Performance Comparison of RTOS

Shahmil Merchant, Kalpen Dedhia
Dept Of Computer Science
Columbia University

Abstract: Embedded systems are becoming an integral part of commercial products today. Mohil e phones,
watches, flight controll ers etc are just a few of the products that one ses at aregular basis. The

Phil osophy of such Tedhnologiesis simple :One nedsto havestrict Real Time constraints such that one
doesn’'t misson crucial deadlines, which could proveto be vey detrimental to a system. In order to ersure
that, we need a very strongand compatible relationship between the hardware thatis being used for these
systems andthe software, which isrunning ontop of it, primarily the Operating System. The Operating
System has strict constraints placed on it, and hasto interfacécomrunicate well with the hardware below
it to preventcasualty. Hence we noveto another facet of this dynanically changing environment, which is
the capability of the perating Sysem to handle Real Time Processs. Due to the strict depenénce of an
Operating System on hardware ore must have a Real TimeOperating System, which would ensure fast
interrupt resporse andreal time <heduling.

Our Projedslooksinto 2 such Operating Systems Ecosa FreeProduct released by Red Hat and RtLinux
released by Finite Stae Machine Labs. Thecoreasped of our Analysis would be simple to checkthereal
time attributes of these Operating Sysems by means o simple appliations. Dueto these RTOS keing
POS X 1.0 compliant and having agereric gcc conpil er, one could checkvariouslatency isstes involved
in threading, management of File System and Interr upts. Throughthis Paper we do hope to put forth a
better understandng o the finer intricacies of an RTOS ard its subtle dfferenceswith aregular OS, and
also provide a thorough study of the prosand cons of RtLinux and Ecos.

1. Introduction

Red time apgicaions have beome a very comnon phlenomenonthese days.
Developers are given the enviable task of making software with realtime constraints.
Many atimes they are made to take decisions on whether they would prefer to wark on
RTOS or aregular OS.Dueto the presence of alarge number of RTOS avail ablein the
market one does get confused as © which one to use such thaprbvides the best overlh
benefits in terms of cost and operability. Themua be aset of certain benchmarks,
which ore could examine the RTOS in terms of latency, susceptibility to dfferent loads

We doredize that we are fical with strict time constraintsand lack of sufficient free
ware tods and hardware, and hence the main gaal of out projed would be one of
providing alarger picture of the job at hand in the form of an evaluation rather than
providing a detail ed study of measurement. We have restricted ou selves o the above
OS dueto thefad that they are freeware andare stable Linux ports with POSIX and gc
compliance

After athorough study of the above we havedecided to goproach ou project in the
foll owing way:

e Study thetypicd Charaderistics of an RTOS.

» Study the detail s of the 2 RTOS at hand in terms of the scheduling palicies etc.

» Seewhat aspects each RTOS satisfy and nd satisfy.

» Do acomparison between the 2 kased on he aboe results with carefully
formulated appli cations.

2. Background

2.1 What is a RTOS?

A RTOS is asystem, which satisfies the following conditions
* Responds in a predictable way to unpredictabldeenal events
Strict timing constraints

2.2 Minimum Features of an RTOS
* Multi-tasked (threals) and pre-emptive priority driven
* Medhanism for thread synchronization (semaphares, mutexes, etc)
¢ Medanismto avoid Priority Inversion
« Sufficient priority levels

2.3 Characteristics of an RTOS

Model- Models for Multi Tasking based:
0 NonDefined processwhich is subdivide into tasks
o0 POSIX model with processes subdivided into treals

» Priority Levels- A way for scheduling processes based on teir priority which
could be defined either by there exeaution time or weight etc

» Dispatchtime: Should be independent of number of threads on list

* Number of Tasks: Defined by way of number of processes and threads and
their correspondng memory utili zation.

» Scheduling Policies: The sequence by which aprocess isrun by a schedute
depends on the scheduling pdlicy. Different scheduling palicies exists suchas

0 FIFO: First process hat comes isunfirst

STF: Shortest tine first such that the processwith smallest time
required runnngisrunfirst.

EDF: Earliest deallinefirst, where the processwith the ealiest
deallineisrunso that it meds the dedline

RoundRobhin: Processes are run in a round Robin fashi

Weighted Scheduling: Process isunin aroundrobin fashion based on
their weight

Priority scheduling: Is of 2 types
* Preemptive Priority: Process with lower priority caneb

preempted by processwith higher priority.
* Non-Preanptive Priority: Process run according to Priority

* Number of Documented states: Like running, runneble, waiting, etc

e Minimum RAM per Task

* Maximum Addressable memory space

* Memory istypicdly defined by 2 terms

(0]

o

Logica Address Which is defined by pages and rovide an
abstradion to the user of an entity for storage of data.

Physicd Memory: The adual mapping of the Logicad Addressonto the
physicd Hard Disk managed by the Memory Management Unit.

The above eaure the facility of Virtual Memory in Operating Systems where
process isnat confined to isaues related to contiguous regions in memory and running out
of main memory (RAM) space Virtual memory is suppated by dynamic paging wherein
pages that are required or would be required are the only pagearébrouglt into
memory. The numbers of pages brought into memory depend on he nunber of frames
and rew pages would replaceold pages by one of the foll owing schemes:

LRU: Least recently used pages are replaced
Semond Chance Based onFlag setting.
MFU: Most Frequently used pages are removed.

LFU: Least Frequently pages are removed.

» FCFS: First come First serve wherein pages that were broughnifirst
into memory are removed first.

Grea care shoud be taken to avoid Belady’s Anomaly where in the increase in the
number of frames causesan increase in the number of page faults.

e Interrupt Handling: This isdore by the following

0 Aninterrupt causes program to transfer to a artain region in memory
which contains the aldressof the interrupt hander so as o deal with a
interrupt

0 Interrupts arein the form of hardware interrupts or software interrupts in
the form of system cdls.

* A processand athread can be distinguished by the fact that a processhasa
program courter whereas as thread does not. A process does not shdaress
spacelike athread.

e A processand aprogram can be distinguished by the fact that the programisa
passve entity and aprocess isan active entity such thata Process isaprogram in
exeadution.

3 Test Metrics
* Thread Switch Latency

A threa is defined by diff erent states suchas waiting, running, runnable
etc. Thetimetaken for the thread to move from diff erent states isa paramete
for testing RTOS performance The context switch overhead in switching
from one thread to ancther is lesser than a process as a thread is a lighttveigh
process

* Interrupt Latency

Probably the most important feature for evaluating the performance of a
RTOS is its ability to respondto interrupts. The time taken by the interrupt
hander to ded with an interrupt and get bad to regular program
exeautionis extremely important in systems governed by hard real time
constraints.

e Threda creation and destruction

The RTOS under study have POSIX 1.0 compliabilty. One could use the
time to crede the thread and destroy the thread as a good metric due to the
simplereason it would show how well memory management would work
in the system under consideration.

* File System management

Fil e systems provide an dstradion to hehigher levels of software coc the
way as o which programs are stored in disk. Files on disk could be stored i
the foll owing manner

o Contiguous Allocaion: Where processes are stored one after the
other in the form of a heg and termination d a processcould
result in hdes being created on te File system. Defragmentation is
asolution.

o0 Allocaiontable: A diredory like structure wherein the diredory
has a painter to each processon dsk. FAT used in Window is an
example.

0 Indexed Allocaion: Where indexes o a linked list of processe
exist. Best methodall ocaion.

Henceby testing the time needed to creae and opertlose a fil e could test the
feasibili ty of different all ocaion schemes.

* Synchronization

Shared resources form an integral part of an Operating system. Great care
has o be taken when dealing with resources tan be used by different
objeds. Semaphae and Monitor implementation takes care of the Criticd
Sedion Problem.

 Load
The way an RTOS behaves o different systemolds isan integral partfo
testing of an operating system.

4 RTOS under consideration

4.1eCOS

eCos, developed by Redhat, is an embedded configurable operating systems. eCos isan
open sourcered-time operating system which is useful for deeply embedded
applicaions. The core eCos system consists of a number of different comporents suchas
the kernel, the C library, an infrastructure padage. Each of these provides alarge number
of configuration ogions, allowing application developers o build a systemhet maiches
the requirements of their particular appli cation. To manage the potential complexity of
multi ple components and lats of configuration options eCos comes with acomponent
framework: acollection d todl s spedficdly designed to suppat configuring multiple
comporents. Furthermore this comporent framework is extensible, all owing additional
comporents 0 be aded to the system at any time.
* Environment

0 Processor: x86,ARM, MIPS SPARC

0 Hosts: Windows, Redhat Linux

o Compiler: GCC

* RTOS supplied as open source

4 2 RTLinux

RTLinux (RedTimeLinux) isasmall POSIX 1003.13/PSE51-compatible Haealtime
operating system that runs Linux as its bwest priority thread. Linux runs as the lowes
priority thread of the RTLinux kernel, andit is aways pre-emptible. RTLinux redtime
applicaions consist of redtime threads and signal handlers that run in the R
environment, and processes that run in Linux user space

The RTLinux programming model is that anything that has strict timing requirements

shoud be written as threads or signal handlers (interrupt handlers), and whatever does no
neel hard reatime shoud go into Linux. Thisallows us © keep the RT side small
deterministic andas fast as the hardware will permit, while still drawing on Linux for
sophisticated services and appli caions.

* Propriety of Finite State Machine Lab

* Environment
0 Procesor: x86, Power PC, MIPS Alpha
0 Hosts: Linux
o Compiler: GCC

* RTOS suppied as open source

5 Mechanism
5.1 Tools for Evaluation

5.1.1.Rdtsc instruction avail able on Intel x86 procesors for strict timing

measurements
* Metrics
= Thredas

= [nterrupts
= File Systems
= Synchronization

5.1.EL/X

» EL/IX isan applicaion programming interfacethat allows us © write
appli cations on embedded systems

» Using EL/IX, we can write, test, analyze, and even simulate applications

5.1.FERTS (A prototyping environment for real-time systems)
e Buildby UIUC

* Tod for testing and modeling Systems

Conclusion and Future Work

Studying the differences between the RTOS and OS we have cme to the foll owing
conclusions

» Strict methodsof handling interruptin an RTOS as compared to aregular OS.

» Scheduling pdlicies strictly dependent on griority and with built in priority
inversion avoidance.

» Smaller size of kernel in RTOS endles faster loading ontomemory.

» Strict and strong dependence of the RTOS on the underlying hardware.

» Synchronization and Communicaion d threads ishandled atte Application
level and Interrupt handing, Thread management and API’s handes memory
management, 1/0.

e Lesser feaures (with resped to theabowe 2 RTOS) as compared to regular OS.

In the near future we intend to nstall both the operating systems and kased on patabili ty
iswues run correspondng appli cations.

Related Work

A large number of websites avail able onthe internet deal with red time operating
systems. Here are some of them that we visited:
http://www.redhat.com/embedded

http://www.rtli nux.com

http://cswww.bu edu/publieeertsyHome.html
http://pertsserver.cs.uiuc.edu/'software/
http://www.tripac.com/html/prod-fad-rrm.html

Acknowledgements

We would like thanking Prof Edwards for giving us the opportunity to implement such a
exciting projed and gving us valuable guidance as and when require

