
ARMSim: An Instruction-Set Simulator for the ARM processor
Alpa Shah [ajs248@cs.columbia.edu] - Columbia University

Abstract
A hardware simulator is a piece of software that
emulates specific hardware devices, enabling
execution of software that is written and
compiled for those devices, on alternate systems.
This paper describes a simulator for the ARM
processor, which is widely used in embedded
devices like PDAs, cellular phones etc. ARMSim
is a lightweight ISA (Instruction Set
Architecture) level simulator and a trace
generator too. It has some optimizations at the
decoder level to improve performance.

1. Introduction
Simulator or Virtual machine technology is
an integral part of many computing systems
today. This technology is incredibly useful
since it makes it possible for users and
analyzers to test and execute software well
before the actual hardware is available, or in
absence of the actual hardware. Some
benefits of using simulators are:

• Simulators are flexible and thus new

features or components can easily be
added.

• It is possible to model anything, including
something that might not be possible to
do on the hardware.

• It allows stress testing of programs like
operating systems by simulating complex
interrupt and exception conditions.

• Since simulators are built in software, they
are more deterministic. The deterministic
behavior of simulators makes programs
execution reproducible, and thus helps in
locating problems.

Primary applications of simulators consist of
computer architecture studies and
performance tuning of compiled software,
and the compilation process itself. Various
types of simulators exist, each addressing
different aspects like clock cycle rate,
modeling the microprocessor chip logic,
modeling the program execution
environment, etc. This paper concentrates
on an instruction set simulator [ISS]
implementation for the ARM processor[1],

the ARMSim system. Hereafter, the
machines that are simulated will be referred
to as target machines, and the system on
which the simulator is actually run is
referred to as the host machine.

The remainder of the paper is organized as
follows: Section 2 discusses different
simulation strategies, and then discusses ISS
strategies in detail. Existing related work on
simulators is discussed in Section 3. It also
describes the ideas and design principles
behind ARMSim. The structure and
architecture of ARMSim is presented in
Section 4. Section 5 describes the realization
of the design, and Section 6 discusses some
possible extensions and concludes the
paper.

2. Simulation Strategies
The best simulation method depends on the
application of the simulation results. This
section outlines several simulation strategies
and their applications.

• Architectural level Simulation:

Logic designers build Architectural
simulators to express and test new designs.
These allow emulation of the different
parts of a processor, using either the
simple core, or the core and the data
caches and other components. These are
generally not intended for executing
target system binaries on an alternate
platform, but rather to allow research into
the modification of the internal datapaths
of the processor.

• Direct Execution:
Target machine binaries can be executed
natively on the simulator host processor
by encasing the program in an
environment that makes it execute as
though it were on the simulated system.
This technique requires that either the
host system have the same instruction set
as the target, or that the program be
recompiled for the host architecture.
Instructions that cannot execute directly

on the host are replaced with procedure
calls to simulator code. This method is
also known as Dynamic Recompilation
[Dynarecs]. Native execution of the
recompiled code leads to a much faster
execution of the simulated software, but
they have lengthy context switching, i.e.
when the host processor has to switch to
target processes. This can make the
simulation slower. Most direct execution
simulators statically inspect and translate
all instructions before simulation begins.

• Threaded Code[13]:

This is a simulation technique where each
op-code in the target machine instruction
set is mapped to the address of some
(lower level) code in the simulator system,
to perform the appropriate operation. This
can be implemented efficiently in machine
code on most processors by simply
performing an indirect jump to the
address, which is the next instruction.
This method does not suffer from lengthy
context switching.

• Instruction set simulators:

Instruction set simulators [ISS] execute
target machine programs by simulating
the effects of each instruction on a target
machine, one instruction at a time.
Instruction set simulators are attractive for
their flexibility: they can in principle,
model any computer, gather any statistics,
and run any program that the target
architecture would run. They easily serve
as backend systems for traditional
debuggers as well as architecture design
tools such as cache simulators. A lot of
temporal debuggers have recently started
using ISS. An ISS can dispatch instructions
by fetching from a simulated memory,
isolating the operation code fields, and
also branching, based on the values of
these fields. Once dispatched, reading and
manipulation of variables that represent
the target system’s state are used to
simulate the instruction’s semantics.

When CPU architects design a new
machine they typically write an
instruction-level simulator to test their

ideas. These simulators are written to test
concepts and processor design tradeoffs;
flexibility is important and speed is not of
primary importance. They often gather
statistics, and this constrains and slows
down the simulator. ISS are also referred
as “complete system instruction set
simulator,” as well as “completer system
simulator.” Furthermore, complete system
simulators can be designed to be fully
deterministic. They effectively address
two major problems in real-time analysis:
viz. difficulty in reproducing the effects of
program execution, and time distortion
resulting from intrusion. Since simulators
are implemented fully in software, they
can be fully tailored for specific uses. ISS
may not address issues like the delays
from devices such as disk subsystems, and
the memory hierarchy, including the
memory management unit, caches and
data-buses. Timing accuracy in ISS is of
less importance than predictability
preciseness, and determinism. An artificial
system has few unpredictable factors.
Thus, a simulated system starting
execution in a known state will always
proceed along the same path. This is
useful for experiments and debugging
purposes. A user can detect misbehaving
blocks of code that take more than
expected time, and thus restart the process
to examine the offending blocks in greater
detail and thus trace the execution.

Several techniques can improve the
performance of Instruction set simulators.
Instead of decoding the operation fields
each time an instruction is executed, the
instruction is translated once into a form
that is faster to execute. This idea has been
used in a variety of simulators for a
number of applications. Several efficient
memory models have also been proposed.

3. Existing Work
There has been a lot of research work on
software simulation of processors. These
generally employ the above-mentioned
strategies in addition to some new methods.
This section describes some popular
simulators for different architectures, and

also specific ones for ARM. The ARMSim
system is compared with existing ARM-
specific simulators.

• SimOS[9]: SimOS takes a promising

approach that handles both user and
kernel code by dynamically translating
target instructions into short sequences of
host-native code. Unlike most direct
execution simulators, SimOS keeps only a
small part of the target machine’s state in
host registers and so is able to multiplex
between target processors quickly.

• Shade[2]: Shade simulates SPARC
processor by using dynamic compilation.

• Talisman[8]: Talisman is a simulator for
multicomputers based on the threaded-
code strategy.

• Mint[10]: Mint is a simulator for MIPS
R3000.

The following are existing simulators
developed for the ARM processor, using
some of the above-mentioned techniques:
• ARMPhetmaine[12]: this simulator is based

on the direct compilation technique.
• tARMac: also based on the same method.
• SWARM[11]: initially designed as an ARM

module to plug into the SimOS system
developed at Stanford University. It is
now is an independent ARM simulator. It
implements the core and a small amount
of internal co-processors at a basic level,
and provides full support for registers,
memory caches, and the external memory
hierarchy.

• SimARM[15]: an instruction set simulator
[ISS]. ARMulator[14] is another ISS with a
slight variation: it ensures identical cycle-
count for instructions. This means that
instructions take the same number of
cycles to execute as if run on real ARM
hardware. This is important for precise
simulation since compilers can optimize
code that takes advantage of the cycle-
counts of specific instructions.

3.1 The ARMSim Approach:
ARMSim is an instruction level simulator
for the ARM processor that allows tracing of
program execution. ARMSim simulates the
entire ISA except for the non-standardized

co-processor instructions that vary widely
from system to system depending on the
actual co-processor module available on the
chip. ARMSim is used to execute ARM
binaries on a different target machine, and
gather some statistics based on the execution
of the binaries. It executes one instruction at
a time and updates the processor state
accordingly.

4. Structure of ARMSim

ARMSim is a simulator of the 32-bit
ARM RISC processor[1]. ARMSim simulates
the entire instruction set except for those
requiring use of the co-processor unit. The
co-processor is not a functional unit
standard across all ARM processors, and it
was not possible to come up with a common
subset of operations that all co-processors
would support. Figure (a) illustrates the
processor of the ARM as simulated by
ARMSim. The following are specific
functional features of ARMSim:
• System binaries: ARMSim takes in binaries

for ARM processor for simulation, instead
of assembly code. Thus, code compiled for
the target processor can be directly
executed.

• Binary data representation: ARMSim treats
data as being stored in the big-endian
representation.

• Determinism: The program behavior must
be repeating for testing purposes. Being
completely software-simulated, ARMSim
guarantees that the outcome of program
behavior is deterministic.

• Low startup: Being an instruction level
simulator, the system has no initial startup
time, and no preprocessing is required as
in the case of direct compilations or
threaded-code systems.

• Extensible: The implementation of the
system is based on a modular design, and
this makes it possible to extend the
simulator in order to support other
modules like I/O devices, and complex
memory hierarchies, if needed.

• Statistics: ARMSim has been designed to
support tracing the execution of a
program and gather statistics. ARMSim
can be used to collect information like
frequency of data memory accesses, the

number of branches that are taken, and
other analyses on program behavior based
on instruction profiling.

Fig. (a)

4.1 Modeling Processor
ARMSim is a behavioral modeling of the ARM
processor. This aspect made possible numerous
abstractions from the underlying hardware, e.g.
simplified memory replacing the complete
memory hierarchy subsystem, unification of all
the individual functional units in the CPU, etc.
The ARM processor elements simulated in
ARMSim are program and data memory,
the status register, CPSR, the ALU, barrel
shifter, conditional execution of instructions,
general purpose registers. The state of the
system is defined by the values in the
registers and memory.

4.2 Modeling Basic Instruction execution
ARMSim simulates program execution by
iterating through a cycle of instruction
fetching, decoding and execution.

4.2.1 Fetch
 Just like in any microprocessor[6], ARMSim
internally maintains a program counter to
determine the next instruction to be fetched
from the instruction memory. This program
counter is updated automatically upon each
instruction fetch, and can also be explicitly
updated by instructions.

4.2.2 Decode
The class of each fetched instruction is first
identified, and then, the different fields such
as the opcode, operands, of the instruction
are decoded according to the type of the
instruction. ARMSim achieves some
optimization based on the decoding step –
each instruction needs to be decoded only
once, regardless of the number of times it is

fetched for execution. This technique is
called decode-once-execute-many-times.

4.2.3 Execute
The execute phase of the iteration involves
computation of memory addresses (to get
the operands), if necessary, and the actual
operation of the current instruction. This
operation updates the state of the system as
determined by the instruction type.

4.3 Memory model
ARMSim does not explicitly model the
memory hierarchy of the real ARM
processor. Being an instruction-level
simulator, ARMSim can avoid having to
accurately emulate movement of data
between the memory, the caches and the
processor, and instead can represent all
memory-accesses as being uniform.
Instruction memory is stored as a linear
array of 21-bit values, as shown in figure (b).

Fig. (b)

4.3.1 Data Memory

The ARM supports data transfer in 3
different sizes: byte, halfword, and word
between the registers and memory.
ARMSim implements the transfer of
memory data of all the sizes while
maintaining the endian-ness and signed-ness
of the data.

4.3.2 Program Memory
ARMSim does not simulate the ARM
processor in the 16-bit THUMB mode. This
has the effect that all instructions are stored
at word-aligned instructions, and all
instructions fetches operate as 32-bit data
transfers.

4.4 Processor State modeling

Of the various modes of operations possible
on the ARM, the most interesting one is the
user mode. Most of the running time of
programs is spent executing instructions in
this mode. ARMSim maintains the exact set
of on-chip registers as are visible to
instructions executing in the user mode on
the ARM processor. Out of these registers,
the CPSR register is updated based on the
result of instruction execution, while the
data in the 16 general purpose registers can
be explicitly set by the instructions.

4.5 Statistics gathering
ARMSim allows tracing through the
execution of the programs. Some of the
information that ARMSim can record are:

• Instruction address, effective address
• Decoded opcode value
• Number of branches taken
• Number of memory references

5. Realization of the ARMSim

system
In this section of the paper, I describe the
various system design decisions I have
made while building ARMSim. An ISS is by
nature much slower at interpreting
programs than running the program
natively on the intended hardware, or even
dynamic recompiling simulators that can
optimize the interpretation by actually
translating certain parts of the target system
program into native code for the host
system that the simulator itself is running
on. However, this sort of translation
decreases the amount of control on the
simulation – such a thing would prevent
any extensive form of behavioral analysis of
execution. For example, it would be
impossible to count the number of times a
certain block of code in the target program
has been executed, especially if the original
target code is significantly different from its
translated version. Moreover, with this sort
of simulation, it is hard to maintain
uniformity of conditions among different
host system architectures. ARMSim is a fully
interpretative simulator, and it incorporates
some optimizations that help speed up the
overall execution time of target programs
portably across different host systems.

5.1. ARMCore: a unified CPU: ALU, barrel

shifter
ARMSim interprets the execution of all
target system instructions thus obviating the
need for separate functional units.
5.2. ARMCore: CPSR and general purpose

registers
The 17 general purpose and CPSR registers
visible in the user mode in the ARM
processor are implemented in ARMSim.

5.3. Instruction identification, decoding
ARMSim identifies the type of each fetched
instruction by performing a bitwise
comparison of the 32-bit instruction with a
predefined set of masks. It then creates an
instance of a subclass of the Instruction class
that will automatically decode the
remaining different fields of the instruction
such as the operands, immediate values, and
condition codes.

5.4. Decode-once-execute-many-times
Compiler-generated executable programs, in
general, contain many blocks of code that
are iterated numerous times. ARMSim
attempts to utilize this fact to achieve an
optimization in the simulation – since all 32-
bit instructions are decoded and executed in
the form of an Instruction object, ARMSim
will create a single instance for all iterations
of the instruction at each memory address.
This allows the simulator to avoid having to
re-create new instances for the instructions
in each iteration of the loop. Instead, after
executing the instruction at the given
memory location the first time, ARMSim
will preserve this instance and reuse it for
any future execution of that instruction.
Also, ARMSim carries out all processor-
state-independent decoding only for the first
time that the instruction is executed – these
are generally field extractions such as
source/destination register identification,
and immediate operands evaluation.

5.5. Realization of the memory system

abstraction
ARMSim treats the memory system as being
uniform, with constant access time,
regardless of the address of the memory
data being accessed. Instructions are stored

at word-aligned addresses. Since executing
instructions could conceivably request byte-
data transfers at non-aligned addresses,
ARMSim permits memory data transfers at
non-word-aligned memory locations.

6. Conclusions, Future Extensions
ARMSim is a simulator that is well suited to
simulate the overall behavior of execution of
programs that are intended for execution on
an ARM system. Some important uses for
ARMSim would be: comparisons of the
quality of compiled code as produced by
different compilers and/or compiler
options. The modular nature of the
implementation of ARMSim makes it easy
to:
• Can more closely represent the memory

hierarchy without having to rewrite major
parts of the system – this can then be used
to monitor memory access patterns in test
programs such as temporal and spatial
locality, size of memory requirement, etc.

• Supplement the system with newer
definitions of instructions.

• Incorporate clock cycles-per-instruction
[CPI] for each class of instruction; possibly
include some mechanism for adjusting the
CPI for instructions that cause a cache-
miss.

• Provide an “architectural” level garbage
collector that will intelligently maintain
the instruction pointers for those
instructions that are in frequent use, e.g. in
a loop, and clear out the rest. A
sophisticated version would even perform
prefetching and create appropriate
instruction pointers before the instructions
are actually required.

7. References
[1] ARM7TDMI ARM processors User’s

Manual, Advanced Risc Machines Ltd.
[2] R. Cmelik, D. Keppel [1994]: “Shade: A

Fast Instruction Set Simulator for
Execution Profiling," Proceedings of
SIGMETRICS, ACM, Nashville, TN, 128-
137.

[3] R. C. Bedichek: “Some efficient
architecture simulation techniques”. In
USENIX Association, editor, Proceedings
of the Winter 1990 USENIX Conference,

January 22–26, 1990,Washington, DC,
USA, pages 53–64, Berkeley, CA, USA,
Jan. 1990. USENIX.

[4] P. Magnusson and B. Werner: “Efficient
memory simulation in SimICS”. In
Proceedings of the 28th Annual Simulation
Symposium, 1995.

[5] P. S. Magnusson: “Efficient instruction
cache simulation and execution
profiling with a threaded-code
interpreter”. In Proceedings of Winter
Simulation Conference 97, 1997.

[6] John Hennessy and David Patterson.
Computer Organization and Design:
The Hardware-Software Interface
(Appendix A, by James R. Larus),
Morgan Kaufman, 1993.

[7] Emmett Witchel, Mendel Rosenblum.
Embra: Fast and Flexible Machine
Simulation. Proceedings of the 1996
ACM SIGMETRICS Conference on
Measurement and Modeling of
Computer Systems, Philadelphia, 1996.

[8] Bedicheck, R. 1995. Talisman: Fast and
accurate multicomputer simulation. In
Proceedings of the 1995 ACM
SIGMETRICS Conference on
Measurement and Modeling of
Computer Systems (May), 14±24.

[9] Mendel Rosenblum, Edouard Bugnion,
Scott Devine, and Stephen A. Herrod.
Using the SimOS Machine Simulator to
Study Complex Computer Systems.
ACMTOMACS, 1997.

[10] J. E. Veenstra and R. J. Fowler. MINT: A
Front End for Efficient Simulation of
Shared-Memory. In Proceedings of
MASCOTS, pages 201-207, January 1994.

[11] SWARM 0.44 Documentation Michael
Dales Department of Computing
Science, University of Glasgow,Scotland

[12] The Design of ARMphetamine 2 Julian
Brown, University of Bristol

[13] James R. Bell Threaded code. CACM,
16(6). June 1973

[14] The ARMulator; Document number:
ARM DAI 0032; Issued 1999;
http://www.arm.com/

[15] SimARM; Green Hills Software Inc.
http://www.ghs.com/

