Overview

- What are embedded systems?
 - Computers masquerading as non-computers

Embedded System Challenges

- Differs from general-purpose computing
 - Real-time constraints
 - Power constraints
 - Exotic hardware
 - Concurrency
 - Control systems
 - Signal processing
 - User interface
 - Physics

The Role of Languages

- Language shapes how you solve a problem.
- Java, C, C++ and their ilk designed for general-purpose systems programming.
- Do not address timing, concurrency.
- Domain-specific languages much more concise.
- Problem must fit the language.

Syllabus

- Software languages
 - Assembly
 - C
 - C++
 - Java

- Real-time operating systems
 - Concurrency
 - Meeting deadlines

- Dataflow languages
 - Signal processing

Syllabus

- Synchronous Languages
 - Global clock

- Hardware languages
 - Discrete-event modeling

- SystemC
 - Modeling hardware in C

Copyright © 2001 Stephen A. Edwards. All rights reserved
Goal of the Class

- Breadth
 - Knowledge of many different languages
 - Languages embody design methodologies
 - Broader knowledge, bigger “bag of tricks”

- Depth
 - Big design project
 - Gives you in-depth experience with one of the languages

How to Listen to a Lecture

- Ask questions

- Trick: Presenters do a better job when they think someone is listening

- I’m from Berkeley
 Every VW bus there sports this bumper sticker:

 QUESTION AUTHORITY

Required Text

- Languages for Digital Embedded Systems

- Available at Papyrus, 114th and Broadway
- Textbooks are downstairs
- Bookstore may run out: more can be ordered

Class Website

www.cs.columbia.edu/~sedwards/classes/2001/w4995-02

- Contains
 - Lecture slides
 - More project ideas
 - Pointers elsewhere
 - PDF/PS files
 - Detailed syllabus

Shortcut from www.cs.columbia.edu/~sedwards/

Class Structure

- Four homework assignments
 - Collaboration permitted, but work must be your own

- Two exams
 - One covering first half of class
 - One covering second half

- One big project
 - Project proposal due in two weeks
 - Literature review
 - Presentation of literature review
 - Presentation of final project
 - Final write-up

The Project

- Goal is to produce a workshop-caliber paper
 - You don’t have to submit it
 - But aim for that level

- Final writeup will consist of
 - Introduction
 - Literature survey
 - Technical details
 - Experimental results
 - Conclusions

- Literature survey due at midterm time
Project Ideas

- “Use the languages”
 - Compare the simulation performance of Verilog and System C
 - Compare the performance of an RTOS and Linux
 - Model a wristwatch in different languages
- “Analyze or implement the languages”
 - Verilog Hierarchy browser
 - Implement Kahn Process Networks
 - A Java-to-C translator
 - Compiled event-driven simulator for Esterel

- More ideas on the class web site

Project Proposal

- One-paragraph description of what you plan to do
- Due soon: September 26

- Use the web site for more ideas
- “Related Classes” lists classes at other institutions with additional project ideas
- Visit during office hours to discuss ideas

Collaboration

- You may collaborate on homework, but whatever you turn in must be your own
- Project teams should be two or three people

Late Policy

- No credit for late assignments unless you’ve made prior arrangements with me
- Homework is due at the beginning of class

One-minute Feedback

- Spend a minute at the end of each class writing a sentence or two.
- Examples of desired feedback:
 - “I really didn’t understand nondeterminism.”
 - “You spent too much time talking about structural Verilog.”
 - “I found the part about Ritchie’s hatred of Pascal really interesting.”

- Won’t be graded, but sign your name.