

Hardware Description Languages Compared: Verilog and SystemC

Gianfranco Bonanome
Columbia University

Department of Computer Science
New York, NY

Abstract

 As the complexity of modern digital systems
increases, engineers are now more than ever
integrating component modeling by means of
hardware description languages (HDLs) in the
design process. The recent addition of SystemC to
an already competitive arena of HDLs dominated
by Verilog and VHDL, calls for a direct
comparison to expose potential advantages and
flaws of this newcomer. This paper presents such
differences and similarities, specifically between
Verilog and SystemC, in effort to better categorize
the scopes of the two languages. Results are based
on simulation conducted in both languages, for a
model with equal specifications.

Introduction

 Continuous advances in circuit fabrication
technology have augmented chip density,
consequently increasing device complexity. This
has resulted in a higher degree of design
automation and increase in the number of tools
available to an integrated chip designer. Recently
there has been an incline toward the usage of
Hardware Description Languages [3]. The
portability of models created with such tools, has
made them preferable over their corresponding
flow, state and logic diagrams.
 Various HDLs with diverse properties and
objectives have been developed over the years,
giving designers a vast selection in the appropriate
modeling instrument.
 SystemC presents a new approach to the
concept of HDLs, as it combines hardware and
software descriptions at different levels of
abstraction, by extending C++ with a new
library.

 This library encompasses all of the necessary
components required to transform C++ into a
hardware description language. Such additions
include constructs for concurrency, time notion,
communication, reactivity and hardware data
types.
 As described by Edwards [1], VLSI
verification involves an initial simulation done in
C or C++, usually for proof of concept purposes,
followed by translation into an HDL, simulation of
the model, applying appropriate corrections,
hardware synthesization and further iterative
refinement. SystemC is able to shorten this
process by combining the first two steps.
Consequently, this also decreases time to market
for a manufacturer.
 Generally a comparison between two
computer languages is based on the number of
lines of code and execution time required to
achieve a specific task, using the two languages. A
number of additional parameters can be observed,
such as features, existence or absence of constructs
that facilitate coding, availability of optimization
techniques, as well as others. These criteria vary
slightly when attempting to compare two HDLs.
For instance, HDLs need to have time-handling
constructs, unlike most other computer languages.
Comparable “building blocks” may synthesize into
different circuitry, depending on the language’s
standard.
 Other points utilized as a basis for comparison
include: efficiency of methods and language
constructs, signal behavior description, scheduling
semantics and ease of implementation.
 In this paper I will be comparing different
aspects between the Verilog [2] and SystemC [4]
HDLs, according to the measures mentioned
above. The code that will be used to base this
comparison implements an alarm clock controller.

Related work

 Previous work comparing two or more HDLs is
limited to a few papers, usually regarding VHDL
and Verilog. This is mainly due to the fact that
SystemC is a latecomer to this field, but also
because it is merely an extension of an already
existing language.
 Douglas Smith wrote a tutorial [5] in which he
compares VHDL and Verilog. Smith also describes
the range of modeling capacity possessed by the
two languages, exposing VHDL’s lower modeling
limit: gate level. Interestingly enough, Verilog is
one of the few HDLs capable of modeling down to
transistor level.
 Few additional papers dealing with two or
more HDLs exist, but are generally not meant to
bring forth comparison issues, rather to present
co-design techniques such as Agliada [8].
 In his paper on co-simulation of VHDL and
SystemC, Agliada introduces a method to
homogenize the system descriptions in order to
simulate them together. This approach calls for a
VHDL to SystemC translator. In describing such a
tool, it is unavoidable to compare the two
languages, even if not in detail.

Fundamental differences in constructs

 Both Verilog and SystemC utilize modules as
design entities While Verilog has the module
keyword build in, SystemC needs to call a
construct named sc_module() to declare the body
of the device at task. The difference in module
declaration syntax can be seen below in figure 1.

Verilog SystemC

module runner(port names);
//port sizes and direction
//body
endmodule

SC_MODULE(Runner) {
//ports sizes and direction
//body
};
//member functions

Figure 1. Component declaration syntax.

 Although Verilog may appear slightly more
concise at first, it should be pointed out that the
former requires ports to be listed once in the
module declaration line, and again immediately

after, to specify their sizes. SystemC accomplishes
this in one step, but at its own can declare a
function separately from its body, as in C. This
property of the language can also be viewed as an
advantage, since a module can therefore call
several different processes. Verilog is only able to
carry out a process if found within a module,
which signifies having to write a module for every
process that needs to be called by external
modules. The absence of a high level construct
that replicates structure can often lead into
writing code that may seem repetitive, or difficult
to optimize.
 When modeling a process in Verilog, common
practice is to have an always construct around the
body of the function to be evaluated. In SystemC,
the functions are written as members of the
module class being designed, allowing the designer
to more easily integrate additional functionality in
the same design.
 Timing mechanisms vary extensively between
Verilog and SystemC. The later has a built-in
clocking mechanism, where such a device and its
output signal wave can be described using the
sc_clock() construct. Instead, Verilog uses a more
general way to create a clock: by defining it as a
module. Although this technique may appear
inefficient, it is actually more natural for a
beginning designer, since no new constructs need
to be learned. Figure 2 below, illustrates this
point.

Verilog SystemC
module m555 (clock);
 output clock;
 reg clock;
 initial
 #5 clock = 1;
 always
 #50 clock = ~clock;
endmodule

sc_clock m555("m555",
20, 0.5, 5, true);

Figure 2. Clock declaration syntax.

 SystemC allows for three types of processes to
be utilized in the description of a model: methods,
threads and synchronized threads.
 According to the SystemC User’s Guide [4],
methods execute when changes occur in signals
found in their sensitivity list. Upon termination, a
method returns control to the simulation kernel.
 Threads behave similarly as methods, but they
may also be suspended and reactivated at the

occurrence of a specified event. As Edwards [1]
points out, hardware does not exhibit this
behavior, but such processes can be useful when
designing a test bench.
 Synchronous threads are a special case of
threads, where triggering takes place at a specific
edge of a signal. The scheduling of all three
process types takes place at the bottom portion of
a SystemC model, by using the sc_ctor() macro
(SystemC constructor). In modeling an alarm
clock controller, such a constructor was called for
the tick process of type method:

sc_ctor (Runner) {
 sc_method (tick);
 sensitive_pos (clock);
}

where Runner is the name of the sc_module that
owns the tick process.
 Verilog per se does not differentiate among
processes, but allows flexibility to mimic the
behavior found in the three scenarios described
above. This is achieved by means of timing-
oriented constructs such as:

always @ (condition)

 Here the condition may be a signal or an
event, in which case the identifier will be found
between parentheses. By this token, a function
can also be edge-triggered:

always @ (posedge clock)

 As strongly-typed languages, both Verilog and
SystemC support signals as well as variables. They
do differ in the built-in types available to the user.
Verilog subdivides its data types into two main
categories: registers and nets. A register type
involves storage and consists of the following
variants:

reg unsigned variable of any bit size
integer signed 32-bit variable
time unsigned 64-bit variable
real double-precision floating point

Nets (or wires) are of a larger variety:

wire or tri Simple interconnecting wire
wor or trior Wired outputs OR together
wand or triand Wired outputs AND together
tri0 Pulls down when tri-stated
tri1 Pulls up when tri-stated
supply0 Constant logic 0 (supply strength)
supply1 Constant logic 1 (supply strength)
trireg Stores last value when tri-stated

(capacitance strength)

 In order to support modeling at different levels
of abstraction, from the functional to the register-
transfer level, as well as to support software,
SystemC provides programmers with a rich set of
signal types. This is different from languages like
Verilog that only support bit-vectors as types.
SystemC can implement both two-valued and
four-valued signal types, which add practicality to
a simulation.
 SystemC’s set of data types is enhanced to
support multiple design domains and abstraction
levels. The fixed precision types allow for fast
simulation. The arbitrary precision types can be
used for computations with large numbers and to
model large busses. Such types do not have a
limitation in size.
 In addition, this HDL provides a large
selection of overloaded operators, quantization and
overflow modes, as well as type conversion
mechanisms.
 SystemC, extends C++ types by utilizing the
following signal definition syntax:

sc_signal < base_type > signal_name;

where base_type corresponds to one of C++’s
base types, such as integer, real, char, etc.
Likewise, ports are declared with the same syntax,
but utilize the identifiers sc_in<>, sc_out<> or
sc_inout<>.
 As in C or C++, a SystemC description can
include user-defined libraries containing functions
and data structures, to employ throughout a
program. Verilog offers no such reusability
feature, which in certain cases can be a drawback.
This is mainly due to the language’s interpretive
nature.

Creating Descriptions

 Intuitively, Verilog can be very efficient in
structural designs, as the language possesses
moderately uncomplicated port-mapping and
module instantiation techniques. Switching
between layers of abstraction can be confusing at
times, since no dedicated constructs exist to aid
the modeling of larger designs. For this reason, the
structure of the description may appear the same
throughout, regardless of component hierarchy.
 SystemC introduces a bit more discipline in
large system modeling, by means of special
constructs. The ability of declaring a sc_main()
routine that manages all of the other modules,
clocking and data transfer schemes, is a major
advantage. This also facilitates the debugging
process of the very same descriptions.
 At the same time, its object-oriented
sequential origins make SystemC suitable for
behavioral designs. This introduces a new concept
in system design: the co-simulation of a piece of
hardware and its embedded software, using the
same language. It is now possible to implement,
for example, a controller and its driver all under
the same roof.
 Beginners will find Verilog easier to learn, due
to its generalized syntax. It also does not require
the user to be familiar with other languages that
the HDL was based on, as is the case with
SystemC and C++.

Simulation semantics

 Verilog and SystemC adopt different
simulation semantics. Verilog utilizes an event-
driven scheduler, which obeys the rules illustrated
by the graph in figure 3. Here we see nested loops
executing in zero-time, which translates directly
into slower execution times during simulation,
than those of a cycle-based scheduler. Although
proven competent, such a set of semantics is at
times a drawback on performance, as several
actions are expected to take place in each clock
cycle.

Figure 3. Verilog Simulation Semantics.

 In comparison, SystemC’s cycle-based
simulation semantics are much simpler, as
overhead for different types of events is
eliminated. Overall scheduling is more efficient, as
timing information is done away with. The graph
adaptation from Mueller [7] illustrates below:

Activate them Inactive events?

Activate them non-blocking
assign events

Activate
monitoring events

update the
changed object;

schedule any
evaluation
events for
sensitive
processes;

Update event?

process
evaluation event;

while there are
active events

while there are
active events

while there are
events

Advance
Time

Figure 4. SystemC Simulation Semantics.

Language Determinism

 The Verilog simulation model pictured above
guarantees a certain level of determinism over the
scheduling order.
 Statements located within a begin-end block
are guaranteed to execute sequentially in the order
listed inside such a begin-end block. Although a
process may very well suspend itself at a certain
event and later regain control, its statements will
still be executed in the order listed within the
begin-end block.
 Non-blocking assignments will always be
performed in the order that the statements were
to be executed. For example:

 initial begin
 A <= 0;
 A <= 1;
 end

when the above block of Verilog code is executed
there will be two events added to the non-blocking
assign update queue. The previous rule requires
that they be entered and performed in the same
order as listed in the source. Hence at the end of
time step 1, the variable A will be assigned 0,
then 1.
 Two basic sources of non-determinism surface
when modeling a design in Verilog: arbitrary
execution order in zero time, and arbitrary
interleaving of statements from other processes [2].

 The first of these two sources of non-
deterministic behavior can be attributed to the
fact that an extensive amount of serialization
needs to be implemented by the simulator. This is
because the computer running the simulation is
often not as parallel as the hardware being
designed. The process of serializing concurrent
events generates a zero-time event queue, in which
such events are executed and evaluated. The order
of events inside such a queue may produce non-
deterministic output.
 The second non-determinism source is the
possible interleaving of statements in different
behavioral always and initial blocks. This problem
can be resolved by utilizing non-blocking
procedural assignments, as stated above.
 There are several things designers can do to
control non-determinism when programming in
SystemC. First of all, the usage of channels such
as hardware signals (sc_signal, etc) and fifos,
always results in globally deterministic behavior.
Secondly, there should be a general awareness
among designers that the order of thread
execution within a particular simulation phase is
unspecified and implementation-dependent.
However, when the same design is simulated
multiple times using the same stimulus and the
same version of the simulator, the thread ordering
between different runs will not vary.
 Additionally, designers can use command line
options in the SystemC simulator to randomize
the order of execution of threads within each
simulation phase. This feature is useful for
detecting design flaws resulting from inadequate
synchronization within design specifications.

Conclusions

 Beginner designers may want to start with
Verilog (even over VHDL) as it has a much
smaller vocabulary, and does not require previous
knowledge of another language. It also has a
smaller amount of task-specific constructs to be
remembered.
 While Verilog may be considered a weak
object oriented language, SystemC is more suited
for such programming style, due to its roots.
Designs that require heavy amounts of inter-

Clock Update

Update outputs
of newly

triggered sync.
processes

Execute all
async.

processes whose
inputs just
changed

Execute all
triggered

sync.
processes

Advance
Time

module communication may be alternatively
implemented to take advantage of this well
developed feature.
 SystemC presents potential for shorter
simulation times, as its scheduling algorithm is
based on process type, avoiding timing overhead.
Shorter simulation times combined with a reduced
verification stage, make SystemC the favorable
out of the two, for very large designs. This is
especially true since Verilog lacks high level
constructs that facilitate such a design process.
 In general Verilog is better suited for
structural designs, as it allows for better control of
modules within the same abstraction layers, even
though it lacks component hierarchy management.
SystemC’s nature is behavioral, which can make it
more difficult to synthesize than Verilog.
 Verification process in larger designs is shorter
for SystemC, as no C/C++ simulation needs to be
implemented, hence decreasing the time to
market.

References

[1] S. Edwards. Languages for Embedded Systems.

Kluwer 2000.
[2] T. Kropf. The Verilog Hardware Description

Language. Kluwer 1996.
[3] G. DeMicheli. Synthesis and Optimization of

digital circuits. McGraw Hill 1994.
[4] Synopsys. SystemC version 2.0 User’s guide.

2000.
[5] D. Smith. VHDL & Verilog Compared &

Contrasted. Proc. 33rd Design Automation
Conf., 1996.

[6] System-on-Chip Specification and Modeling
Using C++. ICCAD 2000 Roundtable.

[7] W. Mueller. The Simulation Semantics of
SystemC. Proc. Design, Automation, and Test
in Europe (DATE 2001), Munich, Germany,
March 2001.

[8] N. Agliada, A. Fin. F. Fummi M. Martignano.
G. Pravadelli. On the Reuse of VHDL Modules
into SystemC Designs. Proc. IEEE Forum on
Design Languages (FDL), Lyon, France 2001.

[9] S. Swan. An Introduction to System Level
Modeling in SystemC 2.0. Cadence Design
Systems, Inc. May 2001.

