
ARMSim: An Instruction-Set Simulator for the ARM processor 
Alpa Shah [ajs248@cs.columbia.edu] - Columbia University 

 
Abstract 
A hardware simulator is a piece of software that 
emulates specific hardware devices, enabling 
execution of software that is written and 
compiled for those devices, on alternate systems. 
This paper describes a simulator for the ARM 
processor, which is widely used in embedded 
devices like PDAs, cellular phones etc. ARMSim 
is a lightweight ISA (Instruction Set 
Architecture) level simulator and a trace 
generator too. It has some optimizations at the 
decoder level to improve performance. 
 
1. Introduction 
Simulator or Virtual machine technology is 
an integral part of many computing systems 
today. This technology is incredibly useful 
since it makes it possible for users and 
analyzers to test and execute software well 
before the actual hardware is available, or in 
absence of the actual hardware. Some 
benefits of using simulators are: 
 
• Simulators are flexible and thus new 

features or components can easily be 
added. 

• It is possible to model anything, including 
something that might not be possible to 
do on the hardware.  

• It allows stress testing of programs like 
operating systems by simulating complex 
interrupt and exception conditions.  

• Since simulators are built in software, they 
are more deterministic. The deterministic 
behavior of simulators makes programs 
execution reproducible, and thus helps in 
locating problems.  

 
Primary applications of simulators consist of 
computer architecture studies and 
performance tuning of compiled software, 
and the compilation process itself. Various 
types of simulators exist, each addressing 
different aspects like clock cycle rate, 
modeling the microprocessor chip logic, 
modeling the program execution 
environment, etc. This paper concentrates 
on an instruction set simulator [ISS] 
implementation for the ARM processor[1], 

the ARMSim system. Hereafter, the 
machines that are simulated will be referred 
to as target machines, and the system on 
which the simulator is actually run is 
referred to as the host machine.  
 
The remainder of the paper is organized as 
follows: Section 2 discusses different 
simulation strategies, and then discusses ISS 
strategies in detail. Existing related work on 
simulators is discussed in Section 3. It also 
describes the ideas and design principles 
behind ARMSim. The structure and 
architecture of ARMSim is presented in 
Section 4. Section 5 describes the realization 
of the design, and Section 6 discusses some 
possible extensions and concludes the 
paper. 
 
2. Simulation Strategies 
The best simulation method depends on the 
application of the simulation results. This 
section outlines several simulation strategies 
and their applications.  
 
• Architectural level Simulation: 

Logic designers build Architectural 
simulators to express and test new designs. 
These allow emulation of the different 
parts of a processor, using either the 
simple core, or the core and the data 
caches and other components. These are 
generally not intended for executing 
target system binaries on an alternate 
platform, but rather to allow research into 
the modification of the internal datapaths 
of the processor. 
 

• Direct Execution: 
Target machine binaries can be executed 
natively on the simulator host processor 
by encasing the program in an 
environment that makes it execute as 
though it were on the simulated system. 
This technique requires that either the 
host system have the same instruction set 
as the target, or that the program be 
recompiled for the host architecture. 
Instructions that cannot execute directly 



on the host are replaced with procedure 
calls to simulator code. This method is 
also known as Dynamic Recompilation 
[Dynarecs]. Native execution of the 
recompiled code leads to a much faster 
execution of the simulated software, but 
they have lengthy context switching, i.e. 
when the host processor has to switch to 
target processes. This can make the 
simulation slower. Most direct execution 
simulators statically inspect and translate 
all instructions before simulation begins. 

 
• Threaded Code[13]: 

This is a simulation technique where each 
op-code in the target machine instruction 
set is mapped to the address of some 
(lower level) code in the simulator system, 
to perform the appropriate operation. This 
can be implemented efficiently in machine 
code on most processors by simply 
performing an indirect jump to the 
address, which is the next instruction. 
This method does not suffer from lengthy 
context switching. 

 
• Instruction set simulators:  

Instruction set simulators [ISS] execute 
target machine programs by simulating 
the effects of each instruction on a target 
machine, one instruction at a time. 
Instruction set simulators are attractive for 
their flexibility: they can in principle, 
model any computer, gather any statistics, 
and run any program that the target 
architecture would run. They easily serve 
as backend systems for traditional 
debuggers as well as architecture design 
tools such as cache simulators. A lot of 
temporal debuggers have recently started 
using ISS. An ISS can dispatch instructions 
by fetching from a simulated memory, 
isolating the operation code fields, and 
also branching, based on the values of 
these fields. Once dispatched, reading and 
manipulation of variables that represent 
the target system’s state are used to 
simulate the instruction’s semantics.  
 
When CPU architects design a new 
machine they typically write an 
instruction-level simulator to test their 

ideas. These simulators are written to test 
concepts and processor design tradeoffs; 
flexibility is important and speed is not of 
primary importance. They often gather 
statistics, and this constrains and slows 
down the simulator. ISS are also referred 
as “complete system instruction set 
simulator,” as well as “completer system 
simulator.” Furthermore, complete system 
simulators can be designed to be fully 
deterministic. They effectively address 
two major problems in real-time analysis: 
viz. difficulty in reproducing the effects of 
program execution, and time distortion 
resulting from intrusion. Since simulators 
are implemented fully in software, they 
can be fully tailored for specific uses. ISS 
may not address issues like the delays 
from devices such as disk subsystems, and 
the memory hierarchy, including the 
memory management unit, caches and 
data-buses. Timing accuracy in ISS is of 
less importance than predictability 
preciseness, and determinism. An artificial 
system has few unpredictable factors. 
Thus, a simulated system starting 
execution in a known state will always 
proceed along the same path. This is   
useful for experiments and debugging 
purposes. A user can detect misbehaving 
blocks of code that take more than 
expected time, and thus restart the process 
to examine the offending blocks in greater 
detail and thus trace the execution. 
 
Several techniques can improve the 
performance of Instruction set simulators. 
Instead of decoding the operation fields 
each time an instruction is executed, the 
instruction is translated once into a form 
that is faster to execute. This idea has been 
used in a variety of simulators for a 
number of applications. Several efficient 
memory models have also been proposed. 

 
3. Existing Work 
There has been a lot of research work on 
software simulation of processors. These 
generally employ the above-mentioned 
strategies in addition to some new methods. 
This section describes some popular 
simulators for different architectures, and 



also specific ones for ARM. The ARMSim 
system is compared with existing ARM-
specific simulators. 
 
• SimOS[9]: SimOS takes a promising 

approach that handles both user and 
kernel code by dynamically translating 
target instructions into short sequences of 
host-native code. Unlike most direct 
execution simulators, SimOS keeps only a 
small part of the target machine’s state in 
host registers and so is able to multiplex 
between target processors quickly. 

• Shade[2]: Shade simulates SPARC 
processor by using dynamic compilation. 

• Talisman[8]: Talisman is a simulator for 
multicomputers based on the threaded-
code strategy. 

• Mint[10]: Mint is a simulator for MIPS 
R3000. 

 
The following are existing simulators 
developed for the ARM processor, using 
some of the above-mentioned techniques:  
• ARMPhetmaine[12]: this simulator is based 

on the direct compilation technique.  
• tARMac: also based on the same method. 
• SWARM[11]: initially designed as an ARM 

module to plug into the SimOS system 
developed at Stanford University. It is 
now is an independent ARM simulator. It 
implements the core and a small amount 
of internal co-processors at a basic level, 
and provides full support for registers, 
memory caches, and the external memory 
hierarchy. 

• SimARM[15]: an instruction set simulator 
[ISS]. ARMulator[14] is another ISS with a 
slight variation: it ensures identical cycle-
count for instructions. This means that 
instructions take the same number of 
cycles to execute as if run on real ARM 
hardware. This is important for precise 
simulation since compilers can optimize 
code that takes advantage of the cycle-
counts of specific instructions. 

 
3.1 The ARMSim Approach:  
ARMSim is an instruction level simulator 
for the ARM processor that allows tracing of 
program execution. ARMSim simulates the 
entire ISA except for the non-standardized 

co-processor instructions that vary widely 
from system to system depending on the 
actual co-processor module available on the 
chip. ARMSim is used to execute ARM 
binaries on a different target machine, and 
gather some statistics based on the execution 
of the binaries. It executes one instruction at 
a time and updates the processor state 
accordingly.  

 
4. Structure of ARMSim  

ARMSim is a simulator of the 32-bit 
ARM RISC processor[1]. ARMSim simulates 
the entire instruction set except for those 
requiring use of the co-processor unit.  The 
co-processor is not a functional unit 
standard across all ARM processors, and it 
was not possible to come up with a common 
subset of operations that all co-processors 
would support. Figure (a) illustrates the 
processor of the ARM as simulated by 
ARMSim. The following are specific 
functional features of ARMSim: 
• System binaries: ARMSim takes in binaries 

for ARM processor for simulation, instead 
of assembly code. Thus, code compiled for 
the target processor can be directly 
executed. 

• Binary data representation:  ARMSim treats 
data as being stored in the big-endian 
representation. 

• Determinism: The program behavior must 
be repeating for testing purposes. Being 
completely software-simulated, ARMSim 
guarantees that the outcome of program 
behavior is deterministic. 

• Low startup: Being an instruction level 
simulator, the system has no initial startup 
time, and no preprocessing is required as 
in the case of direct compilations or 
threaded-code systems. 

• Extensible: The implementation of the 
system is based on a modular design, and 
this makes it possible to extend the 
simulator in order to support other 
modules like I/O devices, and complex 
memory hierarchies, if needed. 

• Statistics: ARMSim has been designed to 
support tracing the execution of a 
program and gather statistics. ARMSim 
can be used to collect information like 
frequency of data memory accesses, the 



number of branches that are taken, and 
other analyses on program behavior based 
on instruction profiling. 

 
Fig. (a) 

 
4.1 Modeling Processor 
ARMSim is a behavioral modeling of the ARM 
processor. This aspect made possible numerous 
abstractions from the underlying hardware, e.g. 
simplified memory replacing the complete 
memory hierarchy subsystem, unification of all 
the individual functional units in the CPU, etc. 
The ARM processor elements simulated in 
ARMSim are program and data memory, 
the status register, CPSR, the ALU, barrel 
shifter, conditional execution of instructions, 
general purpose registers. The state of the 
system is defined by the values in the 
registers and memory. 
 
4.2 Modeling Basic Instruction execution 
ARMSim simulates program execution by 
iterating through a cycle of instruction 
fetching, decoding and execution. 
 

4.2.1 Fetch  
 Just like in any microprocessor[6], ARMSim 
internally maintains a program counter to 
determine the next instruction to be fetched 
from the instruction memory. This program 
counter is updated automatically upon each 
instruction fetch, and can also be explicitly 
updated by instructions. 
 

4.2.2 Decode 
The class of each fetched instruction is first 
identified, and then, the different fields such 
as the opcode, operands, of the instruction 
are decoded according to the type of the 
instruction. ARMSim achieves some 
optimization based on the decoding step – 
each instruction needs to be decoded only 
once, regardless of the number of times it is 

fetched for execution. This technique is 
called decode-once-execute-many-times. 
 

4.2.3 Execute  
The execute phase of the iteration involves 
computation of memory addresses (to get 
the operands), if necessary, and the actual 
operation of the current instruction. This 
operation updates the state of the system as 
determined by the instruction type. 
 
4.3 Memory model 
ARMSim does not explicitly model the 
memory hierarchy of the real ARM 
processor. Being an instruction-level 
simulator, ARMSim can avoid having to 
accurately emulate movement of data 
between the memory, the caches and the 
processor, and instead can represent all 
memory-accesses as being uniform. 
Instruction memory is stored as a linear 
array of 21-bit values, as shown in figure (b). 

 
Fig. (b) 

 
4.3.1 Data Memory  

The ARM supports data transfer in 3 
different sizes: byte, halfword, and word 
between the registers and memory. 
ARMSim implements the transfer of 
memory data of all the sizes while 
maintaining the endian-ness and signed-ness 
of the data. 
 

4.3.2 Program Memory  
ARMSim does not simulate the ARM 
processor in the 16-bit THUMB mode. This 
has the effect that all instructions are stored 
at word-aligned instructions, and all 
instructions fetches operate as 32-bit data 
transfers. 
 
4.4 Processor State modeling 



Of the various modes of operations possible 
on the ARM, the most interesting one is the 
user mode. Most of the running time of 
programs is spent executing instructions in 
this mode. ARMSim maintains the exact set 
of on-chip registers as are visible to 
instructions executing in the user mode on 
the ARM processor. Out of these registers, 
the CPSR register is updated based on the 
result of instruction execution, while the 
data in the 16 general purpose registers can 
be explicitly set by the instructions. 
 
4.5 Statistics gathering 
ARMSim allows tracing through the 
execution of the programs. Some of the 
information that ARMSim can record are:  

• Instruction address, effective address  
• Decoded opcode value 
• Number of branches taken 
• Number of memory references 

 
5. Realization of the ARMSim 

system 
In this section of the paper, I describe the 
various system design decisions I have 
made while building ARMSim. An ISS is by 
nature much slower at interpreting 
programs than running the program 
natively on the intended hardware, or even 
dynamic recompiling simulators that can 
optimize the interpretation by actually 
translating certain parts of the target system 
program into native code for the host 
system that the simulator itself is running 
on. However, this sort of translation 
decreases the amount of control on the 
simulation – such a thing would prevent 
any extensive form of behavioral analysis of 
execution. For example, it would be 
impossible to count the number of times a 
certain block of code in the target program 
has been executed, especially if the original 
target code is significantly different from its 
translated version. Moreover, with this sort 
of simulation, it is hard to maintain 
uniformity of conditions among different 
host system architectures. ARMSim is a fully 
interpretative simulator, and it incorporates 
some optimizations that help speed up the 
overall execution time of target programs 
portably across different host systems. 

 
5.1. ARMCore: a unified CPU: ALU, barrel 

shifter 
ARMSim interprets the execution of all 
target system instructions thus obviating the 
need for separate functional units. 
5.2. ARMCore: CPSR and general purpose 

registers 
The 17 general purpose and CPSR registers 
visible in the user mode in the ARM 
processor are implemented in ARMSim. 
 
5.3. Instruction identification, decoding 
ARMSim identifies the type of each fetched 
instruction by performing a bitwise 
comparison of the 32-bit instruction with a 
predefined set of masks. It then creates an 
instance of a subclass of the Instruction class 
that will automatically decode the 
remaining different fields of the instruction 
such as the operands, immediate values, and 
condition codes.  
 
5.4. Decode-once-execute-many-times 
Compiler-generated executable programs, in 
general, contain many blocks of code that 
are iterated numerous times. ARMSim 
attempts to utilize this fact to achieve an 
optimization in the simulation – since all 32-
bit instructions are decoded and executed in 
the form of an Instruction object, ARMSim 
will create a single instance for all iterations 
of the instruction at each memory address. 
This allows the simulator to avoid having to 
re-create new instances for the instructions 
in each iteration of the loop. Instead, after 
executing the instruction at the given 
memory location the first time, ARMSim 
will preserve this instance and reuse it for 
any future execution of that instruction. 
Also, ARMSim carries out all processor-
state-independent decoding only for the first 
time that the instruction is executed – these 
are generally field extractions such as 
source/destination register identification, 
and immediate operands evaluation. 
 
5.5. Realization of the memory system 

abstraction 
ARMSim treats the memory system as being 
uniform, with constant access time, 
regardless of the address of the memory 
data being accessed. Instructions are stored 



at word-aligned addresses. Since executing 
instructions could conceivably request byte-
data transfers at non-aligned addresses, 
ARMSim permits memory data transfers at 
non-word-aligned memory locations. 

 
6. Conclusions, Future Extensions 
ARMSim is a simulator that is well suited to 
simulate the overall behavior of execution of 
programs that are intended for execution on 
an ARM system. Some important uses for 
ARMSim would be: comparisons of the 
quality of compiled code as produced by 
different compilers and/or compiler 
options. The modular nature of the 
implementation of ARMSim makes it easy 
to:  
• Can more closely represent the memory 

hierarchy without having to rewrite major 
parts of the system – this can then be used 
to monitor memory access patterns in test 
programs such as temporal and spatial 
locality, size of memory requirement, etc. 

• Supplement the system with newer 
definitions of instructions. 

• Incorporate clock cycles-per-instruction 
[CPI] for each class of instruction; possibly 
include some mechanism for adjusting the 
CPI for instructions that cause a cache-
miss. 

• Provide an “architectural” level garbage 
collector that will intelligently maintain 
the instruction pointers for those 
instructions that are in frequent use, e.g. in 
a loop, and clear out the rest. A 
sophisticated version would even perform 
prefetching and create appropriate 
instruction pointers before the instructions 
are actually required. 
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