
Performance Analysis of VxWorks and RTLinux

Benjamin Ip
COMS W4995-2, Languages of Embedded Systems

Department of Computer Science, Columbia University, NY

1. Abstract

This paper compares and evaluates the
suitability of two real-time operating systems,
the commercially available VxWorks and the
publicly available RTLinux. Holding the
hardware constant and using different
measurement methodologies, we measured the
overheads incurred during operating systems
context switching, interrupt processing, object
synchronization, and message passing. We also
examine their effectiveness in terms of how they
handle priority inversion problem.

Our finding illustrates that both VxWorks and
RTLinux provide good raw performance.
However, VxWorks is more predictable and
deterministic, thereby making it more suitable as
an operating system platform for developing and
running soft and hard real-time applications.

2. Introduction

2.1. Overview of VxWorks
VxWorks is by far the most widely adopted
commercial RTOS in the embedded industry. It
is developed by WindRiver with the intention to
design an operating system with fast, efficient,
and deterministic context switching. Its Wind
micro-kernel can support preemptive and round
robin scheduling policies, and unlimited number
of tasks with a maximum of 256 priority levels.
VxWorks is also well known for its rich tool
chain and run time library that significantly
reduce the amount of time for application
development. Despite the extensive features
from VxWorks, it bares a high premium for
royalty fee.

2.2. Overview of RTLinux
Unlike Linux, RTLinux provides hard real-time
capability. It has a hybrid kernel architecture
with a small real-time kernel coexists with the
Linux kernel running as the lowest priority task.
This combination allows RTLinux to provide
highly optimized, time-shared services in parallel
with the real-time, predictable, and low-latency

execution. Besides this unique feature, RTLinux
is freely available to the public1. As more
development tools are geared towards RTLinux,
it will become a dominant player in the
embedded market.

3. Performance Metrics

Our project goal is to study the performance
analysis of these two operating systems by
measuring the following key metrics.

3.1. Context Switch

Both RTOSes are designed to support
multitasking. This feature is important for real-
time applications that are frequently
implemented with multiple asynchronous tasks
of execution. During task scheduling, a context
switch is needed to suspend one task and
immediately resume the other. Therefore, it is
fundamental to analyze the average context
switch latency in order to measure operating
systems responsiveness.

3.2. Priority Inversion

Priority inversion occurs when a high-priority
task is blocked, waiting for a low-priority task to
release a resource shared by the high priority
task. Priority inversion is a serious problem in
real-time system since it often leads to deadlock.
Both RTOSes incorporate their own priority
inheritance protocol and one of the project goals
is to examine the effectiveness of these
protocols.

3.3. Interrupt Latency

Interrupt Latency is defined as the sum of
interrupt blocking time during which the kernel
is pending to respond to an interrupt, saving the
tasks context, determining the interrupt source,
and invoking the interrupt handler. For a
particular interrupt, the latency also includes the
execution time of other nested interrupt handlers.
Since most embedded systems are interrupt-

1 RTLinux is distributed by Finite State Machine

driven, low interrupt latency will drastically
increase system throughput.

3.4. Synchronization

A full suite of synchronization methods is
provided by VxWorks and RTLinux to allow
exclusive access of shared resources. Acquiring
and releasing semaphores to protect shared
objects do incur penalty. Such penalty is often
associated with adding and removing the
requested tasks into and out of the object lock
queues. As such, measuring synchronization
overhead is another way to determine the
viability of a real-time operating system.

3.5. Inter-Process Communications

Modern real-time applications are constructed as
a set of independent, cooperative tasks. Along
with high-speed semaphores, VxWorks and
RTLinux also provide message queue as higher-
level synchronization mechanism to allow
cooperating tasks to communicate with each
other. Because of the implementation
complexity, using this service imposes the
greatest amount of latency and thus is a key
metric to operating system study.

3.6. Measurement Process

Measuring the above metric requires certain
degree of resolution, accuracy, and granularity.
Throughout our project, both hardware and
software logic analyzers were used to capture
and record measurement samples. We
emphasized on the use of the hardware logic
analyzer because it gives the finest resolution,
least obtrusion to real-time code, and more
important it is platform independent. In most
test cases the software analyzer was used for
verification. We also developed small firmware
code to setup the memory maps and interrupt
vector tables, tune the system clock, and disable
the hardware cache. All test functions and
system calls written to initialize tasks,
semaphores and message queues are POSIX
compliant. Finally, each test was measured with
a sample size of 25 to ensure that the data
collected are statistically sound.

3.7. Test Environment

Our tests are conducted under VxWorks version
5.4 and RTLinux version 3.0. We executed all
of our tests on evaluation boards manufactured
by FSM and WindRiver. Each evaluation board
comes with a single MPC8260 microprocessor

and its board support package. These
significantly reduce development time spent on
configuring the hardware.

4. Related Work

Performance Analysis of operating systems has
long been an interesting subject among research
groups. Levine [1] and his peers have presented
their benchmark results on context switch time
and priority inversion protocol latency of a real-
time CORBA2 architecture. Levine’s [1] method
of detecting and observing priority inversion is
complicated. A straightforward way to create a
priority inversion scenario is explained in
Obenland’s [4] article and will be described in
next section.

Sohal [3] took both the analytical and empirical
approaches to measure different phases of
interrupt latency of a real-time operating system.
Due to time constraint, we chose only one of
Sohal’s interrupt tests that typically reveals the
performance of interrupt handling. However, we
did not apply Sun’s [4] approach to measure
interrupt latency because Linux interrupt
mechanism is implemented vastly different from
RTLinux (with no distinction of top and bottom
half of interrupt service routine).

We also learnt from Obenland’s [2] experience
that prior to executing any IPC test, the message
queue should have no message pending and the
receiving task must be blocked waiting for the
message.

In Stewards [4] paper, he devoted much of his
time to review and explain various measurement
techniques that produce results of different
granularity. We are convinced by Stewards [4]
that hardware logic analyzer is preferable to
other tools and techniques for measurements
throughout the project.

5. Test Methods and Experimental

Results

We modified some of the test methods
referenced in the previous section to achieve fair
and accurate results. This section describes the
measurement outcomes along with the methods
that we used to test different metrics.

2 Common Open Brokerage Architecture

5.1. Context Switch

We configured both RTOSes to use round-robin
scheduling policy to determine context switch
time. Figure 1 shows that with round-robin
policy, we simply need to create two tasks and
let the scheduler to execute them alternately,
without the need of prioritizing them.

Figure 1: Context Switch Test Setup

Both tasks under test have the same function;
each contains an infinite empty loop to avoid
additional computation. Table 1 shows the
average (and standard deviation) context switch
time measured in microseconds.

 VxWorks RTLinux

Context Switch (µS)
Mean (Std)

11 (0.04) 13.4 (0.6)

Table 1: Context Switch Time Measurements

The context switch time measured on VxWorks
is consistently low, with a standard deviation of
0.04. On the contrary, the RTLinux context
switch time is 18% higher than and it is not as
consistent (with std of 0.6) as VxWorks. Thus,
context switch time for VxWorks is more
deterministic. The lower score achieved by
RTLinux seems to imply that running both real-
time and non real-time tasks in parallel may not
be the most feasible solution to embedded
products.

5.2. Priority Inversion

We created the priority inversion scenario by
running three tasks at low, medium, and high
priorities, with the low and high priority tasks
competing for the same resource. Below is an
occurrence of priority inversion (the yellow
arrow) that captured from a software analyzer.
The tCyclicTask, tWorkTask, and tSlowTask
correspond to tasks with high, medium, and low
priorities.

Figure 2: Measuring Priority Inversion Using
Software Analyzer

We took several time measurements between
tCyclicTask requesting the resource and
tSlowTask releasing it, and the results are given
in the table 2.

 VxWorks RTLinux

Priority Inversion (µS)
Mean (Std)

123 (1.67) 108 (0.41)

Table 2: Priority Inversion Measurments

An important characteristic of RTOSes is
predictability. Although RTLinux takes less
time to resolve a priority inversion problem, both
figures appear to be in an acceptable range. This
indicates that both RTOSes have implemented an
effective priority inheritance protocol to ensure
that critical deadlines are met.

5.3. Interrupt Latency

In this experiment, we configured the MPC8260
hardware timer with a period of 50 MHz to
generate a timer interrupt every 20 µs. An
interrupt service routine that updates a system
tick count is hooked to the interrupt vector table.
We use the hardware logic analyzer to measure
the time between the assertion of the timer
interrupt and the execution of the ISR (Figure 3).

Figure 3: Interrupt Latency Test Setup

Noticed that all other system interrupts are
disabled so that our measurements are not
affected by nested-interrupts. The average and
standard deviation of both systems interrupt
latencies are recorded in Table 3.

Timer
Interrupt
Assertion

Task
Context
Saved

Timer
ISR

Invocation

Latency

Context
Switch
Time

Context
Switch
Time

Task
1

Task
2

Task
1

 VxWorks RTLinux

Interrupt Latency (µS)
Mean (Std)

98 (0.55) 132 (1.2)

Table 3: Interrupt Latency Measurements

It is not surprised that VxWorks has much lower
interrupt latency (35%) than RTLinux.
Traditional Linux is notorious for having high
interrupt latency. It appears that even though
RTLinux had been added with real-time
capability, it still exhibits some non real-time
behaviour.

5.4. Synchronization

In our test, we only focused on measuring the
time to acquire a binary semaphore in both
systems. To measure the semaphore overhead,
we first created and initialized the semaphore
itself to make it unavailable.

Figure 4: Binary Semaphore Test Setup

We then spawned two tasks to release and
acquire the semaphore respectively, in the exact
order. Finally, we measured the time (Figure 4)
during which the task made the system call to
acquire the semaphore. This task should not be
blocked waiting since the first task should
release the semaphore prior to execution of the
second task. Table 4 shows the average
overhead for VxWorks and RTLinux to
successfully acquire a semaphore.

 VxWorks RTLinux

Semaphore Take (µS)
Mean (Std)

13 (0.29) 15 (0.08)

Table 4: Binary Semaphores Take
Measurements

These figures show that the RTLinux takes
slightly longer to obtain a binary semaphore than
VxWorks.

5.5. Inter-Process Communication

This test is to measure the communication delay
necessary for a task to send a message to another
task via a message queue as shown in Figure 2.

Figure 5: Message Queue Test Setup

We began this test by creating and activating (or
open) a message queue. Next, we spawned a
receiving task from which the message receive
function is invoked. The receive system call
blocks the receiving task and put it in the wait
state (since the message queue is empty). While
the receiving task was waiting for the message,
we spawned a sending task to send a message via
the same message queue. The time between the
sending task to call the message send function
and the receiving task to receive message
notification is given in Table 6.

 VxWorks RTLinux

Msg Queue Delay (µS)
Mean (Std)

118 (0.9) 113 (1.8)

Table 5: Message Queue Measurements

In terms of message send/receive latency,
RTLinux achieves a better score than VxWorks
by a small margin. As mentioned earlier, these
figures can vary greatly depending on the IPC
implementation (IPC can be implemented using
shared memory).

6. Conclusions and Future Work

In this project, we measured several real-time
operating system key metrics to evaluate the
performance of VxWorks and RTLinux. The
results presented in this paper roughly matches
with the characteristics of the two operating
systems. Our overall analysis shows that both
operating systems are suitable for real-time
application. In particular, VxWorks is more
deterministic and predictable,

Message Queue
Send
Task

Rcv
Task

Data

Delay

Semaphore

Semaphore
Acquire

Task

Semaphore
Release

Task

 Delay

Due to time constraint and limited resources, we
can focused only on studying the heart of the
operating system – the kernel level performance
that unveil the true system behaviour. Modern
real-time operating systems often packaged with
powerful run-time libraries, scalable networking
components and flexible file system. A broad
range of tests that cover these aspects will
provide us a comprehensive result in terms of
performance versus cost. Thereby, it is difficult
to conclude which operating system is superior
to the other without an exhaustive comparison.

7. Bibliography

[1] D. Levine, S. Flores-Gaitan, C. D. Dill, and
D. C. Schmidt, “Measuring OS Support for
Real-Time CORBA ORBs”, in 4th IEEE
International Workshop on Object-oriented
Real-Time Dependable Systems 00’, Santa
Babara, California, Jan. 27-29.

[2] K. Obenland, “Real-Time Performance of

Standards Based Commercial Operating
Systems”

[3] V. Sohal, “How To Really Measure Real-

Time”, Embedded System Conference,
Spring 2001

[4] Jun Sun, ”Interrupt Latency”, Monta Vista

Software,http://www.mvista.com/realtim
e/latency/

[5] D. Stewart, “Measuring Execution Time

and Real-Time Performance”, Embedded
System Conference, Spring 2001

[6] Real Time magazine, “Evaluation Report

Definition”, http://www.realtime-info.be,
March 1999

[7] R. Appleton, “Understanding a Context

Switch Benchmark”, Linux Journal
http://www2.linuxjournal.com/ljissues/is
sue57/2941.html, Jan. 1997

[9] V. Yodaiken, “An Introduction to Real-

Time Linux”,
http://www.rtlinux.org/documents/RTLinu
x.ppt

[8] Victor Yodaiken, “The RTLunix Approach

to Hard Real-Time”,
http://rtlinux.org/documents/papers/whitep
aper.html, Oct. 1997

[9] P. Wilshire, “Installing RTLinux”,

http://rtlinux.org/documents/installation_ju
ne_2000.html, 2000

[10] WindRiver Systems Inc, Tornado User’s

Guide, Alameda,CA: WindRiver Systems,
Inc, 1999

[11] WindRiver Systems Inc, VxWorks

Programmer’s Guide, Alameda,CA:
WindRiver Systems, Inc, 1999

