
 1

Using Esterel-C to Model and Verify the PIC16F84 Microcontroller

Minsuk Lee, Cheryl Koesdjojo, Dixon Koesdjojo and Harish Peri

Abstract

High-level abstraction and formal modeling of reactive real-time embedded systems is an integral part of the
embedded system design process. Such models allow designers to perform rigorous verification of the final
product before manufacturing, thus ensuring that the final product is error-free. This paper outlines the process
of creating a formal software model of the PIC16F84 microcontroller using the synchronous, event-driven
Esterel-C (ECL) language. In addition, it describes the results of performing verification of this model using the
XEsterel Verification Environment (XEVE) open-source software package. Finally, it offers a critical analysis of
the verification results and suggestions to improve the verification process.

Introduction

Currently, real-time reactive embedded
systems are used extensively. Given the mission-
critical nature of such systems, designers cannot
afford to have any errors in the final product. As
a result, all errors and behaviors of the system
have to be verified and corrected at the design
level. The verification process of such models
must be rigorous and as automated as possible, to
save design time, and to ensure that the model is
error-free. This paper describes the process of
designing a software model (simulator) of the
PIC16F84 microcontroller using the synchronous,

even-driven Esterel-C Language (ECL). More
importantly, it describes and analyzes the results
of performing formal verification on the model
using the X Esterel Verification Environment
(XEVE).

Related Research and Products

Existing hardware simulators utilize one of
two simulation techniques: circuit simulation and
functional modeling [1]. Circuit simulation
involves creating a SPICE model (transistor-level
model) of the target hardware. Simulation is

Figure 1: Functional units and their interconnections

 2

performed by measuring the voltage and current
outputs of the model in response to different
input signals. This is fundamentally different from
functional modeling, which involves decomposing
the hardware into high-level functional units. In
this kind of simulation, the target hardware is
treated as collection of interconnected “black-
boxes” that all have different functionalities.

Despite the fundamental difference in
simulation techniques, hardware simulators tend
to have similar underlying architectures. The most
widely used architecture for microprocessor
simulators is the discrete-event architecture (DEA).
Every decision in DEA simulators is in response
to an event, which could be a new instruction or
an external stimulus [2]. Events are triggered in
response to an internal clock or some form of
discrete time system and the result of processing
the event are to change the overall state of the
system.

Currently, there are three main software
simulators for the PIC16F8X family of chips. All
of these three simulators allow only functional
modeling type of simulation to be performed
based DEA. These are:

? MPSIM: Discrete-event simulator [3]
designed for debugging software
applications made for the PIC16FXX family
of chips. It offers the user the ability to
place breakpoints in the code and perform
step-by-step execution of programs. In
addition, it offers a register-browser, code-
browser and I/O pin monitor. Program
execution can be frozen midway and
instructions can be changed on the fly.
Contents of the execution stack can be
observed at all times.

? GPSIM: Full-featured simulator [4] for the
PIC microcontrollers distributed under the
GNU General Public License. It includes
simulation of all the core I/O pins and can
be subject to external stimuli. It also
includes a register state browser, code
browser, debugger and I/O pin monitor. It
is implemented entirely in C and can be used
only on a Linux system.

? Universal Microprocessor Program
Simulator: This simulator has the ability to
model a variety of existing microcontrollers
in addition to the PIC series [5]. It
possesses all the functionality of GPSIM,
but also includes a variety of hardware

external devices (such as a 7-segment LED
and D/A converter) that are not specific
to the PIC chips.

Design – Decisions and Rationale

Unlike the simulators described above, this
implementation (hereto referred to as ESIM)
does not encompass the complete functionality
of the PIC16F84 microcontroller. Since the
ultimate goal of this project is to perform formal
verification, complete emulation is be beyond the
scope of this research. Functionality that has
been sacrificed includes the ability to define and
use subroutines and the ability to perform
external I/O.

The other simulators are meant to be
complete debugging environments for PIC16F84
assembly programs. They have been created
after rigorous verification of their target hardware.
In contrast, ESIM is meant to be an example of a
foolproof model against which the final hardware,
or its circuit simulation can be crosschecked.
This also explains why ESIM is implemented in
ECL, as opposed to an inherently
nondeterministic language like C, or C++.
Determinism allows the verification of the model
to be automated, reliable and thorough.

ESIM consists of six Esterel modules
(Figure 1): master, loader (Program Memory),
decoder (Instruction Decode and Control),
reader, ALU (Arithmetic Logic Unit) and writer
(EEPROM Data Memory). The names of the
actual functional units on the chip are in
parentheses [6]. Modules communicate
exclusively through Esterel signals. When
multiple modules are signaled successively, the
“calling” module waits for a return response
from the first “callee” module before emitting its

par loader(READY, INST_DONE, DECODE,
DONE);
par decoder(DECODE, READ_DONE,
ALU_DONE, WRITE_DONE, DOREAD, DOALU,
DOWRITE, INST_DONE);
par reader(DOREAD, OP, W, D, F_VAL, B,
L, READ_DONE, REG);
par ALU(DOALU, W, OP, B, F_VAL, L,
RESULT_OUT, ALU_DONE);
par writer(DOWRITE, D, REG, RESULT_OUT,
WRITE_DONE);

Figure 2: Instantiation of the modules in parallel

 3

next signal. In all cases, the wait for the return
signal has been implemented as an “await
immediate”. This makes sure that a callee module
does not indefinitely await a signal that was
present in the previous cycle and that there is no
possibility for race conditions on global variables.
More importantly, this correctly emulates the serial
behavior of the processor.

Esterel’s synchronous model does not allow
state preservation, since a signal only exists in the
context of one instant. Hence, elements of
memory such as the code memory, program
counter and register file are modeled as different
kinds of C variables. They are all declared in
global scope so that all appropriate modules can
access them when needed. Since no two modules
will ever be executing at the same time, there is no
fear of the variable being overwritten with the
wrong value.

The master module instantiates all the

modules in parallel (Figure 2). It sets up the
inter-module communication pathways. The
loader is then activated (via the READY signal),
reads in the assembly program (using C file
access routines) and stores it in an array of
instructions. It iterates through this array
emitting the DECODE signal for each
instruction (Figure 3). The current instruction is
stored in a global variable. The decoder module,
upon receiving the DECODE signal, sets up to
signal the reader, ALU, and the writer modules
(Figure 4). The current instruction determines
which modules are signaled. For instance, in the
bit-oriented operations (BTFSC BTFSS, BCF and
BSF) the writer module is not signaled since no
registers need to be updated.

Control is then passed to the reader module
(Figure 5), by the decoder’s emission of the
DOREAD signal. The reader gets the

appropriate values (from registers or instruction
memory) and emits them as valued signals for use
by the ALU. In addition, depending on the
instruction, a signal indicating the write
destination of the ALU computation may also be
emitted. In the ALU module, the result of
computation on the input valued signals is
emitted (Figure 6). At the same time, a signal

indicating ALU completion is also emitted so that
the decoder can then signal the writer module (if
necessary).

Finally, the decoder signals the writer
module with the DOWRITE signal. Using the

while (PC < num_instructions)
{
instruction_buffer = prog[PC];
emit(DECODE);
await();
if (PC_MODIFIED == 0)
PC++;

else
PC_MODIFIED = 0;

}

Figure 3: Emission of DECODE signal for each
instruction

opcode = instruction_buffer-
>instruction.byte_instruction.opcode;

if (opcode == 0x7 || opcode == 0x5 ||
opcode == 0x3 || opcode == 0x2
|| opcode == 0x9 || opcode == 0x6 ||
opcode == 0xB ||
opcode == 0xA || opcode == 0xF || opcode
== 0x4 || opcode == 0x8
|| opcode == 0x1 || opcode == 0xD ||
opcode == 0xC ||
opcode == 0xE || opcode == 0x6 || opcode
== 0x0)
{
 emit(DOREAD);
 await(immediate(READ_DONE));
 emit(DOALU);
 await (immediate(ALU_DONE));
 emit(DOWRITE);
 await(immediate(WRITE_DONE));
 emit(INST_DONE);
}

Figure 4: Signaling the reader, ALU, and writer
modules

w = REGS[W_REG];
f = REGS[instruction_buffer-
>instruction.byte_instruction.f];
emit(OP, instruction_buffer-
>instruction.byte_instruction.opcode);
emit(D, instruction_buffer-
>instruction.byte_instruction.d);
emit(W, w);
emit(F, f);
emit(REG, instruction_buffer-
>instruction.byte_instruction.f);
emit(READ_DONE);

Figure 5: Emission of valued signals in reader
module

if (B != 0)
 B = B - 1;
F_VAL = F_VAL | (0x1 << B);
emit(RESULT_OUT, F_VAL);

Figure 6: Emission of computation result in
ALU

 4

destination indicator signal (emitted in the reader
module), the result of the ALU calculation is
written to the appropriate register (Figure 7).
Control is returned to the loader module via the
INST_DONE signal, where the next instruction is
fetched from the program memory (array). The
PC variable is also incremented at this stage.

Simulation and Verification
Verifying that the model meets its

specification is the most important part of the
design process. If the model is completely
accurate, then the output of the model can be used
as a reference point to compare the output of a
circuit simulation of the hardware. Any possible
inconsistencies in the outputs can be used to
correct the errors in the circuit simulation, thus
ensuring that the final hardware will be reliable. In
order for model verification to be performed
rigorously, the model should be defined in a
language that ensures determinism. This
eliminates the possibility of unpredictable
behaviors and allows the designers to
systematically test the model against all possible
inputs.

ECL, the language used to design our model,
is completely deterministic. This is a result of the
inherent determinism of Esterel. Signals, which
are the only means of communication in Esterel,
can either be present or absent in any given cycle.
In addition, signals do not persist across cycles
and there are no shared variables. These
properties of the language ensure that our model is
completely deterministic.

Verification of our model was a two-step
process. First, we verified that the model
accurately met its specifications in terms of
processing all necessary assembly instructions
correctly. Second, we verified the consistency and
accuracy of signal emission in each component
module of the model. In hardware terms, we

verified that the “wires” in our circuit were
carrying the correct values at all times.

For the first part of the verification, we
used the executable program created by the ECL
compiler. We ran simple test assembly programs
in our simulator. As far as possible, we tried to
include (in varying combinations) all 35
instructions in the processor’s instruction set. In
all test cases, the computed output was accurate,
and the correct registers were read and written.
Appendix 2 shows a sample run of the simulator.
The assembly code used in this sample run,
implements a 2-bit binary down counter that
counts down from 7 to 0.

The second part of the verification
involved testing the accuracy of signal emissions
in the model. To automate this process, a GUI-
based tool called X-Esterel Verification
Environment (XEVE) was used. This tool reads
in the finite-state machine (FSM) representation
of an Esterel program and gives the user the
ability to check the emission of output signals for
different combinations of input signals. A
graphical representation of the finite state
machine, created using a program called ATG, is
shown in Appendix 1. In the case of our model,
since the functionality is divided into six
independent units, verification of the model as a
whole is inadequate, as we would lose all internal
signal information. Hence, six independent
modules were written, by separating out the
appropriate code sections from the simulator
code. Verification was then performed on each
one of these modules and output signals were
observed.

All six modules behaved as expected. In
the case of the master, loader, decoder and writer
modules, we successfully verified that the output
signals (READY, DECODE, DO_READ,
DO_WRITE, DO_ALU, WRITE_DONE) were
present. For the reader, writer and ALU, we
verified that the various signals that carried the
computation results were emitted. Figures 8 and
9 show screenshots of the verification process of
the ALU and reader respectively.

await(DOWRITE);
if (D == 0)
{
 REGS[W_REG] = WRITE_VAL;
 emit(WRITE_DONE);
}
else if (D == 1)
{
 REGS[REG] = WRITE_VAL;
 emit(WRITE_DONE);
}

Figure 7: Signaling the reader, ALU, and writer
modules

 5

Due to the design of our model, all signals

emitted by the reader and ALU modules (with the
exception of READ_DONE and ALU_DONE)
had integer values. Verification for these modules
would be through only when the values of each
one of these signals were tested for different input
values. Here, we ran into a serious limitation of
XEVE, namely that we could only check for the
“possible emission” of output signals and not the
values (if any) of those signals. This limitation is
largely due to the fact that finite state machine
(FSM) model that is used by XEVE is incapable of
representing value-based states. As seen in the
FSM in Appendix 1, each state is a Boolean
function of the possibly emitted signals.

Verification Issues

The verification process of our model
exposed two major inadequacies of XEVE as a
verification environment for complex functional
models. First, there is no means by which we can
check the values of the signals. This poses a
serious problem in the case when the signal values
are critically important to the functioning of the
system. Inability to verify them might lead to the
overlooking of major errors.

 XEVE has no means to allow complete
automation of the verification process. In order
to perform verification, the set of input and
output signals that are present/absent have to be
manually selected. Our model was designed in
ECL to enable us to model memory and the PC.
Hence, we did not have a very large number of
signals in the entire system. However, in any
event-driven system that is designed solely using
signals, i.e. solely in Esterel, there is the
likelihood of using a very large number of signals.
For instance, in a processor simulator, every bit
of all the registers, the main memory and the
program counter would have to be represented as
separate signals. In such a system, making sure
that all combinations of inputs yield the correct
outputs can be a very difficult task. Not only will
valuable design time be wasted, but there is also a
very high probability of undetected errors in the
high-level model.

The Ideal Verification Environment

XES is a graphical simulator for Esterel
programs. Unlike XEVE, there is no form of
automation in XES. However, the designer has
the ability to specify the values of the input
signals and monitor the values of the output
signals. Thus, XES is ideal for verifying those
models that do not utilize too many signals for
internal communication thus do not require
automated verification.

Ideally, a verification environment would
have similar functionality to XES. To give the
designer full flexibility over monitoring the values

Figure 8: Verification of ALU module.
The inadequacy of XEVE is evident since

we cannot check the signal values

Figure 9: Verification of reader module.

 6

of signals, the verifier should be a fully functional
simulator of the model. More importantly, the
verifier must have the ability to automate the
entire verification process. To this end, the
verifier should be able to create an FSM
representation of the model that takes into
account the values of the signals when creating the
various states as opposed to just the
absence/presence of the signals. This kind of
FSM will be more succinct (Figure 10) than the
FSM for a purely signal based model and will have
equal computational capability. Moreover,
rigorous verification will be made easier since all
possible states and paths in the model can be
examined.

Conclusion

A functional model of the PIC16F84
microcontroller was created using the ECL
language. The model was created to represent the
various functional units of the microcontroller.
The model was verified in two stages. First, the
overall functionality of the model was verified by
running a test program. Then, the signal emission
of each of the component modules was verified
using the XEVE tool. The verification
environment provided by XEVE is not adequate

enough for rigorous verification, as the values of
signals cannot be monitored or assigned.
Moreover, since the finite state machine that
XEVE uses is too large, fully automated
verification is not supported. An ideal
verification environment is one that allows signal
assignment and monitoring and that provides for
complete verification of the model. Current
verification technologies for models created in
event-based languages such as ECL are lacking in
functionality. Since languages such as ECL are
very useful for creating high-level models of
hardware, it is in the best interest of designers to
make existing verification technologies more
efficient and rigorous. Ultimately, this will
accelerate the entire hardware creation process by
leaps and bounds.

A
C = {0, 1, 2, 3}

B

Figure 10: In the signal-based FSM, the four target states (B1-B4) represent the four possible Boolean combinations of
the output signals X and Y. Using value-based signals, these states can be reduced to one state (B) that represents the
value of the emitted signal. If the signals X and Y were the individual bits of some 2-bit register, then we can see the
considerable reduction that can be achieved on the large scale

Value-based FSM

A

XY = 11 B1

Purely signal-based FSM

B2

XY = 10

XY =01 B3

B4

XY =00

 7

Works Cited

[1] “Proteus Virtual Modeling System.” Blitzlogic Inc.
 Nov. 2001 <http://www.blitzlogic.com/VSM.HTM >

[2] Hossein, Arsham. “System Simulation: The Shortest Path from Learning to Application.”
 Nov 2001 <http://ubmail.ubalt.edu/~harsham/simulation/sim.html>

[3] “MPSIM™ Simulator for DOS Users Guide.” Microchip Corporation.
 Oct. 2001 <http://www.microchip.com/download/tools/archive/mpsim/30021i.pdf>

[4] Dattalo, Scott T. “gpsim.” 24 Dec. 1999. GNU General Public License.
 Oct. 2001 <http://www.dattalo.com/gnupic/gpsim.ps>

[5] “Universal Microprocessor Program Simulator.” Virtual Micro Design.
 Oct. 2001 <http://www.vmdesign.com/html/p02.html>

[6] “PIC16F84 Datasheet.” Microchip Corporation.
 Oct 2001 <http://www.microchip.com/download/lit/pline/picmicro/families/16f8x/30430c.pdf>

Online sources are cited using the MLA format:
 Author name. Article name. Date created. Organization name.
 Date accessed <URL>

 8

$./processorM.exe -novarcheck
master> ;
--- Output:
master> ON;
POWER IS ON
Please load a program.
--- Output:
master> program="t.p";
Running t.p
WRITER: Destination W: Value=7
--- Output: DECODE READY INST_DONE DOREAD DOALU DOWRITE READ_DONE ALU_DONE WRITE_DONE OP(48) W(0)
D(0) L(7) RESULT_OUT(7)
master> ;
Opcode: 0 F: 0 D: 1
WRITER: Destination Register 0: Value=7
--- Output: DECODE INST_DONE DOREAD DOALU DOWRITE READ_DONE ALU_DONE WRITE_DONE
OP(0) W(7) D(1) RESULT_OUT(7) F_VAL(0) REG(0)
master> ;
Opcode: 3 F: 0 D: 1
WRITER: Destination Register 0: Value=6
--- Output: DECODE INST_DONE DOREAD DOALU DOWRITE READ_DONE ALU_DONE WRITE_DONE
OP(3) W(7) D(1) RESULT_OUT(6) F_VAL(7) REG(0)
master> ;
--- Output: DECODE INST_DONE DOREAD DOALU READ_DONE ALU_DONE OP(7) B(2) F_VAL(0) REG(2)
master> ;
--- Output: DECODE INST_DONE DOREAD DOALU READ_DONE ALU_DONE OP(5) L(2)
master> ;
Opcode: 3 F: 0 D: 1
WRITER: Destination Register 0: Value=5
--- Output: DECODE INST_DONE DOREAD DOALU DOWRITE READ_DONE ALU_DONE WRITE_DONE
OP(3) W(7) D(1) RESULT_OUT(5) F_VAL(6) REG(0)
master> ;
--- Output: DECODE INST_DONE DOREAD DOALU READ_DONE ALU_DONE OP(7) B(2) F_VAL(0) REG(2)
master> ;
--- Output: DECODE INST_DONE DOREAD DOALU READ_DONE ALU_DONE OP(5) L(2)
master> ;
Opcode: 3 F: 0 D: 1
WRITER: Destination Register 0: Value=4
--- Output: DECODE INST_DONE DOREAD DOALU DOWRITE READ_DONE ALU_DONE WRITE_DONE
OP(3) W(7) D(1) RESULT_OUT(4) F_VAL(5) REG(0)
master> ;
--- Output: DECODE INST_DONE DOREAD DOALU READ_DONE ALU_DONE OP(7) B(2) F_VAL(0) REG(2)
master> ;
--- Output: DECODE INST_DONE DOREAD DOALU READ_DONE ALU_DONE OP(5) L(2)
master> ;
Opcode: 3 F: 0 D: 1
WRITER: Destination Register 0: Value=3
--- Output: DECODE INST_DONE DOREAD DOALU DOWRITE READ_DONE ALU_DONE WRITE_DONE
OP(3) W(7) D(1) RESULT_OUT(3) F_VAL(4) REG(0)
master> ;
--- Output: DECODE INST_DONE DOREAD DOALU READ_DONE ALU_DONE OP(7) B(2) F_VAL(0) REG(2)
master> ;
--- Output: DECODE INST_DONE DOREAD DOALU READ_DONE ALU_DONE OP(5) L(2)
Opcode: 3 F: 0 D: 1
WRITER: Destination Register 0: Value=2
--- Output: DECODE INST_DONE DOREAD DOALU DOWRITE READ_DONE ALU_DONE WRITE_DONE
OP(3) W(7) D(1) RESULT_OUT(2) F_VAL(3) REG(0)

Appendix 1

Sample run of simulator counting numbers down from 7 to 0

 9

master> ;
--- Output: DECODE INST_DONE DOREAD DOALU READ_DONE ALU_DONE OP(7) B(2) F_VAL(0) REG(2)
master> ;
--- Output: DECODE INST_DONE DOREAD DOALU READ_DONE ALU_DONE OP(5) L(2)
master> ;
Opcode: 3 F: 0 D: 1
WRITER: Destination Register 0: Value=1
--- Output: DECODE INST_DONE DOREAD DOALU DOWRITE READ_DONE ALU_DONE WRITE_DONE
OP(3) W(7) D(1) RESULT_OUT(1) F_VAL(2) REG(0)
master> ;
--- Output: DECODE INST_DONE DOREAD DOALU READ_DONE ALU_DONE OP(7) B(2) F_VAL(0) REG(2)
master> ;
--- Output: DECODE INST_DONE DOREAD DOALU READ_DONE ALU_DONE OP(5) L(2)
master> ;
Opcode: 3 F: 0 D: 1
WRITER: Destination Register 0: Value=0
--- Output: DECODE INST_DONE DOREAD DOALU DOWRITE READ_DONE ALU_DONE WRITE_DONE
OP(3) W(7) D(1) RESULT_OUT(0) F_VAL(1) REG(0)
master> ;
--- Output: DECODE INST_DONE DOREAD DOALU READ_DONE ALU_DONE OP(7) B(2) F_VAL(4) REG(2)
master> ;
Program finished successfully!
--- Output: DONE

 10

Appendix 2

Finite state machine representation of the simulator generated by ATG

