
 Porting a Network Cryptographic Service to the RMC2000:
A Case Study in Embedded Software Development

Paolo de Dios and Stephen Jan
Dept. of Computer Science

Columbia University, New York, NY
{pd119, sj178}@columbia.edu

Abstract

This paper describes our experiences with porting a
TLS cryptography service to an embedded
microcontroller. We describe some key development
issues and techniques involved in porting networked
software to a connected, limited resource device such
as the Rabbit RMC2000. We examine the effectiveness
of a few purported porting strategies by examining
important program and run-time characteristics.

1. Introduction

Embedded systems present a different software
engineering problem. These types of systems are
unique in that the iron and the code are tightly
integrated. The limited nature of an embedded systems
operating environment require a different approach to
developing and porting software. In this paper, we
discuss the key issues in developing and porting a
UNIX system level TLS service to an embedded
microcontroller. We discuss our design decisions and
experience porting this service using Dynamic C, an
ANSI C variant, on the RMC2000 microcontroller
from Rabbit Semiconductor. We examine some
performance comparisons to ascertain the feasibility
and effectiveness of some common programming
idioms for embedded software development.

Porting software across platforms have become such a
common and varied software engineering exercise that
much commercial and academic research has been
dedicated to identifying pitfalls, techniques and
component analogues for moving an application to a
different target platform. The development of software
or porting existing software to different, analogous
system platforms have been addressed by high level
languages [6,7], modular programming [9], and
component based abstraction, analysis and design
techniques [8]. Despite the popularity of these
programming and design idioms, they generally have
little support for dealing with the rather raw and limited
resources available in an embedded system.
Furthermore, the move towards these abstraction
mechanisms has resulted in applications with footprints
that do not make them feasible for deployment to a
microcontroller. Though there have been efforts to
port these abstraction idioms to the world of embedded

systems [10], porting applications and components to a
limited device configuration still require much re-
engineering.

The rest of the paper is organized as follows: In section
2, we provide a brief discussion on related work in the
engineering of embedded software. In section 3
background regarding network cryptography services is
provided. In section 4, we provide some background
information regarding the Dynamic C development
environment. Section 5 discusses a number of the
issues involved in porting the TLS service to the
device. In section 6, we describe a few development
techniques we used for our port and for embedded
systems development in general. In section 7, we visit
some of metrics to evaluate our port and we provide a
discussion of our discoveries and insights. Finally,
section 8 includes some concluding remarks.

2. Related Work

Cryptographic services for transport layer security
(TLS) have been available as operating system and
application server services for quite some time now
[13]. The concept of an embedded TLS service or
custom ASIC for stream ciphering have been proposed
and are commercially available as SSL/TLS accelerator
products from vendors such as Sun Microsystems and
Cisco. They operate as black boxes and the
development issues and processes to make these
services available to embedded devices have been
rarely discussed. Though the performance of various
cryptographic algorithms such as AES and DES have
been examined on many systems [19], including
embedded devices [15], a discussion on the challenges
of porting complete services to a device have not
received such a treatment.

The scope of embedded systems development has been
covered in a number of books and articles [1, 14].
Optimization techniques at the hardware design level
and at the pre-processor & compiler level are well
researched and benchmarked topics [1, 2, 12].
Embedded programming guidelines for optimization,
style and robustness are outlined for specific languages
such as ANSI C [3]. Design patterns have even been
proposed in the development of embedded software to

increase portability and leverage reuse between device
configurations [22].

3. Network Cryptographic Services

Transport Layer Security is a standard proposed by the
IETF [17] and is implemented on the Internet most
notably by the Secure Sockets Layer (SSL) [16].
Unfortunately, establishing and maintaining a secure
connection is a computationally intensive task.
Negotiating a TLS/SSL session can result in a big hit
on server performance. This, in turn, can limit the
number of SSL sessions which can be served and the
number of concurrent SSL sessions that can be
maintained at your site and it has been shown to reduce
throughput by an order of magnitude [18].

The problems associated with TLS/SSL have been in
part solved through processor cards that fit inside Web
servers. These cards worked to offload the
mathematically-intensive TLS/SSL authentication and
key generation from the Web server's central CPU, and
thus increase server capacity to handle more new SSL
sessions. The software used to in these expansion
boards is largely proprietary.

Our developing activities revolve around porting
"iSSL", a minimalistic cryptographical library and
network service implementation that uses the RSA and
AES cipher algorithms to establish SSL-like, secure
encrypted communications between two peers over the
network. It includes support for session key generation
and public key exchange. Due to representation and
development time constraints we only port the AES
cipher. Our port of the AES cipher uses the Rijndael
algorithm [20], as proposed by the NIST on October
2000. The key length of AES can be independently
specified to 128, 192 or 256 bits with input block
lengths of 128, 192 or 256 bits. The AES cipher is
required by NIST to work on a variety of processors,
from 8-bit processors on smart cards and other
embedded devices to powerful 64-bit workstations
[19]. For our port, we referred to both the iSSL AES
implementation and the AEScrypt implementation
developed by Eric Green and Kaelber.

4. The Rabbit RMC2000 Environment

The system used for our implementation came
packaged as part of an integrated board solution. It
came with an integrated 10Base-T network interface
and a network stack for a TCP/IP, UDP and ICMP
implementation. The development board is limited to
512k flash RAM and 128k SRAM.

4.1 The RMC2000 Microcontroller

The Rabbit RM2000 is a high-performance 8-bit
microprocessor designed to integrate with other
peripherals. It has an enhanced instruction set with
numerous one-byte opcodes and 16-bit logical,
arithmetic, and data transfer instructions. Clock speed
can be controlled via software to allow for dynamic
adjustment of power and speed. It can perform 16
x 16 multiplies in 12 clock cycles and it has four levels
of interrupt priorities and has 40 parallel IO lines. It
has a two clock memory cycle and it has a similar
architecture to that of the HDC640 and the Z180. Its 1-
megabyte code space allows for C programs of up to
50,000+ lines of code. The extended Z80-style
instruction set is C-friendly, with short and fast
instructions for most common C operations.

This particular embedded system is designed to
accommodate rapid development and porting of
existing applications. The Rabbit microcontroller has a
10-pin programming port that eliminates the need for
in-circuit emulators. It comes with a development
environment that integrates a compiler, linker, loader,
debugger and diagnostics in a single package. With the
Dynamic C environment, some of the engineering costs
associated with tool development and support, which
has been found to account for 15% of the effort in
embedded systems development [11], can be
minimized and factored away from our exercise.

4.2 Dynamic C

Dynamic C is the language used to build applications
for the Rabbit Semiconductor RMC series of
microprocessors and microcontrollers. It is generally
described in the context of an integrated development
solution for devices, and as such it integrates many
compiler, linker, loader and RTOS features into the
actual programming language.

4.2.1 Dynamic C, the Language

Dynamic C is an ANSI C language variant. It supports
embedded assembly code and stand-alone assembly
code within a source file. Its grammar and syntax are
similar to that of ANSI C, but it differs from a
traditional ANSI C programming system running on a
PC or under UNIX in that ANSI C makes many
assumptions that do not apply to embedded systems.
Standard C, for example, implicitly assumes that an
operating system is present and that a program starts
with a clean slate, whereas embedded systems may
have battery-backed memory and may retain data
through power cycles. Also, Dynamic C places
significant constraints on how a program is structured.

The numerous include files found in typical C
programs are not used because Dynamic C has a library
system that automatically provides function prototypes
and similar header information to the compiler before
the user's program is compiled. The C "#include"
directive is supplanted by a “#use” directive and
components are forced to be designed as libraries and
not modules. Furthermore, Dynamic C does not
support the “#pragma” preprocessor directive.

Dynamic C limits memory addressing operations to
support only 20-bit addresses. It relies heavily on the
existence of an on-chip memory management unit
(MMU) to segment memory and translates 16-bit
addresses to 20-bit memory addresses. It has "shared"
and "protected" keywords that help protect data shared
between different contexts or stored in battery-backed
memory. Furthermore, it has a set of features that allow
the programmer to make fullest use of extended
memory. Normally, Dynamic C takes care of memory
management, but it has keywords and directives to help
put code and data in the proper place. For example, the
keyword "root" selects root memory (addresses within
the 64K physical address space), and the keyword
"xmem" selects extended memory, which means
anywhere in the 1024K code space.

Dynamic C places further constraints in the semantics
of the language. Bit fields and enumerated types are
not supported. There are also minor differences
involving extern and register keywords. The default
storage class for variables is static, and not auto.
Variables that are explicitly initialized in a declaration
are stored in flash memory and cannot be changed.

4.2.2 Dynamic C and RTOS Integration

The RM2000 utilizes a real time operating system
called µC/OS-II. The µC/OS-II RTOS is a simple real-
time operating system that runs on the Rabbit
microprocessor and is fully integrated into the
Dynamic C language and environment. The µC/OS-II
RTOS is compiled into the program and loaded into the
microcontroller using some of the RM2000
bootstrapping features. Unlike ANSI C, Dynamic C
integrates RTOS semantics into its language constructs.
Dynamic C has a construct called "function chaining."
Function chaining is program structuring construct that
allows special segments of code to be embedded within
one or more functions. When a named function chain
executes, all the segments belonging to that chain
execute. Function chains allow software to perform
initialization, data recovery, or other kinds of tasks on
request.

Multi-tasking is natively supported in the language.
The costatement construct simplifies the
implementation of state machines and it allows for
concurrent parallel processes to be simulated in a
single program. Costatements can be voluntarily
suspended and later resumed. Cofunctions are a similar
construct. Cofunctions, like costatements, are used to
implement cooperative multitasking. But, unlike
costatements, they have a form similar to functions and
they are designed to facilitate callbacks and other
signaling patterns in a real-time application. Finally,
Dynamic C provides the "slice" statement construct to
allow the programmer to run a block of code for a
specific amount of time. These constructs are
supplemented with "yield", "abort", "waitfor" and
"waitfordone" keywords to control scheduling, timing
and event handling of these task abstractions.

5. Porting and Development Issues

A number of key development issues aris e in
determining whether or not an embedded systems
development effort is going to be feasible. These
considerations range from analysis and design
constraints to development tool support for supporting
the target device.

5.1 To Port or Not to Port

The most important thing to consider before porting
any application or component is to decide whether
something really should or shouldn't be ported. The
key driver in this assessment is determining the
reducibility of the system and the percentage of the
design and code that will need to change. Embedded
systems are fairly sparse in terms of the available
services that it can provide, so a key factor is whether
or not many of the system level services that are going
to be required are going to have to be redesigned and
re-engineered. Whereas standard applications use
COTS solutions to leverage reuse possibilities, the use
of a COTS solution can become a detriment in
embedded software development. Most of the features
provided by COTS solutions will need to be
reanalyzed, re-engineered and re -implemented from
scratch to suit the operating environment of the target
embedded platform.

Unfortunately, the iSSL package is a well developed
system daemon and as such it utilizes a number of
UNIX specific services and a number of COTS
libraries. It utilizes the GNU MPI library for
performing data calculations and manipulations. The
MPI library contains architecture specific code for a
number of target platforms. It makes available a
number of optimized assembly routines for memory

addressing and shifting operations. It makes use of a
"bignum" library to provide itself with a data
representation mechanism adequate enough to store
and manipulate up to 1024bit keys for the RSA
algorithm. The network service component used by the
iSSL service is mainly a simple control flow
application designed to demonstrate networked stream
ciphering. Though simple enough for our embedded
application, it nevertheless utilizes threads for servicing
multiple requests and its socket constructs adhere to the
UNIX BSD model. Since it is designed to be used in a
multi-threaded environment, the library code is
reentrant and can handle multiple cryptographic
operations. The iSSL package also contains a good
amount of dynamic memory allocation code.

The iSSL package was designed to be portable across a
number of platforms. It supports Windows and many,
many flavors of UNIX. Retaining this property in an
embedded development context is quite impossible.
Though many microcontrollers share similar, if not the
same instruction sets, as in the case of the Rabbit
RM2000 and the Zilog Z180 processors, software
cannot be guaranteed to be portable because
microcontrollers are configured with various types of
other board level controllers and chip sets. As such
each embedded system platform introduces its own set
of nuances and variations to the operating environment.
Furthermore, depending on the RTOS installed, an
embedded application may or may not have to perform
its own resource and device management functions.
Therefore, the feasibility of an application's design is
dictated by the platform's architecture and
configuration. Domain specific designs such as ASIPs,
ASICs and tools such as SDLs, have forced embedded
software to be re-engineered from scratch almost every
time. It has been shown that software development for
embedded applications and firmware account for up to
33% of the manpower allocation for many embedded
systems projects [11].

5.2 Factoring an Application for an Embedded
Environment

It was quite evident that porting this TLS service would
require a good amount of rework. Aside from the
obvious platform constraints, much of the logical code
would remain the same. Much of the work involved
was with re-architecting certain portions of the system
to fit within an embedded context. A certain amount of
reduction had to take place to simplify operations and
task handling and to re-engineer the interfaces to the
network and the data. The control flow of the
application, task scheduling and error handling all
became issues in this new context. Furthermore, the
largely user delegated error recovery and error

handling semantics of the TLS service had to be re-
designed to accommodate the possibility of continuous
operation in a real time, autonomous setting. Since a
file semantics did not exist in the controller, logging
mechanisms for error reporting had to be either
discarded or re-engineered as part of the protocol.
Platform abstractions needed to be refactored or
eliminated to minimize code size. Extra interfaces and
abstractions add to the size of the application image,
especially when embedded software tools do not
support dynamic linkers and loaders. Usually, as in the
case of the RMC2000, all code is statically linked and a
single image is loaded to the EPROM.

5.3 Resource Management

Maintaining state within the application was a big
design issue. Memory is a precious resource in a
microcontroller and the way Dynamic C statically
allocates variables made it difficult to port the current
book-keeping logic. The original version of iSSL
makes use of automatic variables and temporaries and
state is saved in per thread stacks for reentrancy.

Without a full featured operating system to manage
low level resources a number of low level issues had to
be considered. Issues regarding how the processor
saves its state had to be examined to determine whether
or not register values had to be manually saved or
restored before returning from an interrupt. Register
preservation require multi-byte transfer routines which
can add up for often used/called interrupt. The
frequency of the interrupt calls and the amount of work
to be done within them needed to be estimated.

Since code and data space were quite limited, the size
of the compiled code would have to be constantly
monitored. During the development process, code size
changes depending on whether the compilation mode is
designed to deliver a debug, non-optimized or
optimized version of the application image or to
include or exclude a specific language or application
feature.

6. Development Techniques

Embedded systems are application specific and they
are not usually reprogrammed or upgraded during their
lifetimes. As such, the design can be tuned for very
specific functions. Furthermore, an embedded system
is reactive. It reacts to events from the environment and
performs certain kinds of processing under some real
time constraint. In contrast to general purpose systems,
where a goal is to maximize performance, with a
reactive embedded system, the performance is a
constraint. We discuss below a number of strategies

that are available to allow a piece of embedded
software to perform within such tight constraints.

6.1 Analysis and Design Strategies

During analysis and design of this port, resources had
to be scoped and a strategy for its allocation and use
had to be determined ahead of time . One of the first
activities that had to be accommodated was interrupt
planning [3]. A number of ISR handling strategies are
available [3, 4] and our interrupt handling strategy
involved deciding ahead of time whether or not certain
processing tasks were going to be part of the interrupt
service routine or part of the main-line code. We
analyzed the reentrancy each code block supported in
the original system and we designed the type of
reentrancy we were allowed to support in the
microcontroller. This involved considering the number
of temporaries we needed to use and analyzed how
much work was involved in saving and restoring
processor state. Dynamic C's ISR facilities made it
easy to partition these activities, but its default static
allocation strategy meant breaking a number of
reentrancy programming rules [1, 3, 4]. It has well
defined semantics for how the main -line code and the
ISR interact, but the details behind saving and restoring
specific registers would make it much harder to debug
and test. Given that these ISRs are not reentrant and
that the frequency of context switching between
servicing network connections and processing the data,
we had decided on placing a majority of the handler
code within the main-line section of the program.
Furthermore, it would have been more difficult to
handle errors and state changes within the application
when non-maskable interrupts (NMI) needed to be
processed. It would be difficult to estimate the
debugging and testing time required from the resulting
increase in software complexity. Simplicity dominated
our design strategy for many such related issues.

Transitioning to the idea of ROM’d code, where the
data and code is stored separately, required a change in
design and programming mindset. We had to carefully
plan how much memory the program would use and
how much code space the compiled application image
would take on the device. We used a well defined
taxonomy [4] for considering the memory footprint of
certain software components that were going to be
compiled into the image. Calculating code space
requirements was easy compared to determining the
run-time size requirements of the application. The
Dynamic C environment provided tools for mo nitoring
code space and the application's image footprint.
Memory pre-allocation and planning were used for
most of the complex function points in the system. This
type of analysis was a bit more difficult. Key sizes and

block input sizes had to be constrained in order to
make memory usage deterministic. The original AES
library implementation supplied with iSSL supported
various key and block sizes. Porting this application
required that we go with a fixed key and input block
size of 128bits, occupying a fixed size of 32 bytes. It is
a good compromise for maintaining the cryptographic
strength of the application while limiting the
application enough to make development deterministic
and manageable. Furthermore, the complexity
involved in developing a “BigNum” library made it
unfeasible to port the RSA algorithm.

Organizing the system and its control flow is another
challenge in embedded systems design. There are
various system organizations within real-time systems
that were considered for use [21]. From the initial
analysis stage it was clear that the application port
could only be organized one of three ways as outlined
by Perkshot's real-time systems taxonomy [21]. In
order to maximize throughput, we considered a level 0
organization, called a polling loop. This system
exhibits no complexity attributes and is a single loop
with sequential execution and almost no interrupts.
Branches are allowed to select alternative actions
depending upon input values. A single timer interrupt
is sometimes allowed as long as it is used only to
update a clock or time variable. The polling loop
executes continuously and endlessly, and the loop time
is determined only by the amount of work performed
for every iteration. A level 1 schedule loop was also
considered for use. It does not visit a fixed list of
inputs and tasks, but instead continuously polls a
dynamic schedule [21]. Tasks are placed on the
schedule either repetitively, by themselves, or by other,
previously executed tasks or functions. With further
analysis, a level 2, preemptive single task strategy was
decided as the organization of choice for our
application. This organization is a bit more complex,
but the event handling semantics that we needed
support made it time consuming to retrofit to the
simpler level 0 and level 1 strategies. The Dynamic C
language and the RTOS supplied by the RMC2000
natively supported both timing and priority complexity
attributes required to perform stateful network and
cryptographic operations.

Design patterns are normally associated with complex,
object oriented application services. The iSSL network
service, for example, utilizes a complex pre -
threading/pre-forking strategy to service incoming
connections. Though not normally associated with
embedded systems, we have found a number of
applicable design patterns to apply to our system. In
our specific embedded application domain, we have
found certain design patterns to encapsulate task

abstractions well and to conceptually decouple
subsystems. Dynamic C provides a number of
primitive constructs that were helpful in providing task
abstractions. The function chaining construct and the
costatement/cofunction construct allowed for ISRs and
tasks to be designed in a decoupled fashion. A timer
pattern was used to abstract clock timing functions
from tasks [22]. The Dynamic C slice construct
facilitated the ease at which we were able to utilize this
construct since it integrated the concept of a real-time
clock handler and scheduler into one. Costatement
tasks could then encapsulate critical sections and be
run in these "slices" from a very simple scheduler
proper. With such constructs supported in the
language, abstractions to support scheduling policies
can be used. Using the macro expansion of Dynamic
C, a family of scheduler policies can be parameterized
with function blocks to slice costatements.

6.2 Programming Idioms for Embedded Systems

The correlation between code size and performance is
an openly debated issue with all systems. The story is
a bit more straightforward with embedded systems.
The DSPStone project [12] showed that code size was
directly related to performance overhead. In some
embedded systems, memory is integrated into the CPU
core, and thus a larger code size immediately implies a
lower chip yield and higher costs. Optimization can
have a both a positive effect on code size and
performance, while in other cases, there is a trade off
between the two optimization goals. Eventually, it
depends on the concrete application and technology at
hand, which optimization goal should be priority [2].
For our system, performance and accurate data
representation are key factors. In order to maximize
performance with the proper key representations, a
number of techniques were used for both the control
and library functions.

One general rule that had to be followed was to write
global variables in one place only. In order to
maximize efficiency in the face of frequent context
switching for interrupt handlers, state data either had to
be in the main line or interrupt code. Data exchange
should only be accomplished by read them into the
other. The key to making this possible was ensuring
that the communication between the interrupt routine
and the main-line code travel one way if possible [4].

One piece of device knowledge that the programmer
must keep in mind is the endianness of the processor.
C does not deal with endianness even in multi-byte
shift operations and quirks are known to appear in
microcontrollers. We had to ensure that byte orderings
were little -endian. Fortunately, the network routines

that come with the Rabbit development environment
take care of bit packing and converting byte orderings.

Unrolling for loops have been documented to save
ROM space [4] and was considered for this port, but
this technique was not used for our application port.
The Dynamic C compiler is a black box and
determining which code optimizations it used was
impossible. Hand optimization features such as loop
unrolling may be obsoleted by the compiler. The
benefits of implement such a feature did not warrant
the time and effort it would have required to test and
debug and verify the application.

We made good use of the macro facility provided by
the compiler. Software tools sometimes lag behind
new processors and it is not uncommon to use a
derivative CPU with an instruction that has not been
implemented in the assembler [1]. Macros are
generally used to abstract hardware nuances and place
new instructions within a section of code without
having to redesign the program's structure. For our
application, though, since the language couples our
software with the Rabbit RMC2000 platform, we used
macros to facilitate simple design patterns.

7. Performance and Detailed Discoveries

Our port utilizes a naïve and an optimized version of
the AES library to see which optimization techniques
affect performance. The optimized AES port is a pure
assembly implementation derived from the work of
Paulo S.M. Barreto. This optimized version sacrifices
memory for speed. The data representation is complex
to represent and costly to use. 32 bit integer types are
represented by two segments of 16bit unsigned integers
to represent the high and low order bits of the number.

Development time is dominated by the steep learning
curve to learn the Dynamic C constructs and the
RMC2000 platform. Small language features,
constructs or design changes take a non-trivial amount
of time to implement, debug and test. Most of the
engineering effort was originally thought to be tied up
in rework and reconfiguration. The actual effort
allocation was dominated by debugging and testing.
There were some unexpected and undocumented
hardware behaviors and the semantics of Dynamic C
language seem to run contrary to that of the
documented specifications.

Development Time
 Actual(PM) Estimated(PM)
AES 0.2 0.1
AES Assembly 0.3 0.1
Application 0.6 0.3

From our experience, all we can conclude is that
having an eye towards redesigning from scratch is
better. Even library routines, which are usually meant
to be portable, cannot be reused if performance is a
critical factor. Designing for portability only serves to

reduce the cost of deploying certain libraries across
other device platforms. Certain design patterns help,
but are by no means meant to improve performance.
They merely serve to make conceptual designs clear in
code and do not translate directly to reduce size or to
increase portability and performance.

TLS w/AES
Compilation options 1,2,3 3 1,2,4 4
SLOC 7532 7365 7513 7495
code size (bytes) 28575 27129 28043 26895
encrypt time (secs) 0.064 0.054 0.064 0.059
decrypt time (secs) 0.082 0.076 0.097 0.077

TLS w/AES assembly
Compilation options 1,2,3 3 1,2,4 4
SLOC 7259 7294 7250 7213
code size (bytes) 24325 24139 23794 23463
encrypt time (secs) 0.0022 0.0022 0.0022 0.0022
decrypt time (secs) 0.0031 0.0031 0.0031 0.0031

compilation options Type checking Debug symbols Speed optimization Size reduction
 1 2 3 4

The assembly version of the TLS service performed
faster than our design by a factor of 15-20. Hand
optimizations, creative use of dynamic C constructs
and compiler optimizations failed to bring our design
within a reasonable distance from the hand-coded
assembly version. Good design in an embedded world
is hard to define since the metrics differ from that of a
standard application. Requirements satisfaction and
real-time operation are more important than portability,
scalability and elegance. Algorithm optimization beats
out most optimizations performed in the software
architecture level. From the data we have collected,
there seems to be little correlation between code size
and performance. An 8% difference in SLOC and a
9% difference in binary size translated to an order of
magnitude speed difference.

We have devised a series of “simplifiers and
complicators” [23] that can be used as a rough
guideline to assess the relative amount of software and
development complexity that might be encountered in
an embedded software project.

simplifiers complicators

HLL support No language support
Integrated tool
environment

Non standard algorithm
support

Optimized library support Fault tolerance and recovery

Memory availability Real-time performance

Platform maturity Multi-tasking
Soft real-time
performance IPC requirements

Stateless application Memory intesiveness

8. Conclusion

Software development on an embedded platform
requires a different mindset. The benchmarks for
success, performance, portability run contrary to that of
standard application or systems development. The
interplay between performance, code size and memory
footprint determine the success of any embedded
systems project. This usually translates to a
development process dominated by planning and
testing and verification. Design elegance and peephole
optimizations provide spotty performance gains and are
not favored over algorithmic optimizations and
instruction set intimacy.

References

1. J. G. Gassle, The Art of Programming Embedded

Systems. Academic Press Inc, 1992
2. R. Leupers, Code Optimization Techniques for

Embedded Processors: methods, Algorithms, and Tools.
Kulwer Academic Publishers, 2000

3. M. Barr, Embedded System Programming in C and
C++. O'Reilly & Associates, 1999

4. K. Zurell, C Programming for Embedded Systems. CMP
Books, 2000.

5. P. Koopman, "Embedded System Design Issues -- The
Rest of the Story", Proceedings of the 1996 International
Conference on Computer Design, Austin, October 7-9
1996.

6. P. J. Brown, "Levels of language for portable software,"
Communications of the ACM 15(12), pg 1059-1062,
Dec. 1972.

7. B.W. Kernigham and D. M. Ritchie, "The C
Programming (ANSI C) Language", 2nd. Edition,
Prentice Hall, Englewood Cliffs, New Jersey

8. S. Vinoski, "CORBA: Integrating Diverse Applications
Within Distributed Heterogeneous Environments," IEEE

Communications Magazine, vol. 14, no. 2, February
1997.

9. D.R. Hanson, C Interfaces and Implementations-
Techniques for Creating Reusable Software. Reading,
MA: Addison-Wesley, 1997.

10. A. Gokhale and D. C. Schmidt, "Techniques for
Optimizing CORBA Middleware for Distributed
Embedded Systems," in Proceedings of INFOCOM '99,
Mar. 1999.

11. P. G.Paulin, et.al., "Trends in Embedded Systems
Technology: An Industrial Perspective", NATO ASI on
Hardware/Software Codesign, Lake Como, Italy, 1995.

12. V. Zivojnovic. C. Schlager, H. Meyr, "DSPStone: A
DSP Oriented Benchmarking Methodology,"
International Conference on Signal Processing, 1995.

13. Ralf S. Engelschall. mod SSL, 2000. WWW
documentation. (better-documented derivative of the
Apache SSL secure web server) http://www.modssl.org

14. J. Gassle, "Dumb Mistakes", The Embedded Muse New
Letter, August 7, 1997.

15. C. Yang, "Performance Evaluation of
AES/DES/Camellia on the 6805 and H8/300 CPUs", In
the Proceedings of the 2001 Symposium on
Cryptography and Information Security," pgs. 727-730,
Oiso, Japan, January 23, 2001.

16. A. O. Freier, P. Karlton, and P. C. Kocher, "The SSL
protocol," Internet draft, Transport Layer Security
Working Group, Nov. 1996.

17. T. Dierks and C. Allen, "The TLS protocol," Internet
draft, Transport Layer Security Working Group, May
1997.

18. Arthur Goldberg, Robert Buff, Andrew Schmitt, "Secure
Web Server Performance using SSL Session Keys",
Published in the "Workshop on Internet Server
Performance", held in conjunction with
SIGMETRICS'98, June 23, 1998.

19. B. Schneier, J. Kelsey, D. Whiting, D. Wagner, C. Hall,
and N. Ferguson, "Performance Comparison of the AES
Submissions," Version www.counterpane.com, January
1999.

20. J. Daemen and V. Rijmen. "The block cipher Rijndael,"
In Third Smard Card Research and Advanced
Applications Conference Proceedings, 1998.

21. G.G. Preckshot. "Real-Time Systems Complexity and
Scalability," In a FEESP Technical Report for Lawrence
Livermore National Laboratory, May 28, 1993.

22. M. de Champlain. "Patterns to Ease the Port of Micro-
kernels in Embedded Systems," In Proc. of the 3rd
Annual Conference on Pattern Languages of Programs
(PLoP'96), Allerton Park, IL, June 1996.

23. B. Boehm, D. Port, A. Egyed "The MBASE Life Cycle
Architecture Milestone Package: No Architecture Is An
Island," 1st Working International Conference on
Software Architecture, 1999.

