
ARM Simulator
Alpa Shah [ajs248@cs.columbia.edu] - Columbia University

Abstract
A hardware simulator is a piece of software that

emulates specific hardware devices, enabling execution of
software, that is written and compiled for those devices, on
alternate systems. This paper discusses various simulators
for the ARM [1] processor, which is widely used in
embedded devices like PDAs, cellular phones, ATMs, etc.

1. Introduction
Simulation / Virtual machine technology is an integral

part of many computing systems today. Java, SimOS [2]
and VMware [for running a complete OS as an application
on another operating system], Connectix Virtual PC/Game
station and Microsoft’s .NET are different examples of such
systems. This technology is incredibly useful as a secure
means for execution of untrusted software in a sandbox
environment, and an ideal platform for code-development
for new hardware devices. It also helps preserve software
that would otherwise become unusable as legacy hardware
become obsolete.

The remainder of the paper is organized as follows:
section 2 describes existing ARM simulators based on key
ideas behind their implementations, section 3 describes the
architecture of my simulator and concludes the paper.

2. Existing Work
There has been a lot of research on software simulation

of the ARM processor. These can be categorized according
to the level of simulation, whether at the architectural level
or the instruction set, or the techniques used, e.g. dynamic
recompilation of parts of the simulated software to natively
run on the guest system.

2.1 Dynarecs [ARMphetamine]
A simulator normally interprets the binary code of

software compiled for the target system. The Dynamic
Recompilation [Dynarecs] [3] method involves translating
parts of this binary code into native machine code at
runtime. Native execution of the recompiled code leads to
much faster execution of the simulated software. A lot of
simulators are developed using this technique, like
ARMphetamine [4] and tARMac [5] for the ARM
processor, and Embra for the MIPS machine.

ARMphetamine and tARMac are fast and accurate
ARM emulators. ARM code program segments are
translated into native code as they are being emulated. A
fetch-decode-execute emulator starts executing the ARM
code, and when a specific block of the ARM code has been
executed more times than a preset threshold, a translation
routine is employed. This generates ÔcoversÕ for each source
instruction, i.e. chunks of native code that have the same
semantics as the translated instructions. These covers are
then executed every time the translated block of code needs

to be run. The development platform for ARMphetamine
and tARMac is Linux/x86.

2.2 Architecture level [SWARM]
SWARM [6] was designed as an ARM module to plug

into the SimOS system developed at Stanford University.
SimOS allows emulation of various parts of an ARM
processor, using either the simple core, or the core and the
caches. SWARM was intended not for running ARM
binaries on an alternate platform, but rather to allow
research into the modification of the internal datapaths of
the ARM processor. It implements a small amount of
internal co-processors at a basic level, and provides support
for the full register/cache/external memory hierarchy.

2.3 Instruction Level [SimARM]
SimARM is an instruction set simulator [ISS] that

interprets ARM programs at the instruction level obviating
the need for ARM hardware. ISSs are simpler to implement,
but they are slower than simulators based on dynarecs due
to the fact that all instructions are strictly interpreted.

ARMulator [1] is another ISS with a slight variation: it
ensures identical cycle-count for instructions. This means
that instructions take the same number of cycles to execute
as if run on real ARM hardware. This is important for
precise simulation since some compilers can optimize code
that take advantage of the cycle-counts of specific
instructions

3. My Simulator
I propose to build an ISS for the ARM processor like

SimARM. The ARM processor has six different modes of
operation that determine the number of registers available to
instructions. The user mode is used for normal program
execution, with 16 32-bit registers visible to instructions.

The system will be a fetch-decode-execute style
interpreting simulator to load and execute ARM
instructions, and it will comprise of: assembler, instruction
memory, fetch-decode-execute unit, data memory and
registers.

I plan to execute real ARM programs in the simulator,
using C compilers like arm-gcc [7] to generate the binaries.

References:
1. Advanced Risc Machines: http://www.arm.com/
2. SimOS project: http://simos.stanford.edu/
3. Dynamic Recompilations: http://www.dynarec.com/
4. ARMphetamine: http://www.cs.bris.ac.uk/~brown/docs
5. tARMac: http://www.dcs.warwick.ac.uk/~csuix/project/
6. SWARM: http://dcs.gla.ac.uk/~micheal/phd/swarm.html
7. ARM-GCC: http://celab21.pc.elec.uq.edu.au/~tina/arm-gcc.html

