A Specific Domain Language
for Network Interface Cards

Apostolos Manolitzas

Abstract— Writing a device driver has never been pleasant.
Maintaining or updating the driver is almost hard. We ad-
dress this problem by suggesting the use of specific domain
language (SDL) for the programming of the device. To sup-
port our idea, we present the procedure of defining an SDL
language for network interface cards. Through the defini-
tion procedure will shine the advantages of these languages.

I. INTRODUCTION

EELING the heat of their competitors, hardware com-

panies create new products with a frenetic pace. Those
devices need the support of drivers, which should be de-
veloped, debugged and tested in the most limited time in
order to follow this pace. Although device drivers play the
most critical part in the terms of performance, time pres-
sure doesn’t allow extensive testing. In combination with
the assembly language, the low-level programming and the
bits operations increase the error possibility and decrease
the productivity. Not to mention the error-prone nature of
that kind of programming.

We support that the most efficient solution to those prob-
lems would be the complete abstraction from the lower
programming levels and the use of a language, in which
by providing the contents of the specification data sheet,
a language generator should create the major part of the
driver. This approach is not utopia, but requires intelli-
gent, specialized compilers and rich libraries that would
encapsulate more of the hardware knowledge.

Furthermore, the different OS platforms provide another
Sisyphean labor in writing device drivers, because the de-
veloper has to create multiple different instances of the
same driver to support those differentiations. From our
point of view, we support that the solution will be given
by using SDL(specific domain languages) with high level of
abstraction, that could generate a specialized output ad-
justed even to the OS platform.

This paper describes an approach to developing a lan-
guage for automatically generation of device drivers for net-
work interface cards. Our approach allows device drivers
to be written with high abstraction and strong typing rules
so as to address most of the problems that the developer
faces.

II. AN SDL FOR NETWORK DEVICES

We introduce a Specific Domain Language (SDL) dedi-
cated to the specific domain of the device drivers. Partic-
ularly our concern focuses on the network interface cards.

A.Manolitzas is a graduate student in the Department of Electrical
Engineering in Columbia University of New York.

In this approach, we attempt to develop a programming
framework that encourages the programmer to concentrate
only on the device specification and ignore implementation
details.

For the SDL language development, we follow the
methodology as defined by Consel [9]. The first step of
the process encourages the language analysis for defining
the commonalities and the variations in the corresponding
program family. In the second step an informal interface
of the language is defined as well as the semantics and the
notation of the language. Due to lack of time we restrict
our research attempt only in the first two steps, however
we mention the next steps briefly. In the next step the se-
mantics of the language is split between the compile-time
and run-time actions. A successful formal definition is then
possible. An important step is the grouping of the dynamic
semantics algebra to form a dedicated abstract machine
that models the dynamic semantics of the SDL. The last
step is consisted of the implementation of the required li-
braries as well as the application of the partial evaluation
technique [10],[11], to automatically transform a SDL pro-
gram into a compiled program, given only an interpreter.
In practice, the whole process needs to be iterated more
than once.

The rest of the paper is organized as follows. Section ITI
provides an overview of how to write a device driver for
Linux but focused on components interesting for identify-
ing family members. Section IV describes in abstraction
the interface of the language. Section V presents the lan-
guage analysis along with some informal interface. Section
VI describes related work. Section VII concludes and sug-
gests future work.

III. BASIC COMPONENTS OF A DEVICE DRIVER

The purpose of this section is to present the basic com-
ponents of a device driver for network cards. Those com-
ponents will consist the basic guide in generating device
drivers. We will focus on a specific operating system, Linux
2.4.8. This section is not a tutorial on how to write device
drivers. For further information someone can check Ru-
bini’s bible [8] on device drivers.

The network subsystem of the Linux kernel is designed to
be completely independent. This applies to both network-
ing protocols and hardware protocols. Interaction between
a network driver and the kernel proper deals with the one
network packet at a time; this allows protocol issues to be
hidden neatly from the driver and the physical transmis-
sion to be hidden from the protocol. The network cards
usually implement the physical and link layer.

The main association between the kernel and the net-
work device is the struct net_device. So the first thing that
a driver must do, is to establish this connection by ini-
tializing the struct net_device. In Figure 1 we can see the
members of the struct as well as the initialization of that
struct. The functions that are presented in the right part
of the assignments, represent the functions that the device
driver need to implement. The second critical structure is
the struct netdrv. This structure contains private members
adjusted to the device needs. So every useful variable for
the drive functionality can be declared there. Such vari-
able is the ioaddr, which is the address where the device
communicates with the kernel.

ether_setup(dev); /* assign some of the fields */

dev->open =
dev->stop =
dev->set_config =
dev->hard_start_xmit =
dev->do_ioctl =
dev->get_stats =
dev->rebuild_header =
dev->hard_header =
#ifdef HAVE_TX_TIMEOUT

dev->tx_timeout =

mydev_open;
mydev_release;
mydev_config;
mydev_tx;
mydev_ioctl;
mydev_stats;
mydev_rebuild_header;
mydev_header;

mydev_tx_timeout;

dev->watchdog_timeo = timeout;
#endif
dev->flags |= IFF_NOARP;

SET_MODULE_OWNER (dev) ;

Fig. 1. The core of mydev_init.

Based on the figure we will examine every function in de-
tail and we can conclude about the usability of each func-
tion. The initialization function plays catalytic role to the
driver’s functionality. It has the responsibility of assign-
ing the related functions to the right member of the struct
net_device and identifying the device. From the hardware
part of the device, it is important to reset the device and
its state. Depending on the driver implementation, some
approaches choose to allocate all necessary resources in the
init function. But common practice dictates the resource
allocation should be done during the opening of the device.

Open and close operations don’t differ from all the device
drivers. In general open() requests any system resources it
needs and tells the interface to come up; stop() shuts down
the interface and releases system resources. The kernel will
open and close the interface in response to the ifconfig com-
mand. However there are a couple of additional steps to
be performed. Firstly, the hardware address need to be
copied from the hardware device before the interface can
communicate with the outside world. Secondly, the open()
function should start the interface’s transmit queue once
it is ready to start sending data. So a typical operations
sequence for the open function would be first requesting

system resources, then firing the device and last starting
the transmit queue. From the other hand the close() func-
tion has to do the reverse job, which is first to stop the
queue and secondly to release any system resources allo-
cated by open().

The most important tasks performed by network inter-
faces are data transmission and reception. The kernel uses
a structure called socket buffer to store incoming or out-
going packets. The role of the transmission is to copy the
content of the buffer to the device’s buffer. After that the
hardware is responsible for the data transmission. The psy-
chical transmission mechanism has been isolated in another
appropriate function so as to be independent from different
vendors implementations. In some hardware architectures
the transmission is interrupt driven so role of the function
is restricted into copying the content of the socket buffer
to the device buffer.

Receiving packet is not as easy as sending, because the
allocation of the socket buffer and passing the packet to
upper layers must be handled by the interrupt handler.
Packet receiving is mostly an interrupt driven event. The
buffer allocation for the new incoming packet isn’t a simple
malloc() operation but it strongly depends on the way that
the device communicates with the memory. Many devices
in order to increase the I/O throughput they use DMA
access. In this case intelligent memory management is re-
quired and memory allocation a priori the packet receiving.
Concurrency and locking issues may appear on those situ-
ations. The last step consists of passing the packet to the
upper layer using netif_rx() operation.

Another issue that the driver must deal with is hard-
ware fail. In case of a hardware error, the driver must be
able to recover from that loss in order not to lose a new
interrupt. The solution hears to the name of timers. Many
drivers set timers, and if an operation is not completed in
the given time, something is wrong and a function must
handle this error. The correct error handling is updating
the statistical information of the interface and restoring the
device in a state that can continue the packet transmission
or reception.

The interrupt handler always plays the most critical part
in terms of the driver performance. The basic functionality
of the handler function must be first to acknowledge the in-
terrupts and then to discriminate three types of interrupts.
One when a new packet has arrived, one when a packet was
transmitted (successfully of not) and one when some error
occurred. The discrimination is based on a status interrupt
register that every device has. Locking issues arise and the
programmer must ensure the atomicity of every action in
the handler.

Furthermore, functions that change the device configu-
ration such as ioctl, can be supported by the device driver.
Any ioctl command that is not recognized by the network
layer is passed to the device layer. Each interface can de-
fine its own ioctl commands. In addition to ioctl, the device
should support functions that keep statistical information
such as packet sent, lost, discarded and every other useful
information about the device operation. The implementa-

tion of such methods is pretty easy.

IV. DETAILS ABOUT THE SDL

The following section describes in details, the results of
commonality analysis. The analysis and the rest of the
elaboration is based on the drivers that are mentioned in
the Appendix. The commonality analysis forms the basis
for designing reusable assets that can be used to produce
rapidly family members. We divide the family members to
operations and properties. Operations are called all pos-
sible actions that could happen in a network card such as
read or write of a register and properties are called the set
of registers, control modules and interfaces.

A. Operations

Following Thibault et al [3] example, we identified three
patterns which appear in the drivers that could be used as
a guide for defining different operation families.

A.1 Operation Pattern

The first pattern fits to a model of atomic operations
that can always be identified in the device driver code.
Those operations are repeated frequently and they are the
primitive modules for the rest of the operations. The code
differs by the data arguments that it uses. From our expe-
rience we can classify the I/O operations as the most useful
and frequently used. The major interaction with the hard-
ware consists of code fragments that read or write some
register. But those operations vary from vendor to vendor
causing incompatibility issues. For example several device
cards have 16-bit operations and others have 32-bit oper-
ations. The programmer should be protected from having
to make such discriminations. For the programmer there
would be only one read or write command, appropriate to
each width.

Furthermore, cases where the developer has to add an
offset so as to access some register must be prevented. For
example something like:

outb(0x09434, ioaddr+0x12345);

must be replaced with a different notation and some ab-
straction. Several programmers use macros to avoid such
notations. We want to formalize those operations and hide
the details from the programmer. An informal example
could be:

:= TxCRC; /* (write) */
:= MediaStatus; /* (read) */

register TxConfing
variable status[1:5]

The language must provides facilities to handle cases where
two or more continuous registers must be read or written,
so as the serialization procedure to be transparent to the
developer.

A.2 Combination of operations pattern

Actions that target critical operations of the device be-
long here and are consisted from the operation patterns
that mentioned before. Those patterns don’t belong to a

certain family, which means that we couldn’t find any com-
monalities between them. In this category we can place op-
erations such as bit shifting and bit masking. Those opera-
tions are dedicated to every device and it’s hard to parame-
terize. Moreover, attempts are made to use a more common
interface over different vendors. The example of the MII
(media independent interface) registers, which provide a
common register interface to the Physical Coding Sublayer
independent from the media reveals those attempts.

A.3 Control pattern

Code fragments that belong to control pattern category,
represent actions that are consisted from operations pat-
terns but the sequence and the data passed as arguments
have highly dependence with the hardware architecture
of the device. A very common operation that belong to
this set, is the activation and deactivation of the hardware
transmission and reception mechanisms. Different series of
I/0O operations must take place in every hardware imple-
mentation. The range of control patterns increase if you
think the number of the different media types that exists
and a device can support. So in the same device could ex-
ist different processes for supporting multiple medias. Not
to forget the auto negotiation mechanism that encourages
such policy.

Moreover, actions like hardware initialization, hardware
reset are dedicated to the hardware family that the de-
vice belongs and are strongly connected with the hardware
architecture. Those operations are defined in the specifica-
tion of the data sheet of the device and must be declared
by the developer.

B. Properties

As properties we consider the complete set of the char-
acteristics that can be found in the device data sheet and
are used to operate the device. Every network interface
card has those properties and the variation on those could
specify important details about defining a language.

B.1 Identification

The device driver should first probe for the identification
of the chip used device. Every chip has different charac-
teristics that must be specified by the programmer. An
informal example could be:

begin identification
variable chip_id := Chip_ID;
case chip_id:
0x0A=> RTL8139(0x10ec,0x8139);
0x0c=> DELTA8139(0x1500,0x1300) ;
end case
end

Those assignment can fill the pci table for the device. Not
to mention the fact that the driver has to declare the MOD-
ULE_DEVICE_TABLE, which is strongly related to the
identification and the properties of the board.

B.2 Registers

Probably, the most important piece of the hardware puz-
zle in terms of communication with the outside world is
the operational registers. According to the complexity and
the functionality of the device, the registers can be split in
families. Status, control and configuration registers are the
most common. The developer has to define each register’s
address in the beginning of the driver so as to access with-
out remembering their exact address. Some registers must
have a common name, for example the interrupt register
can be found to every device so keeping the same name is
justified. So far, macro definitions and programmer’s style
resolved the register declaration, but in our proposal this
becomes a de-facto feature.

B.3 Bit Fields

Most of the case the registers provide indication for more
than one operation. For example the interrupt status reg-
ister can have different values according to the interrupt
source. So we want to extract those individuals’ informa-
tions for every field. The method used so far is bit masking
and shifting, which is error-prone. In a better case, dec-
larations of macros or enums types help to avoid dealing
with plain bits. We suggest a restriction mechanism that
should allow the developer to declare at the beginning of
the drivers those bit fields in more formal way. Declaration
types that are use in hardware description languages such
as Verilog would be more applicable to this idea.

B.4 Bit Values

Specific values must be used to fill all the options that
the registers provide. Of course the plain bit use, creates
the problems that we are trying to solve. An alternative,
more sophisticated representation would be more beneficial
for the developer. For example interrupt masks or config-
uration bit vectors require a name so as to represent an
entity and not plain bit vectors. Not to mention flags, that
should have at least a name to make them useful. Optimal
solution would be to define those values in combination
with the bit fields so as a type check can be applied during
the driver code generation. For example, in the interrupt
register should assign only values describing the interrupt
status. Gathering the previous remarks and notations we
suggest the following declaration form:

register Config[0:16] => 0x00a6;
register fields Config

begin
Config[0] =>PM_Enable {on, off};
Config[1] =>PI0 {on, off};

Config[2:3] =>LWAKE {on(0x11), off(0x00)}
end

Following that declaration style a similar call for write op-
eration could be:

register Config[LWAKE] := on;

where in the first declaration is determined the address of
the register plus the ioaddr. In the next steps the fields of
the register along with their domain are declared.

B.5 Synchronization Issues

The software architecture allows high concurrency fea-
tures in order to increase I/O performance and support
high throughputs. This environment has multiple threads
accessing the same registers or variables. The issue that
arises here is how much freedom must be left to the de-
veloper to secure it’s masterpiece with locking mechanism.
One solution would be to add some flag to the register dec-
laration, which indicates that should apply special locking
default by default without the programmer interfere. The
other solution would be to allow the programmer to use the
already adequate locking mechanism that Linux provides.
Atomic reads and writes are part of the Linux library and
it’s programmer’s responsibility to take advantage of them.
We believe that this issue is an active challenge for our pro-
posal.

V. LANGUAGE ANALYSIS

In the following section, we will present our language
analysis by explaining in details, patterns discovered in the
component functions and identifying operations essential
for building language blocks. The result will be a detailed
explanation of hardware and software steps made toward
the driver implementation, and how those steps can be
automatically generated after the guidance of the devel-
oper. To be more methodical, in every function we will
split analysis to operations associated with the hardware
and to operations associated with the software part and
the operating system. The hardware operations could be a
single read or write operation or a sequence of them. Fur-
thermore, they belong to family set already identified in
the paper.

To support our proposal we will present in every func-
tion the necessary operations that the developer must de-
fine. The language requires those definitions in order to
generate the hardware operations of the device driver. The
definition will have a format:

begin operation_name
register A := A_value;
variable b := B_register;
end operation_name

Besides, the software part shouldn’t require any involve-
ment by the developer except when the user has to define
major architecture characteristics such as the hardware bus
where the device is plugged in. Utilizing that property we
can hide any implementation from the user.

A. init function

The initialization function is split into the part where all
the hardware initialization is done and into the software
part where system resource allocation and memory map-
ping are the primarily targets. The hardware initialization

is a procedure strictly defined in the device data sheet.
Particularly, a programmer must define the following hard-
ware operations based on that data sheet: soft_chip_reset,
chip_probe, find_media_type,read_ceprom. The eeprom read-
ing is a more complicated operation with sometimes some
delay on it. So in the language we could define an opera-
tion: #delay_time, which would be equivalent with the C
statement delay(delay-time).

Regarding the software operations we can divide them
into two sets, operations standardized in every network
driver, where you have to register the device (regis-
ter_netdev) and device’s functions to the kernel as in
Figure 1 and the operations where you have to allo-
cate system resources like memory and interrupt. The
first type of operations won’t involve the programmer.
However for the second type, the configuration is based
on the type of memory and data transfer that is pre-
ferred. The paradigm of PCI DMA bus for data trans-
fer is the most common, nevertheless the language needs
more flexibility.An assignment operation with a strict do-
main (PCLISA,USB,PCMCIA,PnPISA) can be used. The
programmer shouldn’t be aware of the implementation.

Except the typical functionality of the network cards,
advanced features have been added to some cards to pro-
mote them. So the driver should get advantage of them. A
good example of such feature is the auto negotiation that
detects the various modes that exist in the device on the
other end of the wire and advertises its own abilities to
automatically configure the highest performance mode of
inter-operation. We conclude from this example, that the
language should be flexible to include advanced features of
the devices. It shouldn’t trap itself to a specific model.

B. open function

From the hardware side, the driver should start the net-
work card. The procedure of starting the network card
is described mostly by initializing the configuration reg-
isters and most important by starting the interrupt util-
ity. We identify the following batch operations that must
be predefined by the developer: enable_tz, enable_rz, en-
able_interrupts, reset_counters, verify_enable_rxtz.

From the software side, the driver obtains, if it is pos-
sible, DMA resources for data transmission. After Linux
kernel 2.4.x, that allocation task has been simplified by the
use pci_alloc_consistent function. Another critical task, im-
portant for the driver functionality, is the irq establishment
and the registration of the interrupt handler. Any failure
on those tasks causes the termination of the driver. In ad-
dition the timer must be initialized and registered to the
kernel.

C. transmit function

Depending on the network card implementation the
transmit functions plays a different role. In the simplest
case the functions copies the contents of the socket buffer,
into the hardware output buffer and then fires packet trans-
mission. So from the hardware part the definition of an
operation: hw_tr would be enough. But in more sophisti-

cated hardware implementations the role of transmission
function is to copy the content of the socket buffer to the
Tx buffer, after that the card is instructed to move the data
from the buffer to the internal transmit FIFO in PCI mas-
ter mode and when the FIFO is filled to the programmed
threshold level the card begins transmission. So no hard-
ware operations are needed.

For the software part the driver copies the socket buffer
to the Tx buffer. Also increases possible variables used to
indicated the size of the FIFO and possible data structures
for statistical purposes.

D. receive function

The reception of a packet is strongly connected with the
interrupt handler. It’s the service routine for the receive
interrupt. The operation of the receive function involves
reading of the Rx FIFO, allocating memory for the packets
and push them to the upper layers. The only hardware
operation needed here is a check if the Rx FIFO has packets
in it: Rx_Buf Empty

Hardware implementations sometimes, support error re-
ports through the interrupt status register,so the routine
should be able to identify the error that corresponds to its
side and deal with it.

E. interrupt handler

The interrupt handler has to know the status of the in-
terrupt and the domain of interrupt types. Some useful
operation would be: clr_int_status, which would clear the
status of the interrupt.

From software side the execution is straightforward. Ini-
tially the overwrite of the status register acknowledges all
the interrupts. In the core part of the code, the status
of the interrupt is checked and according to its value the
proper service function is invoked.

F. stop function

Follows the reverse direction from open function. The
first action that must be made is shutting down the trans-
mission and the reception of packets, also no interrupts are
accepted any more. Those are hardware operations that
can be summed up by the following: disable_rz, disable_tz,
disable_int, low_power_mode

On the software side, the driver should release any data
paths obtained during opening the driver. Furthermore it
must return the interrupt number to the operating system,
unregister the timer and first of all close the packet queue
to the upper layers.

G. miscellaneous function

To this family belong the rest of the functions that have
a supplementary role. The function responsible for the
statistics accumulation usually is implemented without any
hardware interference. Of course special cases where the
device is keeping its own statics can be consider as another
set of operations.

VI. RELATED WORK

We based our approach on the first successful attempt on
writing a domain specific language for video device drivers
by Thibeault et al [3]. They produced a language that
could generate the code for the driver by describing only
the characteristics of the device in terms of registers, ports,
clocks and most basic actions’ sequence. To support their
idea, they implemented a driver for graphics devices of the
S3 chips series using their language. The generated driver
was compared with the current hand-crafted implementa-
tion of the S3 drivers. In the results of the comparison they
pointed out that the performance of their driver surpasses
in performance the original, implemented in C, driver in
some cases. In addition they claimed that their code is
very easy to write, to maintain and to reuse it. Though,
their idea requires much effort to support a broader domain
of applications and it is still very restricted.

The same research group identified that problem and
Consel et al [1] proposed a different approach for solving
the same problem. They introduced Devil, a more generic
language based on the Interface Definition Language (IDL)
for hardware functionalities. They used IDL to describe the
hardware and its functionality. It provides the programmer
with abstractions and syntactic constructs that are specific
for describing devices. Particularly, Devil is a compiler that
automatically generates stubs, which provide an interface
to the device. The interface is mostly consisted of macros
and nicely defined registers. Their approach emphasized on
protecting the developer from logical and mistyping errors.
They didn’t touch issues such as multi OS portability.

To solve the portability issue several vendors have made
an attempt to define a common driver interface called UDI
(Uniform Driver Interface) [2]. This interface surrounds
conforming device drivers modules, providing them with
consistent interface to and from the host operating sys-
tem and among cooperating drivers. However UDI focuses
mainly, only on the high level part of the drivers and their
interaction with the operating system.

Several others attempts have been made to make the life
of the device driver programmer easier. Libraries [6] have
been built providing tools for partial code generation dedi-
cated to a single environment.Also the WinDK [5] Toolkit
helps programmers write device drivers guided by some
initial menus in a Visual C++ environment. Those prod-
ucts solve partial some problems nevertheless they don’t
deal with the whole range of the problem. A prominence
attempt is a commercial product called jungo [7]. By plug-
ging the device hardware in a computer slot, their diag-
nostics scan it and they create a framework based on the
characteristic probed. Following, the developer provides
the specification of the device through an interactive dialog
and finally the program generates the driver for the device.
Although this environment hides most of implementation
details from the developer, it restrains him from expand-
ing the driver’s functionality with extra device features or
handling any peculiar hardware bug.

Concluding, every approach has a different motivation
and a particular range of applications. Some solutions were

planed to provide an absolute solution to the complete set
of device drivers and others are attempting to provide tools
only for a small subset of drivers. Thus, there is no stan-
dard tool for writing device drivers, it means that the ab-
solute solution haven’t been found yet.

VII. CONCLUSION AND FUTURE WORK

The problem of writing device drivers that can be eas-
ily reproduced, maintained, reused and debugged exists.
Some weak steps have been made to address the problem
either by providing more tools to the developers such as
libraries and interfaces or by defining new languages spe-
cific for device drivers. Following those steps, we propose
the definition of an SDL for network interface cards. The
paper describes only the language analysis but the imple-
mentation and the evaluation of the language will prove
how successful is.

The primary future step is the implementation of the
language compiler. As we have already mentioned defining
an SDL language that could describe the total number of
cases is not easy due to the broad range of network devices
and particularities in those devices. However an initial pro-
totype would help for further expansion of the idea.

Furthermore issues such as locking mechanisms, debug-
ging tools for the programmer and hardware bugs are chal-
lenges that need solution.

We currently believe that SDLs would change the way
the drivers are written.

REFERENCES

[1] Fabrice Merillon,Laurent Reveillere,Charles Consel,Renaud Mar-
let, Gilles Muller. Devil: An IDL for Hardware Programming.
OSDI 2000, pages 17-30, San Diego, October 2000.

[2] Project UDI. UDI Specifications, Version 1.0, September, 1999.
URL: www.project-udi.org.

[3] S. Thibault, R. Marlet, and C. Consel. Domain-specific lan-
guages: from design to implementation - application to video
device drivers generation. IEEE Transactions on Software Engi-
neering, 25(3):363-377, May-June 1999.

[4] E. Eide,K. Frei,B. Ford,J. Lepreau,G. Lindstrom. Flick: A Flex-
ible, Optimizing IDL Compiler. Proceedings of the ACM SIG-
PLAN 97 Conference on Programming Language Design and
Implementation (PLDI), Las Vegas,NV, June 15-18,1997.

[5] BlueWater Systems, Inc. WinDK Users Manual. URL:
www.bsquare.com
[6] Compuware NuMega. DriverWorks User’s Guide. URL:

www.compuware.com/products/numega/drivercentral

[7] Jungo Ltd. WinDriver V5 User s Guide. URL: www.jungo.com

[8] A. Rubini, J. Corbet. Linuz Device Drivers, 2nd Edition.
O’Reilly, second edition, June 2001.

[9] Charles Consel and Renaud Marlet. Architecturing Software
Using A Methodology for Language Development. Princi-
ples of Declarative Programming. 10th International Symposium,
PLIP’98. pp. 170-194, Pisa, Italy, Sep 16-18, 1998

[10] N.D. Jones An introduction to partial evaluation. ACM Com-
puting Surveys, 28(3):480-503, Sep 1996

[11] N.D. Jones, C. Gomard, and P. Sestoft. Partial Evaluation and
Automatic Program Generation. International Series in Computer
Science. Prentice-Hall, EngleWood Cliffs, NJ, June 1993.

VIII. APPENDIX

The following files, under the directory linuz/drivers/net/*
, have been studied to support the language analysis:
ne2k-pci.c
pci-skeleton.c, isa-skeleton.c
tulip directory
3ecdlb.c
eepro.c
3cdH9z.c

AN N

