
A Minimal API For Support of
Real-Time Operations.

University of Columbia

Computer Science Department
Dirk Bridwell dnbridwell@earthlink.net

Jan Mill er janalanmiller@uswest.net

Abstract

To address the growing need to develop
applications that have real-time requirement,
this paper suggests an operating system level
API. The requirements for this API are derived
from a survey of existing operating systems. The
survey compares the popular operating system
Windows NT/2000, two flavors of Linux (plain
Linux and RTLinux), and one traditional Real-
Time Operating System, pSOS+. The survey
discusses real-time aspects of the operating
systems' application programmers’ interfaces
(APIs) and underlying implementations. An API
is proposed that meet the minimum required
functionalit y necessary to support a real-time
application.

Introduction

In his survey of real-time operating systems,
Gopalan [2] states that the need for Operating
Systems to support applications, which require
real-time behavior, is growing. From the desktop
to very speciali zed software/hardware
combinations, developers are required to create
systems that can satisfy both hard real-time and
soft real-time requirements. As Yodaiken and
Barabanov [5] indicate, design cycles can be so
short, and projects are becoming more diverse in
their demands. Developers want familiar and
robust (API), tools, and programming
environments to create their real-time
applications. The developer’s abilit y to integrate
with their familiar tools is important, but popular
operating systems do not have equal levels of
support for real-time applications. Obenland [1]
points out that since the design of an OS can
have a significant impact on its abilit y to be used
in a real-time system, implementation has to be
considered along with the APIs provided.

A survey of the literature provides the necessary
qualiti es of a real-time operating system and the
requirements for a real-time API. The survey
concentrated on four operating systems:

Microsoft Windows NT, Linux, pSOS+, and RT-
Linux. The operating systems in the survey were
chosen for both popularity and varying
approaches to the problem of real-time
application support. Windows NT and Linux are
both General Purpose Operating System. RT-
Linux is a hybrid that adapts the standard Linux
kernel to support real-time. pSOS+ is a
commercial real-time Operating System. The
operating systems were evaluated using the
necessary qualiti es taken from the literature. The
results are not unexpected. Windows NT and
Linux might be desirable for soft real-time
applications, but they do not provide adequate
support for hard real-time applications. RT-
Linux can support hard real-time with some
caveats. Only pSOS+ has the necessary support
for Real-Time operation.

The suggested real-time API is broken into three
parts: Process Management, Interprocess
Communication, and Memory Management.
Process Management encompasses the creation
and scheduling of multiple concurrent threads of
control. Interprocess Communication provides
synchronization and information sharing
between processes. Memory Management is the
allocation and organization of memory available
to an application.

Necessary Qualities of a Real-
Time Operating System

There are several qualiti es, which an operating
system must have to support real-time
applications.

Process Management
According to Obenland [1] an operating system
must support multiple threads. The threads must
be preemptible by the operating system. There
must be a well -defined way to assign priorities to
threads. The number of thread priorities should
be suff icient to support many threads, each
assigned a different priority. Support for 256
priority levels seems to be the consensus. The
scheduler must ensure that threads that need to
run are able to do so. A class of threads,
Interrupt Handlers, must receive special
consideration in scheduling. Yodaiken and
Barabanov [5] state that an operating system
must be able to quickly deal with interrupts.

Interprocess Communication
Any nontrivial system threads must share
information. This can be accomplished through
a variety of mechanisms. The simplest is shared
memory. Because of the need to allow
concurrent access to shared resources, an
operating system must provide predictable
synchronization mechanisms. The most basic is
the standard mutex (or lock). A thread must be
able to bound the time spent waiting for a lock.
To support this, an operating system must have
support for high-resolution clocks and timers.
The accuracy of the timers will ultimately be
dependant on the underlying hardware. An
operating system must support priority
inheritance to prevent priority inversion when a
thread is waiting for a lock.

Memory Management
An operating system needs to supply predictable
memory management. A large source of
unpredictabilit y is virtual memory. If a page
fault is generated when accessing memory, a
process is blocked for an unbounded period of
time. In order to avoid this, virtual memory
must either not be allowed or an application must
be able to lock its allocated memory into RAM.

Operation System Survey

The operating systems considered in this survey
have varying degrees of support for the
necessary qualiti es of real-time systems.

Windows NT
Windows NT is a general purpose operating
system. Due to its widespread acceptance, its
use as a platform for Real-Time applications is
unavoidable. Windows NT implements the
Win32 API. Win32 is a diverse API with
support for everything from low-level operating
system services to graphical interfaces.

Process Management
Windows NT supports priority based preemptive
scheduling. It supports 32 levels of priority with
32 being the highest. The priority specified
when a thread is created is known as the base
priority. The actual priority of a thread is not
fixed. Windows NT will boost the priority of a
thread if it has not had enough CPU time.
Windows NT uses Deferred Procedure Calls
(DPC’s) to processes interrupts. DPC’s are
placed in a FIFO queue. Ramamritham, et al [7]
claims that this disregards any associated

priority. DPC’s are preemptible by interrupts
even if the interrupt is lower priority. Thus the
time it takes to handle an interrupt is
unpredictable.

Interprocess Communication
Win32 supplies mutexes, semaphores, queues
and other synchronization and communication
mechanisms. The mechanisms can have a
timeout associated with them to make sure that
they have bounded waiting times. According to
the Win32 SDK documentation [9], the order in
which threads will acquire a synchronization
mechanism is not guaranteed. Thus,
Ramaritham, et al [7] concludes Windows NT
does not support priority inheritance. Adding to
the unpredictabilit y of waiting in Windows NT is
the lack of high-resolution timers. Gopalan’s [2]
research indicates Windows NT can only support
delays of 10’s to 100’s of milli seconds.
Windows NT does provide a high-resolution
clock using the windows multimedia timer [9],
but the resolution is totall y dependant on the
hardware.

Memory Management
Processes in Windows NT operate in their own
memory space. To accomplish this Windows
uses a paged virtual memory system. While this
is undesirable for Real-Time support, Pages can
be locked into memory. They may still be
swapped out if the process is inactive or if the
window running the process is iconized.
Timmerman and Monfret [8] indicate that the
former is diff icult to produce and the latter is
unli kely to be an issue for Real-Time
applications.

Linux
Linux is an open source Unix clone. As such, it
is designed to be a general-purpose operating
system. The bulk of Linux’s real-time
functionalit y is represented by the standards
POSIX.1b, POSIX.1c, and SystemV APIs.
Most of the discussion about Linux addresses the
POSIX Real-Time standard and Linux’s support
for it.

It is important to remember that there is no
bottom line with Linux or its APIs because it is
constantly being developed. New API’ s are
constantly being grafted on through patches and
projects. All i nformation supplied here is at best
a snapshot of a version of the kernel.

Process Management
Linux supports preemptive prioriti zed
scheduling. In order to comply with the POSIX,
Linux defines thirty-two levels of priority.
Threads may choose to be scheduled in a FIFO
order and run to completion, or they may be
scheduled in a round-robin fashion. According
to Barabanov and Yodaiken [4], assigning the
highest priorities to criti cal tasks does not help,
This is partly because of the Linux "fair" time-
sharing scheduling algorithm.

Epplin [3] states that the fundamental problem
faced when attempting to graft POSIX.1b
functionalit y onto Linux is the fact that Linux
has a non-preemptible kernel. Since the kernel is
non-preemptible, interrupts can be delayed.

Interprocess Communication
Linux does provide standard synchronization
mechanisms. However, Linux fail s to comply
with the POSIX.1b spec. According to Epplin
[3], the timer functions and POSIX.1b signals
are not yet complete, and Linux does not
implement the real-time semaphores or message
queues. Linux can only supply precision of
about 10 milli seconds using POSIX real-time
functions. POSIX timers are only supported
through patches to the kernel.

Memory Management
Linux li ke other general-purpose operating
systems provides virtual memory. Barabanov
and Yodaiken [4] point out that bringing
requested pages back to RAM takes an
unpredictable amount of time. This can be
overcome since the POSIX memory locking
faciliti es have been implemented. Garnett [6]
states that by locking pages into memory and
using the round-robin scheduler a certain degree
of predictabilit y is achievable. Unfortunately
Linux is still not able to meet even moderately
demanding real-time requirements.

RTLinux
RTLinux belongs to the class of operating
systems that attempt to adapt a general-purpose
operating system to handle real-time
requirements. The RTLinux operating system
works by emulating interrupt control for the
Linux kernel. The Linux kernel simply runs as
the lowest priority RTLinux process. Most
services are still provided by the Linux kernel.
The intention is to have the RTLinux kernel
provide only the services that Linux cannot
provide.

Process Management
The RTLinux scheduler is purely priority driven.
The is simply ensures that the highest priority
thread is scheduled to run. The run order of two
standard threads at the same priority is
undefined. RTLinux supports POSIX Pthreads
API with an extension for threads to be
scheduled based on a required period. The
RTLinux documentation does not specify how
many levels of priority it supports. Since it
claims to support POSIX.1b threads it must
support at least 32 priority levels.
RTLinux defines two types of interrupts: hard
and soft. Only hard interrupts are appropriate for
real-time applications since soft interrupts are
handled just like Linux interrupts. This ensures
that the only resource that is reliably shared is
the CPU.

Interprocess Communication
RTLinux supports its own queue mechanism
called RT_FIFO’s and its own shared memory
routines. It also supports POSIX mutexs, and
semaphores. RT_FIFO’s are part of the Linux
kernel’s memory and are never paged to disk.
While communication with Linux threads is
possible, it is generall y not safe because the
Linux kernel disables interrupts to provide
synchronization.

Memory Management
RTLinux does not provide any dynamic memory
for its threads. Each thread is loaded into its
own address space. Yodaiken and Barabanov [5]
say that this enforces the basic approach that
more sophisticated tasks should be left to Linux
processes. The lack of virtual memory ensures
that page faults never occur.

pSOS+
The pSOS+ operating system is considered a
traditional Real-Time Operating System. The
major difference between pSOS+ and the general
purpose operating systems is that pSOS+ will not
attempt to provide unlimited resources. The
number of operating systems resources is fixed
at compile time. Any attempt to exceed the
finite resources will generate errors. While
pSOS+ does provide support for more common
API’ s li ke POSIX and the standard C library,
these are largely present for the sake of
portabilit y (information in this section comes
from the pSOS+ manuals [10]).

Process Management
pSOS+ employs a priority-based, preemptive
scheduling algorithm. Unlike Windows NT or
Linux, it does not attempt to be fair, and will
ensure that the task with the highest priority is
running. The scheduler defines 256 priority
levels. Level 256 is the highest. Since the
pSOS+ kernel has no threads of its own,
preemption only occurs when a thread makes a
system call . Little is documented about how
pSOS+ handles interrupts. Interrupt handlers are
not allowed to use unbounded blocking
operations, such as an indefinite wait on a mutex.

Interprocess Communication
As of version 2.5 pSOS+, supports many IPC
and synchronization mechanisms including
mutexes, semaphores, condition variables,
message queue, etc. These are recent additions
that are a vast improvement over previous
releases. In order to perform synchronization,
threads used to have to disable interrupts. With
the new additions, pSOS+ added support for
priority inheritance.
The method for waiting on queues or mutexes is
either priority based or FIFO. The method is
decided by the application. pSOS+ supports
high resolution timers and clocks. The
documentation claims its proprietary timing and
scheduling algorithm guarantees constant time
operations.

Memory Management
pSOS+ organizes memory into multiple regions.
Regions are further broken into segments. The
exact organization is left to the application. Only
one region must be created and it is reserved for
the operating system. This region is called
special region 0. Memory may be allocated from
this region through the use of the standard
C/C++ routines. pSOS+ allows an application to
manage its own memory. It provides no virtual
memory management.

Suggested API

The suggested API comes from a synthesis of the
surveyed operating systems. The essential
services that are available in most of the
operating systems are part of this API. Services
that were present in one or two operating
systems, but offered enhanced functionalit y are
also present. Services that did not meet the
reviewed guidelines have been left out. The API
is minimalist. It attempts only to address needs
of real-time applications. Other services would

need to be included to make this a full y
functional API. Higher-level functionalit y, such
as C libraries and networking, have been
ignored.

Process Management
The process management section allows for the
management of concurrency. Here, applications
can define and start different threads of control.
It also allows applications to install i nterrupt
services.

Suggested functions
ThreadCreate: Declares and starts a thread in
the system. The application would need to
specify priority, period, scheduling algorithm,
and starting address. Return thread id.
ThreadWait: Blocks a thread until it s next
period of execution. Only used internall y to the
thread. Works from within current thread.
Timing is set up when thread is created.
ThreadDestroy: Forcefull y ends the thread.
The scheduler will not consider the thread again.
ThreadJoin: Allows a thread to block until
another thread has exited.
ISRCreate: Install s a handler for a specified
interrupt. Application must specify start address,
and priority.
ISRDestroy: Removes handler for specified
interrupt. Must specify ISR id.

Suggested Implementation
The scheduler need not be complex. All that is
needed is a priority based preemptive scheduler.
The scheduler should not disable interrupts. For
flexibilit y the scheduler should support at least
256 levels of priority. Both application installed
and system level interrupt handlers should be as
short as possible.

Interprocess Communication
The interprocess communication section defines
mechanisms for synchronization and
communication between threads.

Suggested functions
MutexCreate: Creates a new mutex. Options
include using Priority Inheritance and type of
waiting queue. The waiting queue may either be
priority or FIFO.
MutexAcquire: Acquires the lock on this
mutex. Must specify mutex id. May specify
timeout.
MutexRelease: Releases the lock on this mutex.
Must specify mutex id.

MutexDestroy: Removes a mutex from the
system. Must specify mutex id.
CVCreate: Creates a new condition variable.
Specify type of waiting queue, either priority or
FIFO.
CVWait: Blocks a thread until the condition
variable is signaled. May specify timeout. Must
specify cv id.
CVSignal: Signals threads waiting on this
condition variable. May specify to signal one
thread or all threads. Must specify cv id.
CVDestroy: Removes a condition variable from
the system. Must specify cv id.
QueueCreate: Creates a new FIFO queue.
Queue depth may be fixed or variable. Options
include priority inheritance, and type of waiting
queue.
QueueEnqueue: Places a new item at the end of
the queue. Must specify item and queue id. May
specify timeout.
QeuueDequeue: Removes the item at the head
of the queue. Blocks until an item is available.
Must specify queue id. May specify timeout.
QeuueDestroy: Removes a queue from the
system. Must specify queue id.
Sleep: Blocks the execution of a thread for a
period of time. The time must be specified.
Affects the current thread.
Suggested Implementation
It is important that the operation of the
synchronization and communication mechanisms
is predictable. The timers used must be accurate
with very small amounts of jitter. The order in
which locks are acquired must be deterministic.

Memory Management
The Memory Management section gives control
to the application to manage its own memory
with minimal involvement from the operating
system.

Suggested functions
SegmentCreate: Reserve a new memory
segment for use. Must specify range.
SegmentDestroy: Gives control of a memory
segment back to the operating system. Must
specify the segment id.
MemoryAllocate: Bind a block of memory to a
variable. Must specify the size of the block and
the segment id the block belongs to.
MemoryDeallocate: Unbind a block of
memory. Must specify the block’s starting
address.

Suggested Implementation
The operating system should allow applications
to control their own memory. This means that
virtual memory should either not be
implemented or the application must be able to
lock pages into memory. Using the specified
functions, the application should be able to
construct its own memory management scheme.

Conclusions

The requirements for an operating system to
support real-time operation are well understood.
The most important issues address how
deterministic the operating system is.
Windows and Linux support only soft real-time
because they are not deterministic enough.
RTLinux support for hard real-time is limited if
the non-deterministic Linux services are used.
The most deterministic operating system, pSOS+
supports hard real-time.

A real-time API can provide most services that
are present in a general purpose operating
system. The most important factor in designing
such an API is to give the application as much
control as possible over how it is scheduled.
Increasing control is accomplished by allowing
the application to determine its priority and to
choose how long it waits for resources. This lets
the application bound the amount of time that it
is blocked.

While the APIs of an OS are very important to a
developer’s decision to use a particular OS for
his/her application, there are many factors, which
should be considered before implementation
begins. Each operating system compared in this
survey fits a particular set of problems.
Window’s huge user install base makes it an
attractive alternative. Linux and RTLinux share
the advantages of open source, easy
modification, and memory footprint scaling.
Unpredictable Device drivers reduce the
determinism of Windows and Linux. The
limitations of RTLinux make it ideal only for
small and simple hard real-time tasks in a Linux
environment. Developers who want only hard
real-time capabiliti es with predictable device
drivers and more application control should
consider pSOS+. When a small memory
footprint is necessary, pSOS+ is also a good
candidate.

Future work would include implementing an
operating system with the suggested API. This
prototype OS could be used for experiments in
improving algorithms and fine-tuning the
suggested API. A follow up to this paper would
address admission control and negotiations with
the operating system a desired level of service.

References:

[1] Obenland, Kevin M. POSIX in Real-Time.
Embedded Systems Programming, Vol. No. 4,
April 2001.

[2] Kartik Gopalan, Real-Time Support in
General Purpose Operating Systems, Research
Proficiency Exam Report, Dept. of Computer
Science, State University of New York, Stony
Brook, NY, January 2001.

[3] Epplin, Jerry. Linux as an Embedded
Operating System . EmbeddedSystems
Programming 10(10), October 1997.

[4] Barabanov, Michael and Yodaiken, Victor.
Linux Means Business: Introducing Real-Time
Linux. Linux Journal. February 01, 1997.
http://www.linuxjournal.com/article.php?sid=02
32.

[5] Victor Yodaiken and Michael Barabanov. A
Real- Time Linux. In Proceedings of the Linux
Applications Development and Deployment
Conference (USELINUX), Anaheim, CA,
January 1997. The USENIX Association.

[6] Garnett, Nick. EL/IX Base API Specification
DRAFT - V1.2. Red Hat Inc. September 18,
2000.

[7] Ramamritham, Krithi, Shen, Chia, González,
Oscar, Sen, Subharata, and Shirgurkar,
Shreedhar. Using Windows NT for Real-Time
Applications: Experimental Observations and
Recommendation. In IEEE Real-Time
Technology and Applications Symposium. 1998.

[8] Timmerman, Martin, and Monfret, Jean-
Christophe. Windows as a Real-Time OS. Real-
Time Magazine p6-13, 2Q97 .

[9] Microsoft Platform Software Development
Kit. January 2001.

[10] pSOSystem System Concepts. Integrated
Systems Inc. 1999.

