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1. Abstract 

This paper compares and evaluates the 
suitability of two real-time operating systems, 
the commercially available VxWorks and the 
publicly available RTLinux.  Holding the 
hardware constant and using different 
measurement methodologies, we measured the 
overheads incurred during operating systems 
context switching, interrupt processing, object 
synchronization, and message passing.  We also 
examine their effectiveness in terms of how they 
handle priority inversion problem.   

 
Our finding illustrates that both VxWorks and 
RTLinux provide good raw performance.  
However, VxWorks is more predictable and 
deterministic, thereby making it more suitable as 
an operating system platform for developing and 
running soft and hard real-time applications. 

 
2. Introduction 

2.1. Overview of VxWorks 
VxWorks is by far the most widely adopted 
commercial RTOS in the embedded industry.  It 
is developed by WindRiver with the intention to 
design an operating system with fast, efficient, 
and deterministic context switching.  Its Wind 
micro-kernel can support preemptive and round 
robin scheduling policies, and unlimited number 
of tasks with a maximum of 256 priority levels.  
VxWorks is also well known for its rich tool 
chain and run time library that significantly 
reduce the amount of time for application 
development.  Despite the extensive features 
from VxWorks, it bares a high premium for 
royalty fee. 
 
2.2. Overview of RTLinux 
Unlike Linux, RTLinux provides hard real-time 
capability.  It has a hybrid kernel architecture 
with a small real-time kernel coexists with the 
Linux kernel running as the lowest priority task.  
This combination allows RTLinux to provide 
highly optimized, time-shared services in parallel 
with the real-time, predictable, and low-latency 

execution.  Besides this unique feature, RTLinux 
is freely available to the public1.   As more 
development tools are geared towards RTLinux, 
it will become a dominant player in the 
embedded market. 

 
3. Performance Metrics 

Our project goal is to study the performance 
analysis of these two operating systems by 
measuring the following key metrics. 
 
3.1. Context Switch 

Both RTOSes are designed to support 
multitasking.  This feature is important for real-
time applications that are frequently 
implemented with multiple asynchronous tasks 
of execution.  During task scheduling, a context 
switch is needed to suspend one task and 
immediately resume the other.  Therefore, it is 
fundamental to analyze the average context 
switch latency in order to measure operating 
systems responsiveness.   
 
3.2. Priority Inversion 

Priority inversion occurs when a high-priority 
task is blocked, waiting for a low-priority task to 
release a resource shared by the high priority 
task.  Priority inversion is a serious problem in 
real-time system since it often leads to deadlock.  
Both RTOSes incorporate their own priority 
inheritance protocol and one of the project goals 
is to examine the effectiveness of these 
protocols. 
 
3.3. Interrupt Latency 

Interrupt Latency is defined as the sum of 
interrupt blocking time during which the kernel 
is pending to respond to an interrupt, saving the 
tasks context, determining the interrupt source, 
and invoking the interrupt handler.  For a 
particular interrupt, the latency also includes the 
execution time of other nested interrupt handlers.  
Since most embedded systems are interrupt-
                                                           
1 RTLinux is distributed by Finite State Machine 



driven, low interrupt latency will drastically 
increase system throughput. 
 
3.4. Synchronization 

A full suite of synchronization methods is 
provided by VxWorks and RTLinux to allow 
exclusive access of shared resources.  Acquiring 
and releasing semaphores to protect shared 
objects do incur penalty.  Such penalty is often 
associated with adding and removing the 
requested tasks into and out of the object lock 
queues.  As such, measuring synchronization 
overhead is another way to determine the 
viability of a real-time operating system. 
 
3.5. Inter-Process Communications 

Modern real-time applications are constructed as 
a set of independent, cooperative tasks.  Along 
with high-speed semaphores, VxWorks and 
RTLinux also provide message queue as higher-
level synchronization mechanism to allow 
cooperating tasks to communicate with each 
other.  Because of the implementation 
complexity, using this service imposes the 
greatest amount of latency and thus is a key 
metric to operating system study. 
 
3.6. Measurement Process  

Measuring the above metric requires certain 
degree of resolution, accuracy, and granularity.  
Throughout our project, both hardware and 
software logic analyzers were used to capture 
and record measurement samples.   We 
emphasized on the use of the hardware logic 
analyzer because it gives the finest resolution, 
least obtrusion to real-time code, and more 
important it is platform independent.  In most 
test cases the software analyzer was used for 
verification.  We also developed small firmware 
code to setup the memory maps and interrupt 
vector tables, tune the system clock, and disable 
the hardware cache.  All test functions and 
system calls written to initialize tasks, 
semaphores and message queues are POSIX 
compliant.  Finally, each test was measured with 
a sample size of 25 to ensure that the data 
collected are statistically sound. 
 
3.7. Test Environment 

Our tests are conducted under VxWorks version 
5.4 and RTLinux version 3.0.  We executed all 
of our tests on evaluation boards manufactured 
by FSM and WindRiver.  Each evaluation board 
comes with a single MPC8260 microprocessor 

and its board support package.  These 
significantly reduce development time spent on 
configuring the hardware.   

 
4. Related Work 

Performance Analysis of operating systems has 
long been an interesting subject among research 
groups.  Levine [1] and his peers have presented 
their benchmark results on context switch time 
and priority inversion protocol latency of a real-
time CORBA2 architecture.  Levine’s [1] method 
of detecting and observing priority inversion is 
complicated.  A straightforward way to create a 
priority inversion scenario is explained in 
Obenland’s [4] article and will be described in 
next section.   
 
Sohal [3] took both the analytical and empirical 
approaches to measure different phases of 
interrupt latency of a real-time operating system.  
Due to time constraint, we chose only one of 
Sohal’s interrupt tests that typically reveals the 
performance of interrupt handling.  However, we 
did not apply Sun’s [4] approach to measure 
interrupt latency because Linux interrupt 
mechanism is implemented vastly different from 
RTLinux (with no distinction of top and bottom 
half of interrupt service routine). 
 
We also learnt from Obenland’s [2] experience 
that prior to executing any IPC test, the message 
queue should have no message pending and the 
receiving task must be blocked waiting for the 
message. 
 
In Stewards [4] paper, he devoted much of his 
time to review and explain various measurement 
techniques that produce results of different 
granularity.  We are convinced by Stewards [4] 
that hardware logic analyzer is preferable to 
other tools and techniques for measurements 
throughout the project. 

 
5. Test Methods and Experimental 

Results 

We modified some of the test methods 
referenced in the previous section to achieve fair 
and accurate results.  This section describes the 
measurement outcomes along with the methods 
that we used to test different metrics. 
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5.1. Context Switch 

We configured both RTOSes to use round-robin 
scheduling policy to determine context switch 
time.  Figure 1 shows that with round-robin 
policy, we simply need to create two tasks and 
let the scheduler to execute them alternately, 
without the need of prioritizing them.   
 
 
 
 
 
 
 

Figure 1: Context Switch Test Setup 
 
Both tasks under test have the same function; 
each contains an infinite empty loop to avoid 
additional computation.  Table 1 shows the 
average (and standard deviation) context switch 
time measured in microseconds. 
 
 
 VxWorks RTLinux 

Context Switch (µS) 
Mean (Std) 

11 (0.04) 13.4 (0.6) 

Table 1: Context Switch Time Measurements 
 
The context switch time measured on VxWorks 
is consistently low, with a standard deviation of 
0.04.  On the contrary, the RTLinux context 
switch time is 18% higher than and it is not as 
consistent (with std of 0.6) as VxWorks.  Thus, 
context switch time for VxWorks is more 
deterministic.  The lower score achieved by 
RTLinux seems to imply that running both real-
time and non real-time tasks in parallel may not 
be the most feasible solution to embedded 
products. 
 
5.2. Priority Inversion 

We created the priority inversion scenario by 
running three tasks at low, medium, and high 
priorities, with the low and high priority tasks 
competing for the same resource.  Below is an 
occurrence of priority inversion (the yellow 
arrow) that captured from a software analyzer.  
The tCyclicTask, tWorkTask, and tSlowTask 
correspond to tasks with high, medium, and low 
priorities. 

 

         

Figure 2: Measuring Priority Inversion Using 
Software Analyzer 

We took several time measurements between 
tCyclicTask requesting the resource and 
tSlowTask releasing it, and the results are given 
in the table 2. 
 
 
 VxWorks RTLinux 

Priority Inversion (µS) 
Mean (Std) 

123 (1.67) 108 (0.41) 

Table 2:  Priority Inversion Measurments 
 
An important characteristic of RTOSes is 
predictability.  Although RTLinux takes less 
time to resolve a priority inversion problem, both 
figures appear to be in an acceptable range.  This 
indicates that both RTOSes have implemented an 
effective priority inheritance protocol to ensure 
that critical deadlines are met. 
 
5.3. Interrupt Latency 

In this experiment, we configured the MPC8260 
hardware timer with a period of 50 MHz to 
generate a timer interrupt every 20 µs.  An 
interrupt service routine that updates a system 
tick count is hooked to the interrupt vector table.  
We use the hardware logic analyzer to measure 
the time between the assertion of the timer 
interrupt and the execution of the ISR (Figure 3). 
 

 

 

 

 

 

Figure 3: Interrupt Latency Test Setup 
 

Noticed that all other system interrupts are 
disabled so that our measurements are not 
affected by nested-interrupts. The average and 
standard deviation of both systems interrupt 
latencies are recorded in Table 3. 
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 VxWorks RTLinux 

Interrupt Latency (µS) 
Mean (Std) 

98 (0.55) 132 (1.2) 

Table 3:  Interrupt Latency Measurements 
 
It is not surprised that VxWorks has much lower 
interrupt latency (35%) than RTLinux.  
Traditional Linux is notorious for having high 
interrupt latency.  It appears that even though 
RTLinux had been added with real-time 
capability, it still exhibits some non real-time 
behaviour.   
 

5.4. Synchronization 

In our test, we only focused on measuring the 
time to acquire a binary semaphore in both 
systems.  To measure the semaphore overhead, 
we first created and initialized the semaphore 
itself to make it unavailable.   

 

 

 

 

 

 

 
 
 

Figure 4: Binary Semaphore Test Setup 
 
We then spawned two tasks to release and 
acquire the semaphore respectively, in the exact 
order.  Finally, we measured the time (Figure 4) 
during which the task made the system call to 
acquire the semaphore.  This task should not be 
blocked waiting since the first task should 
release the semaphore prior to execution of the 
second task.  Table 4 shows the average 
overhead for VxWorks and RTLinux to 
successfully acquire a semaphore. 
 
 VxWorks RTLinux 

Semaphore Take (µS) 
Mean (Std) 

13 (0.29) 15 (0.08) 

Table 4:  Binary Semaphores Take 
Measurements 

 
These figures show that the RTLinux takes 
slightly longer to obtain a binary semaphore than 
VxWorks. 

 
5.5. Inter-Process Communication 

This test is to measure the communication delay 
necessary for a task to send a message to another 
task via a message queue as shown in Figure 2.   

 
 
 
 
 
 
 
 

Figure 5:  Message Queue Test Setup 
 
We began this test by creating and activating (or 
open) a message queue.  Next, we spawned a 
receiving task from which the message receive 
function is invoked.  The receive system call 
blocks the receiving task and put it in the wait 
state (since the message queue is empty).  While 
the receiving task was waiting for the message, 
we spawned a sending task to send a message via 
the same message queue.  The time between the 
sending task to call the message send function 
and the receiving task to receive message 
notification is given in Table 6. 
 
 
 VxWorks RTLinux 

Msg Queue Delay (µS) 
Mean (Std) 

118 (0.9) 113 (1.8) 

Table 5: Message Queue Measurements 

 
In terms of message send/receive latency, 
RTLinux achieves a better score than VxWorks 
by a small margin.  As mentioned earlier, these 
figures can vary greatly depending on the IPC 
implementation (IPC can be implemented using 
shared memory). 

 
6. Conclusions and Future Work 

In this project, we measured several real-time 
operating system key metrics to evaluate the 
performance of VxWorks and RTLinux.  The 
results presented in this paper roughly matches 
with the characteristics of the two operating 
systems.  Our overall analysis shows that both 
operating systems are suitable for real-time 
application.  In particular, VxWorks is more 
deterministic and predictable,  
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Due to time constraint and limited resources, we 
can focused only on studying the heart of the 
operating system – the kernel level performance 
that unveil the true system behaviour.  Modern 
real-time operating systems often packaged with 
powerful run-time libraries, scalable networking 
components and flexible file system.  A broad 
range of tests that cover these aspects will 
provide us a comprehensive result in terms of 
performance versus cost.  Thereby, it is difficult 
to conclude which operating system is superior 
to the other without an exhaustive comparison.  
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