
Abstract – Java and C are two popular specification languages
used to define systems of all sizes and forms. In this paper, we
present a performance comparison of various algorithms written
in C and Java on Windows and Linux environments. The metrics
considered in the analysis include speed of execution, memory
usage, Java vs. C overheads and other special features that
characterize the two languages. The paper presents a survey of
work in this area and a discussion their results. In our proposed
project plan, we intend to investigate both languages based on
how their design choices influence their performance rather than
by semantics and programming paradigms. The algorithms for
the analysis will be chosen to represent those commonly used in
embedded systems (such as FIRs) as well as more exotic ones like
the MD5 cipher.

Index Terms-Java, C, Performance comparison

I. INTRODUCTION

HE design of a computer language often results from a
desire to solve a set of problems in a given domain. Most
modern languages strive to be the ‘one size fits all’ type

of solution implying a broad set of goals. These often-
divergent goals often lead to a ‘specialization’ effect wherein
certain features are readily adopted into the mainstream and
others fade away. We compare two such languages - Java and
C.

Conventional wisdom suggests that Java and C make an
odd pair to investigate. They do not share a common
programming paradigm (object oriented vs. procedural).
Moreover, Java tries to insulate users from the underlying
architecture, while C is very accommodating to low-level
access. It is perhaps for this reason that much of the published
research work has focused on more natural comparisons such
as Java and C++.

Java and C are both specification languages. C was
conceived as a ‘high level assembly’ language whereas Java
had its roots as an embedded/portable language for set-top
boxes. The C language derived much of its semantics from its
ancestor B, and so a simple procedural pass-by-value
methodology was adopted. Java, due to its (very lucrative)
requirement for portability and ease of use, chose to go with
an object-oriented model. So while Java’s internals grew to be
more complex, the programmer was largely insulated from all
the details.

Both Java and C have design choices that were intended to
aid the programmer and (or) the compiler. Many of these
features remain unused or unimplemented despite underlying
hardware support. For example, hardware often has support
for execution of MAC type instructions but there is no direct
syntax for doing so in C or Java.

C allows a lot of flexibility to the programmer, but it is left
largely to programmers and compilers to exploit these
features. In the case of Java, the Java Virtual Machine (JVM),
on which all Java programs run, hides many of the
optimizations. Java, in its current form, is not very suitable for
use in embedded systems. This is because does not support

operations like direct memory access, interrupt handling and
scheduling to meet hard deadlines.

The rest of this paper is organized as follows – In Section
II, we present a summary of related work in this field. In
Section IV, we discuss our project plan.

II. RELATED WORK

A. The Java Performance Report – Osvaldo Pinali
Doederlein
The Java Performance report [1] compares the performance

of C and Java algorithms on Win32 platforms. The tests used
a suite of algorithms written in C (BYTEmark) and their direct
port to Java (JBYTEmark). The results presented in the paper
indicate that, in general, C outperformed Java, as one would
expect. However, the performance of Java depended on the
underlying JVM, and also the specific algorithm under test. In
fact, in some algorithms, specific Java implementations
(especially IBM’s JDK 1.3) outperformed C.

B. Binaries Vs. Bytecodes - Chris Rijk.
The results from [1] were further strengthened by [2] where

IBM’s JDK v1.3.0 was seen to outperform even Microsoft’s
Visual C compiler in many of the benchmarks, as shown in
Fig.1. This challenges the notion that the JVM is always an
extra piece of luggage.

Figure 1: Comparison results between IBM's JVM and C. From
[2] Chris Rijk, Binaries Vs Byte-Codes

C. The Java Performance Analysis for Scientific
Computing – Roldan Pozo
In contrast to [1], Pozo considered a more diversified array

of algorithms commonly used in scientific computing. His

 Ambika PAJJURI and Haseeb AHMED

A Performance Analysis of Java and C

T

A Performance Analysis of Java and C 2

approach was unique in that he worked with operations that
were both CPU and memory intensive (e.g., large matrix
(1000x1000) multiplication operations). His observations
were as follows:

C’s strengths:

• Allows for direct mapping to hardware
• Provides more opportunities for optimizations
• No penalty for garbage collection

Java’s strengths:
• Performance varies widely by the choice of a JVM –

the best results were from IBM and Sun.
• Performance closely linked to underlying hardware

(i.e. faster CPU does make an impact)

Pozo’s experiments also showed that unlike the
performance of C/C++ compilers, there is a lot of variation
in the performance of the different JVMs. The application
of some small non-standard optimization also produced
significant benefits (as shown in Fig. 2). Considering the
benefits incurred, such optimization should probably
become the norm.

0

50

100

150

200

250

160 320 480 640 800 960

Matrix size (NxN)

M
fl

op
s

Unoptimized

Optimized

Figure 2 Results of matrix multiplication from R. Pozo [3]

showing that select matrix optimizations can yield significant
improvements

R. Pozo concluded with two important comments:
i. Java requires more aggressive memory mechanisms

to compensate for the gawkiness of automatic
garbage collection. (This point is reinforced by [3]).

ii. JVMs are increasingly important in byte-code
manipulation. (Also see [6], [7] for more recent
research).

Other more subtle issues alluded to why Java was less

favorable than C for use in large scientific and engineering
applications. These include the lack of efficient
multidimensional arrays, the inability to take advantage of
fused multiply-add and associativity operations in compiler
optimizations (also confirmed by [8]).

D. The Java Real-time Extension Specification
Another emerging area for study is the Java ‘Real-time

Extension Specification’ [5]. It is expected to bring long

desired advantages of the Java Platform, like binary
portability, dynamic code loading, tool support, safety,
security, and simplicity, to an important industry segment:
real-time systems. This extension targets both "hard real-time"
and "soft real-time" systems. The specification addresses
many issues, including garbage collection semantics,
synchronization, thread scheduling, JVM-RTOS interface, and
high-resolution time management.

III. PROJECT PLAN
 Our project plan is to expand on the existing work with the
following strategy:

A. Run a gamut of algorithms.
a. The suite of algorithms we intend to use will be both

CPU and memory intensive. For example, we would
consider FIR variants that are closer to traditional
embedded operations. If time permits, we plan to
analyze exotic algorithms such as the MD5 cipher.

b. Some of the other algorithms under consideration are
–
i. Simple Fast Fourier Transforms.

ii. BYTEmark & JBYTEmark.
iii. Matrix addition, multiplication & dot products

(over varied sizes).
iv. Miscellaneous: Adler32, MD5.

(The eventual list may vary depending on implementation
constraints)

B. Evaluate the results over Linux and Microsoft Windows
operating systems.

a. Linux and Windows have distinct architectures. This
extenuates C and Java’s design where C likes to be
close to the native OS while Java relies on its JVM.

i. Memory management is one of the key

differences between Java and C. We want to
expand on the work from [4] and to identify
other such opportunities for enhancements to
both Java and C.

ii. Another area that has not been well investigated
is the primitive data type selection in Java.
Strings in particular pose a challenge because
they consist of 16-bit Unicode. It remains to be
seen how this choice affects garbage collection.

b. Compiler Optimizations offer another interesting area

that affects performance.

i. Java is unique in its run-time optimizations. This

methodology however is unproven – especially
in embedded systems. C on the other hand
provides constructs like pointers that allow very
close interaction with the underlying
architecture.

ii. Java also adds features such as automatic bounds
checking. This feature is entirely missing in C.

A Performance Analysis of Java and C 3

This ‘feature’ is shown to be detrimental with no
way to turn it off.

C. Winner takes all?
Just as any one language cannot lay claim to solving all

problem domains, our performance analysis will rate Java and
C on different metrics. We hope this will aid in the selection
of the right language for the right task and provide future
opportunities for exploration.

a. Execution Speed – This factor is readily visible to
programmers (and end users). Execution speed is
often seen as the most important attribute of a
language’s performance.

b. Memory Usage – Is this a moot point in these times
of cheap memory? We do not think so – especially
since embedded systems have far more stringent
memory requirements. Minimizing memory usage is
becoming increasingly important, as expensive (and
slow) I/O is still the bottleneck, even with faster
CPUs.

c. Language Features – Java with its runtime
optimizations, garbage collection and freebies like
bounds checking seems very impressive. C on the
other hand places the entire burden on the
programmer. One of the unanswered questions is on
the cost(s) of such extremes.

REFERENCES
[1] Osvaldo Pinali Doederlein, The Java Performance Report

- Part III,
http://www.javalobby.org/fr/html/frm/javalobby/features/j
pr/part3.html

[2] Chris Rijk, Binaries Vs Byte-Codes, Ace’s Hardware,
June 27, 2000.

[3] Roldan Pozo, “Java Performance Analysis for Scientific
Computing” - National Institute of Standards and
Technology, USA. This report was presented at the
UKHEC: Java for High-end Computing in Nov 2000.

[4] Milo Martin, Manoj Plakal and Venkatesh Iyengar, “Top-
Level Data-Memory Hierarchy Performance: Java vs.
C/C++” - University of Wisconsin – Madison, Dec 1996.

[5] RTSJ - Real-time Specification for Java,
http://www.javaseries.com/rtj.pdf

[6] Kyle R. Bowers, David Kaeli, “Characterizing the SPEC
JVM98 Benchmarks on the Java Virtual Machine” –
Northeastern University Computer Architecture Research
Group.

[7] R. Radhakrishnan, N. Vijaykrishnan, L. K. John, A.
Sivasubramaniam, J. Rubio and J. Sabarinathan, “Java
Runtime Systems: Characterization and Architectural
Implications”. A preliminary version of this paper
appeared in the International Conference on High
Performance Computers and Architectures (HPCA-6),
Feb 2001.

[8] S.P. Midkiff, J.E. Moreira and M. Snir, “Optimizing
Array Reference Checking in JAVA programs”, IBM
Systems Journal, 37 (409-453) 1998.

