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Abstract 
 
This paper describes our experiences with porting a 
TLS cryptography service to an embedded 
microcontroller. We describe some key development 
issues and techniques involved in porting networked 
software to a connected, limited resource device such 
as the Rabbit RMC2000.  We examine the effectiveness 
of a few purported porting strategies by examining 
important program and run-time characteristics. 
   
1. Introduction 
 
Embedded systems present a different software 
engineering problem. These types of systems are 
unique in that the iron and the code are tightly 
integrated. The limited nature of an embedded systems 
operating environment require a different approach to 
developing and porting software.  In this paper, we 
discuss the key issues in developing and porting a 
UNIX system level TLS service to an embedded 
microcontroller. We discuss our design decisions and 
experience porting this service using Dynamic C, an 
ANSI C variant, on the RMC2000 microcontroller 
from Rabbit Semiconductor.  We examine some 
performance comparisons to ascertain the feasibility 
and effectiveness of some common programming 
idioms for embedded software development.   
 
Porting software across platforms have become such a 
common and varied software engineering exercise that 
much commercial and academic research has been 
dedicated to identifying pitfalls, techniques and 
component analogues for moving an application to a 
different target platform.  The development of software 
or porting existing software to different, analogous 
system platforms have been addressed by high level 
languages [6,7], modular programming [9], and 
component based abstraction, analysis and design 
techniques [8]. Despite the popularity of these 
programming and design idioms, they generally have 
little support for dealing with the rather raw and limited 
resources available in an embedded system. 
Furthermore, the move towards these abstraction 
mechanisms has  resulted in applications with footprints 
that do not make them feasible for deployment to a 
microcontroller.  Though there have been efforts to 
port these abstraction idioms to the world of embedded 

systems [10], porting applications and components to a 
limited device configuration still require much re-
engineering.     
 
The rest of the paper is organized as follows: In section 
2, we provide a brief discussion on related work in the 
engineering of embedded software.  In section 3 
background regarding network cryptography services is 
provided.  In section 4, we provide some background 
information regarding the Dynamic C development 
environment.  Section 5 discusses a number of the 
issues involved in porting the TLS service to the 
device. In section 6, we describe a few development 
techniques we used for our port and for embedded 
systems  development in general.  In section 7, we visit 
some of metrics to evaluate our port and we provide a 
discussion of our discoveries and insights. Finally, 
section 8 includes some concluding remarks.   
 
2. Related Work 
 
Cryptographic services for transport layer security 
(TLS) have been available as operating system and 
application server services for quite some time now 
[13].  The concept of an embedded TLS service or 
custom ASIC for stream ciphering have been proposed 
and are commercially available as SSL/TLS accelerator 
products from vendors such as Sun Microsystems and 
Cisco.  They operate as black boxes and the 
development issues and processes to make these 
services available to embedded devices have been 
rarely discussed.  Though the performance of various 
cryptographic algorithms such as AES and DES have 
been examined on many systems [19], including 
embedded devices [15], a discussion on the challenges 
of porting complete services to a device have not 
received such a treatment.  
 
The scope of embedded systems development has been 
covered in a number of books and articles [1, 14].  
Optimization techniques at the hardware design level 
and at the pre-processor & compiler level are well 
researched and benchmarked topics [1, 2, 12].  
Embedded programming guidelines for optimization, 
style and robustness are outlined for specific languages 
such as ANSI C [3]. Design patterns have even been 
proposed in the development of embedded software to 



increase portability and leverage reuse between device 
configurations [22].   
 
3. Network Cryptographic Services 
 
Transport Layer Security is a standard proposed by the 
IETF [17] and is implemented on the Internet most 
notably by the Secure Sockets Layer (SSL) [16].  
Unfortunately, establishing and maintaining a secure 
connection is a computationally intensive task.  
Negotiating a TLS/SSL session can result in a big hit 
on server performance. This, in turn, can limit the 
number of SSL sessions which can be served and the 
number of concurrent SSL sessions that can be 
maintained at your site and it has been shown to reduce 
throughput by an order of magnitude [18].  
 
The problems associated with TLS/SSL have been in 
part solved through processor cards that fit inside Web 
servers. These cards worked to offload the 
mathematically-intensive TLS/SSL authentication and 
key generation from the Web server's central CPU, and 
thus increase server capacity to handle more new SSL 
sessions.  The software used to in these expansion 
boards is largely proprietary.  
 
Our developing activities revolve around porting 
"iSSL", a minimalistic cryptographical library and 
network service implementation that uses the RSA and 
AES cipher algorithms to establish SSL-like, secure 
encrypted communications between two peers over the 
network.  It includes support for session key generation 
and public key exchange.  Due to representation and 
development time constraints we only port the AES 
cipher.  Our port of the AES cipher uses the Rijndael 
algorithm [20], as proposed by the NIST on October 
2000.  The key length of AES can be independently 
specified to 128, 192 or 256 bits with input block 
lengths of 128, 192 or 256 bits.  The AES cipher is 
required by NIST to work on a variety of processors, 
from 8-bit processors  on smart cards and other 
embedded devices to powerful 64-bit workstations 
[19].  For our port, we referred to both the iSSL AES 
implementation and the AEScrypt implementation 
developed by Eric Green and Kaelber. 
 
 
4. The Rabbit RMC2000 Environment 
 
The system used for our implementation came 
packaged as part of an integrated board solution. It 
came with an integrated 10Base-T network interface 
and a network stack for a TCP/IP, UDP and ICMP 
implementation.  The development board is limited to 
512k flash RAM and 128k SRAM. 
 

4.1 The RMC2000 Microcontroller 
 
The Rabbit RM2000 is a high-performance 8-bit 
microprocessor designed to integrate with other 
peripherals.  It has an enhanced instruction set with 
numerous one-byte opcodes and 16-bit logical, 
arithmetic, and data transfer instructions. Clock speed 
can be controlled via software to allow for dynamic 
adjustment of power and speed.  It can perform 16 
x 16 multiplies in 12 clock cycles and it has four levels 
of interrupt priorities and has 40 parallel IO lines.  It 
has a two clock memory cycle and it has a similar 
architecture to that of the HDC640 and the Z180.  Its 1-
megabyte code space allows for C programs of up to 
50,000+ lines of code. The extended Z80-style 
instruction set is C-friendly, with short and fast 
instructions for most common C operations.    
 
This particular embedded system is designed to 
accommodate rapid development and porting of 
existing applications. The Rabbit microcontroller has a 
10-pin programming port that eliminates the need for 
in-circuit emulators.  It comes with a development 
environment that integrates a compiler,  linker, loader, 
debugger and diagnostics in a single package.  With the 
Dynamic C environment, some of the engineering costs 
associated with tool development and support, which 
has been found to account for 15% of the effort in 
embedded systems development [11], can be 
minimized and factored away from our exercise.  
 
4.2 Dynamic C 
 
Dynamic C is the language used to build applications 
for the Rabbit Semiconductor RMC series of 
microprocessors and microcontrollers.  It is generally  
described in the context of an integrated development 
solution for devices, and as such it integrates many 
compiler, linker, loader and RTOS features into the 
actual programming language.  
 
4.2.1 Dynamic C, the Language 
 
Dynamic C is an ANSI C language variant.  It supports 
embedded assembly code and stand-alone assembly 
code within a source file.   Its grammar and syntax are 
similar to that of ANSI C, but it differs from a 
traditional ANSI C programming system running on a 
PC or under UNIX in that ANSI C makes many 
assumptions that do not apply to embedded systems. 
Standard C, for example, implicitly assumes that an 
operating system is present and that a program starts 
with a clean slate, whereas embedded systems may 
have battery-backed memory and may retain data 
through power cycles. Also, Dynamic C places 
significant constraints on how a program is structured. 



The numerous include files found in typical C 
programs are not used because Dynamic C has a library 
system that automatically provides function prototypes 
and similar header information to the compiler before 
the user's program is compiled. The C "#include" 
directive is  supplanted by a “#use” directive and 
components are forced to be designed as libraries and 
not modules.  Furthermore, Dynamic C does not 
support the “#pragma” preprocessor directive.   
 
Dynamic C limits memory addressing operations to 
support only 20-bit addresses. It  relies heavily on the 
existence of an on-chip memory management unit  
(MMU) to segment memory and translates 16-bit 
addresses to 20-bit memory addresses. It has "shared" 
and "protected" keywords that help protect data shared 
between different contexts or stored in battery-backed 
memory. Furthermore, it has a set of features that allow 
the programmer to make fullest use of extended 
memory. Normally, Dynamic C takes care of memory 
management, but it has keywords and directives to help 
put code and data in the proper place. For example, the 
keyword "root" selects root memory (addresses within 
the 64K physical address space), and the keyword 
"xmem" selects extended memory, which means 
anywhere in the 1024K code space.  
 
Dynamic C places further constraints  in the semantics 
of the language. Bit fields and enumerated types are 
not supported. There are also minor differences 
involving extern and register keywords. The default 
storage class for variables is static, and not auto. 
Variables that are explicitly initialized in a declaration 
are stored in flash memory and cannot be changed. 
 
4.2.2 Dynamic C and RTOS Integration 
 
The RM2000 utilizes a real time operating system 
called µC/OS-II. The µC/OS-II RTOS is a simple real-
time operating system that runs on the Rabbit 
microprocessor and is fully integrated into the 
Dynamic C language and environment.    The µC/OS-II 
RTOS is compiled into the program and loaded into the 
microcontroller using some of the RM2000 
bootstrapping features. Unlike ANSI C, Dynamic C 
integrates RTOS semantics into its language constructs.   
Dynamic C has a construct called "function chaining." 
Function chaining is program structuring construct that 
allows special segments of code to be embedded within 
one or more functions. When a named function chain 
executes, all the segments belonging to that chain 
execute. Function chains allow software to perform 
initialization, data recovery, or other kinds of tasks on 
request.    
 

Multi-tasking is natively supported in the language.  
The costatement construct simplifies the 
implementation of state machines and it allows for 
concurrent parallel processes to be simulated in a 
single program.  Costatements can be voluntarily 
suspended and later resumed. Cofunctions are a similar 
construct.  Cofunctions, like costatements, are used to 
implement cooperative multitasking.  But, unlike 
costatements, they have a form similar to functions and 
they are designed to facilitate callbacks and other 
signaling patterns in a real-time application. Finally, 
Dynamic C provides the "slice" statement construct to 
allow the programmer to run a block of code for a 
specific amount of time. These constructs are 
supplemented with "yield", "abort", "waitfor" and 
"waitfordone" keywords to control scheduling, timing 
and event handling of these task abstractions.  
 
5. Porting and Development Issues 
 
A number of key development issues aris e in 
determining whether or not an embedded systems 
development effort is going to be feasible.  These 
considerations range from analysis and design 
constraints to development tool support for supporting 
the target device. 
 
5.1 To Port or Not to Port 
 
The most important thing to consider before porting 
any application or component is to decide whether 
something really should or shouldn't be ported.  The 
key driver in this assessment is determining the 
reducibility of the system and the percentage of the 
design and code that will need to change.  Embedded 
systems are fairly sparse in terms  of the available 
services that it can provide, so a key factor is  whether 
or not many of the system level services that are going 
to be required are going to have to be redesigned and 
re-engineered.  Whereas standard applications use 
COTS solutions to leverage reuse possibilities, the use 
of a COTS solution can become a detriment in 
embedded software development.   Most of the features 
provided by COTS solutions will need to be 
reanalyzed, re-engineered and re -implemented from 
scratch to suit the operating environment of the target 
embedded platform.    
 
Unfortunately, the iSSL package is a well developed 
system daemon and as such it utilizes a number of 
UNIX specific services and a number of COTS 
libraries.  It utilizes the GNU MPI library for 
performing data calculations and manipulations.  The 
MPI library contains architecture specific code for a 
number of target platforms.  It makes available a 
number of optimized assembly routines for memory  



addressing and shifting operations.  It makes use of a 
"bignum"  library to provide itself with a data 
representation mechanism adequate enough to store 
and manipulate up to 1024bit keys for the RSA 
algorithm.  The network service component used by the 
iSSL service is mainly a simple control flow 
application designed to demonstrate networked stream 
ciphering.  Though simple enough for our embedded 
application, it nevertheless utilizes threads for servicing 
multiple requests and its  socket constructs adhere to the 
UNIX BSD model.  Since it is designed to be used in a 
multi-threaded environment, the library code is 
reentrant and can handle multiple cryptographic 
operations.  The iSSL package also contains a good 
amount of dynamic memory allocation code. 
 
The iSSL package was designed to be portable across a 
number of platforms.  It supports Windows and many, 
many flavors of UNIX.  Retaining this property in an 
embedded development context is quite impossible.  
Though many microcontrollers share similar, if not the 
same instruction sets, as in the case of the Rabbit 
RM2000 and the Zilog Z180 processors, software 
cannot be guaranteed to be portable because 
microcontrollers are configured with various types of 
other board level controllers and chip sets.  As such 
each embedded system platform introduces its own set 
of nuances and variations to the operating environment.  
Furthermore, depending on the RTOS installed, an 
embedded application may or may not have to perform 
its own resource and device management functions. 
Therefore, the feasibility of an application's design is 
dictated by the platform's architecture and 
configuration.  Domain specific designs such as ASIPs, 
ASICs and tools such as SDLs, have forced embedded 
software to be re-engineered from scratch almost every 
time. It has been shown that software development for 
embedded applications and firmware account for up to 
33% of the manpower allocation for many embedded 
systems projects [11].    
 
5.2 Factoring an Application for an Embedded 
Environment 
 
It was quite evident that porting this TLS service would 
require a good amount of rework.  Aside from the 
obvious platform constraints, much of the logical code 
would remain the same.  Much of the work involved 
was with re-architecting certain portions of the system 
to fit within an embedded context.  A certain amount of 
reduction had to take place to simplify operations and 
task handling and to re-engineer the interfaces to the 
network and the data.  The control flow of the 
application, task scheduling and error handling all 
became issues in this new context.  Furthermore, the 
largely user delegated error recovery and error 

handling semantics of the TLS service had to be re-
designed to accommodate the possibility of continuous 
operation in a real time, autonomous setting.  Since a 
file semantics did not exist in the controller, logging 
mechanisms for error reporting had to be either 
discarded or re-engineered as part of the protocol.  
Platform abstractions needed to be refactored or 
eliminated to minimize code size.  Extra interfaces and 
abstractions add to the size of the application image, 
especially when embedded software tools do not 
support dynamic linkers and loaders.  Usually, as in the 
case of the RMC2000, all code is statically linked and a 
single image is loaded to the EPROM.   
 
5.3 Resource Management 
 
Maintaining state within the application was a big 
design issue.  Memory is a precious resource in a 
microcontroller and the way Dynamic C statically 
allocates variables made it difficult to port the current 
book-keeping logic. The original version of iSSL 
makes use of automatic variables and temporaries and 
state is saved in per thread stacks for reentrancy. 
 
Without a full featured operating system to manage 
low level resources a number of low level issues had to 
be considered.  Issues regarding how the processor 
saves its state had to be examined to determine whether 
or not register values had to be manually saved or 
restored before returning from an interrupt.   Register 
preservation require multi-byte transfer routines which 
can add up for often used/called interrupt.  The 
frequency of the interrupt calls and the amount of work 
to be done within them needed to be estimated.  
 
Since code and data space were quite limited, the size 
of the compiled code would have to be constantly 
monitored.  During the development process, code size 
changes depending on whether the compilation mode is  
designed to deliver a debug, non-optimized or 
optimized version of the application image or to 
include or exclude a specific language or application 
feature. 
 
6. Development Techniques 
 
Embedded systems are application specific and they 
are not usually reprogrammed or upgraded during their 
lifetimes.  As such, the design can be tuned for very 
specific functions.  Furthermore, an embedded system 
is reactive. It reacts to events from the environment and 
performs certain kinds of processing under some real 
time constraint.  In contrast to general purpose systems, 
where a goal is to maximize performance, with a 
reactive embedded system, the performance is a  
constraint.  We discuss below a number of strategies 



that are available to allow a piece of embedded 
software to perform within such tight constraints.  
 
6.1 Analysis and Design Strategies 
 
During analysis and design of this port, resources had 
to be scoped and a strategy for its allocation and use 
had to be determined ahead of time .  One of the first 
activities that had to be accommodated was interrupt 
planning [3].  A number of ISR handling strategies are 
available [3, 4] and our interrupt handling strategy 
involved deciding ahead of time whether or not certain 
processing tasks were going to be part of the interrupt 
service routine or part of the main-line code.  We 
analyzed the reentrancy each code block supported in 
the original system and we designed the type of 
reentrancy we were allowed to support in the 
microcontroller.  This  involved considering the number 
of temporaries we needed to use and analyzed how 
much work was involved in saving and restoring 
processor state.  Dynamic C's ISR facilities made it 
easy to partition these activities, but its default static 
allocation strategy meant breaking a number of 
reentrancy programming rules [1, 3, 4].  It  has well 
defined semantics for how the main -line code and the 
ISR interact, but the details behind saving and restoring 
specific registers would make it much harder to debug 
and test.  Given that these ISRs are not reentrant and 
that the frequency of context  switching between 
servicing network connections and processing the data, 
we had decided on placing a majority of the handler 
code within the main-line section of the program. 
Furthermore, it would have been more difficult to 
handle errors and state changes within the application 
when non-maskable interrupts (NMI) needed to be 
processed. It would be difficult to estimate the 
debugging and testing time required from the resulting 
increase in software complexity. Simplicity dominated 
our design strategy for many such related issues. 
 
Transitioning to the idea of ROM’d code, where the 
data and code is stored separately, required a change in 
design and programming mindset.  We had to carefully 
plan how much memory the program would use and 
how much code space the compiled application image 
would take on the device.  We used a well defined 
taxonomy [4] for considering the memory footprint of 
certain software components that were going to be 
compiled into the image. Calculating code space 
requirements was easy compared to determining the 
run-time size requirements of the application.  The 
Dynamic C environment provided tools for mo nitoring 
code space and the application's image footprint.  
Memory pre-allocation and planning were used for 
most of the complex function points in the system. This 
type of analysis was a bit more difficult.  Key sizes and 

block input sizes had to be constrained in order to 
make memory usage deterministic.  The original AES 
library implementation supplied with iSSL supported 
various key and block sizes.  Porting this application 
required that we go with a fixed key and input block 
size of 128bits, occupying a fixed size of 32 bytes.  It is 
a good compromise for maintaining the cryptographic 
strength of the application while limiting the 
application enough to make development deterministic 
and manageable.  Furthermore, the complexity 
involved in developing a “BigNum” library made it 
unfeasible to port the RSA algorithm. 
   
Organizing the system and its control flow is another 
challenge in embedded systems design.  There are 
various system organizations within real-time systems 
that were considered for use [21].  From the initial 
analysis stage it was clear that the application port 
could only be organized one of three ways as outlined 
by Perkshot's  real-time systems taxonomy [21].  In 
order to maximize throughput, we considered a level 0 
organization, called a polling loop.  This system 
exhibits no complexity attributes and is a single loop 
with sequential execution and almost no interrupts. 
Branches are allowed to select alternative actions 
depending upon input values.  A single timer interrupt 
is sometimes allowed as long as it is used only to 
update a clock or time variable. The polling loop 
executes continuously and endlessly, and the loop time 
is determined only by the amount of work performed 
for every iteration.   A level 1 schedule loop was also 
considered for use.  It does not visit a fixed list of 
inputs and tasks, but instead continuously polls a 
dynamic schedule [21].  Tasks are placed on the 
schedule either repetitively, by themselves, or by other, 
previously executed tasks or functions.  With further 
analysis, a level 2, preemptive single task strategy was 
decided as the organization of choice for our 
application. This organization is a bit more complex, 
but the event handling semantics that we needed 
support made it time consuming to retrofit to the 
simpler level 0 and level 1 strategies.  The Dynamic C 
language and the RTOS supplied by the RMC2000 
natively supported both timing and priority complexity 
attributes required to perform stateful network and 
cryptographic operations. 
 
Design patterns are normally associated with complex, 
object oriented application services.  The iSSL network 
service, for example, utilizes a complex pre -
threading/pre-forking strategy to service incoming 
connections.  Though not normally associated with 
embedded systems, we have found a number of 
applicable design patterns to apply to our system.  In 
our specific embedded application domain, we have 
found certain design patterns to encapsulate task 



abstractions well and to conceptually decouple 
subsystems.  Dynamic C provides a number of 
primitive constructs that were helpful in providing task 
abstractions.  The function chaining construct and the 
costatement/cofunction construct allowed for ISRs and 
tasks to be designed in a decoupled fashion.  A timer 
pattern was used to abstract clock timing functions 
from tasks [22].  The Dynamic C slice construct 
facilitated the ease at which we were able to utilize this 
construct since it integrated the concept of a real-time 
clock handler and scheduler into one. Costatement 
tasks could then encapsulate critical sections and be 
run in these "slices" from a very simple scheduler 
proper.  With such constructs supported in the 
language, abstractions to support scheduling policies 
can be used.  Using the macro expansion of Dynamic 
C, a family of scheduler policies can be parameterized 
with function blocks to slice costatements.  
 
6.2 Programming Idioms for Embedded Systems  
 
The correlation between code size and performance is 
an openly debated issue with all systems.  The story is 
a bit more straightforward with embedded systems. 
The DSPStone project [12] showed that code size was 
directly related to performance overhead.  In some 
embedded systems, memory is integrated into the CPU 
core, and thus a larger code size immediately implies a 
lower chip yield and higher costs.  Optimization can 
have a both a positive effect on code size and 
performance, while in other cases, there is a trade off 
between the two optimization goals. Eventually, it 
depends on the concrete application and technology at 
hand, which optimization goal should be priority [2]. 
For our system, performance and accurate data 
representation are key factors.  In order to maximize 
performance with the proper key representations, a 
number of techniques were used for both the control 
and library functions.  
 
One general rule that had to be followed was to write 
global variables in one place only.  In order to 
maximize efficiency in the face of frequent context 
switching for interrupt handlers, state data either had to 
be in the main line or interrupt code.  Data exchange 
should only be accomplished by read them into the 
other.  The key to making this possible was ensuring 
that the communication between the interrupt routine 
and the main-line code travel one way if possible [4].  
  
One piece of device knowledge that the programmer 
must keep in mind is  the endianness of the processor.  
C does not deal with endianness even in multi-byte 
shift operations and quirks are known to appear in  
microcontrollers.  We had to ensure that byte orderings 
were little -endian.  Fortunately, the network routines 

that come with the Rabbit development environment 
take care of bit packing and converting byte orderings.  
 
Unrolling for loops have been documented to save 
ROM space [4] and was considered for this port, but 
this technique was not used for our application port.  
The Dynamic C compiler is a black box and 
determining which code optimizations it  used was 
impossible.  Hand optimization features such as loop 
unrolling may be obsoleted by the compiler.  The 
benefits of implement such a feature did not warrant 
the time and effort it would have required to test and 
debug and verify the application.  
 
We made good use of the macro facility provided by 
the compiler.  Software tools sometimes lag behind 
new processors and it is not uncommon to use a 
derivative CPU with an instruction that has not been 
implemented in the assembler [1].  Macros are 
generally used to abstract hardware nuances and place 
new instructions within a section of code without 
having to redesign the program's structure.  For our 
application, though, since the language couples our 
software with the Rabbit RMC2000 platform, we used 
macros to facilitate simple design patterns.  
   
7. Performance and Detailed Discoveries  
 
Our port utilizes a naïve and an optimized version of 
the AES library to see which optimization techniques 
affect performance.  The optimized AES port is a pure 
assembly implementation derived from the work of 
Paulo S.M. Barreto.  This optimized version sacrifices 
memory for speed.  The data representation is complex 
to represent and costly to use.  32 bit integer types are 
represented by two segments of 16bit unsigned integers 
to represent the high and low order bits of the number. 
 
Development time is dominated by the steep learning 
curve to learn the Dynamic C constructs and the 
RMC2000 platform.  Small language features, 
constructs or design changes take a non-trivial amount 
of time to implement, debug and test.  Most of the 
engineering effort was originally thought to be tied up 
in rework and reconfiguration.  The actual effort 
allocation was dominated by debugging and testing.  
There were some unexpected and undocumented 
hardware behaviors and the semantics of Dynamic C 
language seem to run contrary to that of the 
documented specifications.   
 

Development Time 
 Actual(PM) Estimated(PM) 
AES 0.2 0.1 
AES Assembly 0.3 0.1 
Application 0.6 0.3 



 
From our experience, all we can conclude is that 
having an eye towards redesigning from scratch is 
better.  Even library routines, which are usually meant 
to be portable, cannot be reused if performance is a 
critical factor.  Designing for portability only serves to 

reduce the cost of deploying certain libraries across 
other device platforms.  Certain design patterns help, 
but are by no means meant to improve performance.  
They merely serve to make conceptual designs clear in 
code and do not translate directly to reduce size or to 
increase portability and performance.

TLS w/AES 
Compilation  options 1,2,3 3 1,2,4 4 
SLOC 7532 7365 7513 7495 
code size (bytes) 28575 27129 28043 26895 
encrypt time (secs) 0.064 0.054 0.064 0.059 
decrypt time (secs) 0.082 0.076 0.097 0.077 
     

TLS w/AES assembly 
Compilation options 1,2,3 3 1,2,4 4 
SLOC 7259 7294 7250 7213 
code size (bytes) 24325 24139 23794 23463 
encrypt time (secs) 0.0022 0.0022 0.0022 0.0022 
decrypt time (secs) 0.0031 0.0031 0.0031 0.0031 
     
compilation options Type checking Debug symbols Speed optimization Size reduction  
 1 2 3 4 
     

 
The assembly version of the TLS service performed 
faster than our design by a factor of 15-20.  Hand 
optimizations, creative use of dynamic C constructs 
and compiler optimizations failed to bring our design 
within a reasonable distance from the hand-coded 
assembly version. Good design in an embedded world 
is hard to define since the metrics differ from that of a 
standard application.  Requirements satisfaction and 
real-time operation are more important than portability, 
scalability and elegance.  Algorithm optimization beats 
out most optimizations performed in the software 
architecture level. From the data we have collected, 
there seems to be little correlation between code size 
and performance.  An 8% difference in SLOC and a 
9% difference in binary size translated to an order of 
magnitude speed difference. 
  
We have devised a series of “simplifiers and 
complicators” [23] that can be used as a rough 
guideline to assess the relative amount of software and 
development complexity that might be encountered in 
an embedded software project.   
 
simplifiers complicators 

HLL support No language support 
Integrated tool 
environment 

Non standard algorithm 
support 

Optimized library support Fault tolerance and recovery 

Memory availability Real-time performance 

Platform maturity Multi-tasking 
Soft real-time 
performance IPC requirements 

Stateless application Memory intesiveness 
 
8. Conclusion 

 
Software development on an embedded platform 
requires a different mindset.  The benchmarks for 
success, performance, portability run contrary to that of 
standard application or systems development.   The 
interplay between performance, code size and memory 
footprint determine the success of any embedded 
systems project.   This usually translates to a 
development process dominated by planning and 
testing and verification.  Design elegance and peephole 
optimizations provide spotty performance gains and are 
not favored over algorithmic optimizations and 
instruction set intimacy.  
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