
Performance Comparison of RTOS

Shahmil Merchant, Kalpen Dedhia
Dept Of Computer Science.

 Columbia University

Abstract: Embedded systems are becoming an integral part of commercial products today. Mobile phones,
watches, flight controllers etc are just a few of the products that one sees at a regular basis. The
Philosophy of such Technologies is simple :One needs to have strict Real Time constraints such that one
doesn’ t miss on crucial deadlines, which could prove to be very detrimental to a system. In order to ensure
that, we need a very strong and compatible relationship between the hardware that is being used for these
systems and the software, which is running on top of it, primaril y the Operating System. The Operating
System has strict constraints placed on it, and has to interface/communicate well with the hardware below
it to prevent casualty. Hence we move to another facet of this dynamically changing environment, which is
the capabilit y of the Operating System to handle Real Time Processes. Due to the strict dependence of an
Operating System on hardware one must have a Real Time Operating System, which would ensure fast
interrupt response and real time scheduling.
Our Projects looks into 2 such Operating Systems Ecos a Free Product released by Red Hat and RtLinux
released by Finite State Machine Labs. The core aspect of our Analysis would be simple to check the real
time attributes of these Operating Systems by means of simple applications. Due to these RTOS being
POSIX 1.0 compliant and having a generic gcc compiler, one could check various latency issues involved
in threading, management of File System and Interrupts. Through this Paper we do hope to put forth a
better understanding of the finer intricacies of an RTOS and its subtle differences with a regular OS, and
also provide a thorough study of the pros and cons of RtLinux and Ecos.

1. Introduction

Real time applications have become a very common phenomenon these days.
Developers are given the enviable task of making software with real time constraints.
Many a times they are made to take decisions on whether they would prefer to work on a
RTOS or a regular OS.Due to the presence of a large number of RTOS available in the
market one does get confused as to which one to use such that it provides the best over all
benefits in terms of cost and operability. There could be a set of certain benchmarks,
which one could examine the RTOS in terms of latency, susceptibili ty to different loads.

We do realize that we are faced with strict time constraints and lack of suff icient free
ware tools and hardware, and hence the main goal of out project would be one of
providing a larger picture of the job at hand in the form of an evaluation rather than
providing a detailed study of measurement. We have restricted our selves to the above 2
OS due to the fact that they are free ware and are stable Linux ports with POSIX and gcc
compliance.

After a thorough study of the above we have decided to approach our project in the
following way:

• Study the typical Characteristics of an RTOS.
• Study the details of the 2 RTOS at hand in terms of the scheduling policies etc.
• See what aspects each RTOS satisfy and not satisfy.
• Do a comparison between the 2 based on the above results with carefully

formulated applications.

2. Background

 2.1 What is a RTOS?

A RTOS is a system, which satisfies the following conditions:
• Responds in a predictable way to unpredictable external events
• Strict timing constraints

 2.2 Minimum Features of an RTOS
• Multi -tasked (threads) and pre-emptive priority driven
• Mechanism for thread synchronization (semaphores, mutexes, etc)
• Mechanism to avoid Priority Inversion
• Suff icient priority levels

 2.3 Characteristics of an RTOS

• Model- Models for Multi Tasking based:

o Non Defined process which is subdivide into tasks.

o POSIX model with processes subdivided into threads

• Priority Levels- A way for scheduling processes based on their priority which
could be defined either by there execution time or weight etc

• Dispatch time: Should be independent of number of threads on list.

• Number of Tasks: Defined by way of number of processes and threads and
their corresponding memory utili zation.

• Scheduling Policies: The sequence by which a process is run by a scheduler
depends on the scheduling policy. Different scheduling policies exists such as

o FIFO: First process that comes is run first

o STF: Shortest time first such that the process with smallest time
required running is run first.

o EDF: Earliest deadline first, where the process with the earliest
deadline is run so that it meets the deadline.

o Round Robin: Processes are run in a round Robin fashion

o Weighted Scheduling: Process is run in a round robin fashion based on
their weight

o Priority scheduling: Is of 2 types

• Preemptive Priority: Process with lower priority can be
preempted by process with higher priority.

• Non-Preemptive Priority: Process run according to Priority.

• Number of Documented states: Like running, runnable, waiting, etc

• Minimum RAM per Task

• Maximum Addressable memory space.

• Memory is typically defined by 2 terms

o Logical Address: Which is defined by pages and provide an
abstraction to the user of an entity for storage of data.

o Physical Memory: The actual mapping of the Logical Address onto the
physical Hard Disk managed by the Memory Management Unit.

 The above ensure the facili ty of Virtual Memory in Operating Systems where
process is not confined to issues related to contiguous regions in memory and running out
of main memory (RAM) space. Virtual memory is supported by dynamic paging wherein
pages that are required or would be required are the only pages that are brought into
memory. The numbers of pages brought into memory depend on the number of frames
and new pages would replace old pages by one of the following schemes:

• LRU: Least recently used pages are replaced

• Second Chance: Based on Flag setting.

• MFU: Most Frequently used pages are removed.

• LFU: Least Frequently pages are removed.

• FCFS: First come First serve wherein pages that were brought in first
into memory are removed first.

Great care should be taken to avoid Belady’s Anomaly where in the increase in the
number of frames causes an increase in the number of page faults.

• Interrupt Handling: This is done by the following

o An interrupt causes program to transfer to a certain region in memory
which contains the address of the interrupt handler so as to deal with an
interrupt

o Interrupts are in the form of hardware interrupts or software interrupts in
the form of system calls.

• A process and a thread can be distinguished by the fact that a process has a
program counter whereas as thread does not. A process does not share address
space like a thread.

• A process and a program can be distinguished by the fact that the program is a
passive entity and a process is an active entity such that a Process is a program in
execution.

 3 Test Metrics
• Thread Switch Latency

 A thread is defined by different states such as waiting, running, runnable
etc. The time taken for the thread to move from different states is a parameter
for testing RTOS performance. The context switch overhead in switching
from one thread to another is lesser than a process as a thread is a lightweight
process.

• Interrupt Latency

Probably the most important feature for evaluating the performance of a
RTOS is its abil ity to respond to interrupts. The time taken by the interrupt
handler to deal with an interrupt and get back to regular program
execution is extremely important in systems governed by hard real time
constraints.

• Thread creation and destruction

The RTOS under study have POSIX 1.0 compliabil ty. One could use the
time to create the thread and destroy the thread as a good metric due to the
simple reason it would show how well memory management would work
in the system under consideration.

• File System management

File systems provide an abstraction to the higher levels of software code the
way as to which programs are stored in disk. Files on disk could be stored in
the following manner

o Contiguous Allocation: Where processes are stored one after the
other in the form of a heap and termination of a process could
result in holes being created on the File system. Defragmentation is
a solution.

o Allocation table: A directory li ke structure wherein the directory
has a pointer to each process on disk. FAT used in Window is an
example.

o Indexed Allocation: Where indexes to a linked list of processes
exist. Best method allocation.

Hence by testing the time needed to create and open close a file could test the
feasibili ty of different allocation schemes.

• Synchronization

Shared resources form an integral part of an Operating system. Great care
has to be taken when dealing with resources that can be used by different
objects. Semaphore and Monitor implementation takes care of the Critical
Section Problem.

• Load
The way an RTOS behaves to different system loads is an integral part of
testing of an operating system.

4 RTOS under consideration

4.1 eCOS

eCos, developed by Redhat, is an embedded configurable operating systems. eCos is an
open source real-time operating system which is useful for deeply embedded
applications. The core eCos system consists of a number of different components such as
the kernel, the C library, an infrastructure package. Each of these provides a large number
of configuration options, allowing application developers to build a system that matches
the requirements of their particular application. To manage the potential complexity of
multiple components and lots of configuration options, eCos comes with a component
framework: a collection of tools specifically designed to support configuring multiple
components. Furthermore this component framework is extensible, allowing additional
components to be added to the system at any time.

• Environment
o Processor: x86, ARM, MIPS, SPARC
o Hosts: Windows, Redhat Linux
o Compiler: GCC

• RTOS supplied as open source

4.2 RTLinux

RTLinux (RealTime Linux) is a small POSIX 1003.13/PSE51-compatible hard realtime
operating system that runs Linux as its lowest priority thread. Linux runs as the lowest
priority thread of the RTLinux kernel, and it is always pre-emptible. RTLinux realtime
applications consist of realtime threads and signal handlers that run in the RT
environment, and processes that run in Linux user space.

The RTLinux programming model is that anything that has strict timing requirements
should be written as threads or signal handlers (interrupt handlers), and whatever does not
need hard realtime should go into Linux. This allows us to keep the RT side small,
deterministic and as fast as the hardware will permit, while still drawing on Linux for
sophisticated services and applications.

• Propriety of Finite State Machine Labs
• Environment

o Processor: x86, Power PC, MIPS, Alpha
o Hosts: Linux
o Compiler: GCC

• RTOS supplied as open source

5 Mechanism

5.1 Tools for Evaluation

5.1.1. Rdtsc instruction available on Intel x86 processors for strict timing
measurements

• Metrics
� Threads
� Interrupts
� File Systems
� Synchronization

 5.1.2 EL/IX

• EL/IX is an application programming interface that allows us to write
applications on embedded systems

• Using EL/IX, we can write, test, analyze, and even simulate applications

 5.1.3 PERTS (A prototyping environment for real-time systems)

• Build by UIUC

• Tool for testing and modeling Systems

Conclusion and Future Work

Studying the differences between the RTOS and OS we have come to the following
conclusions

• Strict methods of handling interrupt in an RTOS as compared to a regular OS.

• Scheduling policies strictly dependent on priority and with built in priority
inversion avoidance.

• Smaller size of kernel in RTOS enables faster loading onto memory.
• Strict and strong dependence of the RTOS on the underlying hardware.
• Synchronization and Communication of threads is handled at the Application

level and Interrupt handling, Thread management and API’s handles memory
management, I/O.

• Lesser features (with respect to the above 2 RTOS) as compared to regular OS.

In the near future we intend to install both the operating systems and based on portabili ty
issues run corresponding applications.

Related Work
A large number of websites available on the internet deal with real time operating
systems. Here are some of them that we visited:
http://www.redhat.com/embedded
http://www.rtlinux.com
http://cs-www.bu.edu/pub/ieee-rts/Home.html
http://pertsserver.cs.uiuc.edu/software/
http://www.tripac.com/html/prod-fact-rrm.html

Acknowledgements

We would like thanking Prof Edwards for giving us the opportunity to implement such an
exciting project and giving us valuable guidance as and when required.

