 

XY =00  
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$./processorM.exe -novarcheck 
master> ; 
--- Output: 
master> ON; 
POWER IS ON 
Please load a program. 
--- Output: 
master> program="t.p"; 
Running t.p 
WRITER: Destination W: Value=7 
--- Output: DECODE READY INST_DONE DOREAD DOALU DOWRITE READ_DONE ALU_DONE WRITE_DONE OP(48) W(0) 
D(0) L(7) RESULT_OUT(7) 
master> ; 
Opcode: 0  F: 0  D: 1 
WRITER: Destination Register 0: Value=7 
--- Output: DECODE INST_DONE DOREAD DOALU DOWRITE READ_DONE ALU_DONE WRITE_DONE 
OP(0) W(7) D(1) RESULT_OUT(7) F_VAL(0) REG(0) 
master> ; 
Opcode: 3  F: 0  D: 1 
WRITER: Destination Register 0: Value=6 
--- Output: DECODE INST_DONE DOREAD DOALU DOWRITE READ_DONE ALU_DONE WRITE_DONE 
OP(3) W(7) D(1) RESULT_OUT(6) F_VAL(7) REG(0) 
master> ; 
--- Output: DECODE INST_DONE DOREAD DOALU READ_DONE ALU_DONE OP(7) B(2) F_VAL(0) REG(2) 
master> ; 
--- Output: DECODE INST_DONE DOREAD DOALU READ_DONE ALU_DONE OP(5) L(2) 
master> ; 
Opcode: 3  F: 0  D: 1 
WRITER: Destination Register 0: Value=5 
--- Output: DECODE INST_DONE DOREAD DOALU DOWRITE READ_DONE ALU_DONE WRITE_DONE 
OP(3) W(7) D(1) RESULT_OUT(5) F_VAL(6) REG(0) 
master> ; 
--- Output: DECODE INST_DONE DOREAD DOALU READ_DONE ALU_DONE OP(7) B(2) F_VAL(0) REG(2) 
master> ; 
--- Output: DECODE INST_DONE DOREAD DOALU READ_DONE ALU_DONE OP(5) L(2) 
master> ; 
Opcode: 3  F: 0  D: 1 
WRITER: Destination Register 0: Value=4 
--- Output: DECODE INST_DONE DOREAD DOALU DOWRITE READ_DONE ALU_DONE WRITE_DONE 
OP(3) W(7) D(1) RESULT_OUT(4) F_VAL(5) REG(0) 
master> ; 
--- Output: DECODE INST_DONE DOREAD DOALU READ_DONE ALU_DONE OP(7) B(2) F_VAL(0) REG(2) 
master> ; 
--- Output: DECODE INST_DONE DOREAD DOALU READ_DONE ALU_DONE OP(5) L(2) 
master> ; 
Opcode: 3  F: 0  D: 1 
WRITER: Destination Register 0: Value=3 
--- Output: DECODE INST_DONE DOREAD DOALU DOWRITE READ_DONE ALU_DONE WRITE_DONE 
OP(3) W(7) D(1) RESULT_OUT(3) F_VAL(4) REG(0) 
master> ; 
--- Output: DECODE INST_DONE DOREAD DOALU READ_DONE ALU_DONE OP(7) B(2) F_VAL(0) REG(2) 
master> ; 
--- Output: DECODE INST_DONE DOREAD DOALU READ_DONE ALU_DONE OP(5) L(2) 
Opcode: 3  F: 0  D: 1 
WRITER: Destination Register 0: Value=2 
--- Output: DECODE INST_DONE DOREAD DOALU DOWRITE READ_DONE ALU_DONE WRITE_DONE 
OP(3) W(7) D(1) RESULT_OUT(2) F_VAL(3) REG(0) 

Appendix 1 
 

Sample run of simulator counting numbers down from 7 to 0 
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master> ; 
--- Output: DECODE INST_DONE DOREAD DOALU READ_DONE ALU_DONE OP(7) B(2) F_VAL(0) REG(2) 
master> ; 
--- Output: DECODE INST_DONE DOREAD DOALU READ_DONE ALU_DONE OP(5) L(2) 
master> ; 
Opcode: 3  F: 0  D: 1 
WRITER: Destination Register 0: Value=1 
--- Output: DECODE INST_DONE DOREAD DOALU DOWRITE READ_DONE ALU_DONE WRITE_DONE 
OP(3) W(7) D(1) RESULT_OUT(1) F_VAL(2) REG(0) 
master> ; 
--- Output: DECODE INST_DONE DOREAD DOALU READ_DONE ALU_DONE OP(7) B(2) F_VAL(0) REG(2) 
master> ; 
--- Output: DECODE INST_DONE DOREAD DOALU READ_DONE ALU_DONE OP(5) L(2) 
master> ; 
Opcode: 3  F: 0  D: 1 
WRITER: Destination Register 0: Value=0 
--- Output: DECODE INST_DONE DOREAD DOALU DOWRITE READ_DONE ALU_DONE WRITE_DONE 
OP(3) W(7) D(1) RESULT_OUT(0) F_VAL(1) REG(0) 
master> ; 
--- Output: DECODE INST_DONE DOREAD DOALU READ_DONE ALU_DONE OP(7) B(2) F_VAL(4) REG(2) 
master> ; 
Program finished successfully! 
--- Output: DONE 
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Appendix 2 
 

Finite state machine representation of the simulator generated by ATG 


