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Abstract

With the rising amount of available multilingual text data, computational linguis-

tics faces an opportunity and a challenge. This text can enrich the domains of NLP

applications and improve their performance. Traditional supervised learning for

this kind of data would require annotation of part of this text for induction of nat-

ural language structure. For these large amounts of rich text, such an annotation

task can be daunting and expensive. Unsupervised learning of natural language

structure can compensate for the need for such annotation.

Natural language structure can be modeled through the use of probabilistic

grammars, generative statistical models which are useful for compositional and

sequential structures. Probabilistic grammars are widely used in natural language

processing, but they are also used in other fields as well, such as computer vi-

sion, computational biology and cognitive science. This dissertation focuses on

presenting a theoretical and an empirical analysis for the learning of these widely

used grammars in the unsupervised setting.

We analyze computational properties involved in estimation of probabilistic

grammars: the computational complexity of the inference problem and the sample

complexity of the learning problem. We show that the common inference prob-

lems for probabilistic grammars are computationally hard, even though a poly-

nomial sample is sufficient for accurate estimation. We also give a variational

inference framework for estimation of probabilistic grammars in the empirical



Bayesian setting, which permits the use of non-conjugate priors with probabilistic

grammars as well as parallelizable inference. The estimation techniques we use

include two types of priors on probabilistic grammars: logistic normal priors and

adaptor grammars. We further extend the logistic normal priors to shared logistic

normal priors, which define a distribution over a collection of multinomials that

represent a probabilistic grammar.

We test our estimation techniques on treebanks in eleven languages. Our em-

pirical evaluation shows that our estimation techniques are useful and perform

better than several Bayesian and non-Bayesian baselines.
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Chapter 1

Introduction

With the rising amounts of multilingual text data becoming available, computa-

tional linguistics faces an opportunity and a challenge. This text can enrich the

domains of NLP applications and improve their performance. Traditional super-

vised learning for this kind of data would require annotating part of this text. For

these large amounts of rich text, such an annotation task can be daunting and

expensive.

From a practical point of view, unsupervised language learning has the poten-

tial to compensate for such missing annotations, or even save the effort required

to create annotations to begin with.1

1This argument, which is the most widely accepted argument motivating unsupervised learning
in NLP, should be stated carefully. More specifically, much of the NLP evaluation methodology,
such as the one used in this thesis, is based on comparison of the output of an unsupervised learner
to gold-standard annotated data, and this does not eliminate the use of annotated data altogether.
Although we use annotated data for unsupervised learning evaluation, the ultimate goal, of an
unsupervised learner is for it to be used as a building block in a larger system without the need
of annotated data. For example, an unsupervised dependency parser could be used in a machine
translation system. This can happen as the field of unsupervised learning matures.

15



Using unsupervised learning, however, requires giving more attention to en-

suring that the model used during learning accurately depicts the properties of

language. With supervised learning, we can fit even a “bad” model to annotated

data and achieve reasonable performance. However, with unsupervised learning,

success hinges on an accurate model design with reasonable modeling assump-

tions. Probabilistic grammars offer a flexible way of designing such models and

making the modeling assumptions required for modeling language.

It is for this reason that the use of probabilistic grammars and unsupervised

learning together has led to a fruitful line of research. Like symbolic grammars,

probabilistic grammars are amenable to human inspection, making it relatively

easy to understand the tendencies captured by the model, given that the underly-

ing rules are understandable (Johnson, 1998); unlike purely symbolic grammars,

probabilistic grammars model frequency and provide a mechanism for reasoning

in the face of ambiguity, which is ubiquitous in natural language data (Manning,

2003).

Probabilistic grammars are valuable in various settings in computational lin-

guistics. Applications of probabilistic grammars include multilingual (mostly En-

glish) parsing (Collins, 2003; Klein and Manning, 2003b; Charniak and Johnson,

2005; Cohen and Smith, 2007), machine translation (Wu, 1997; Ding and Palmer,

2005; Chiang, 2005) and question answering (Wang et al., 2007). The models for

these applications contain probabilistic grammars, either as a supporting structure

with additional features or as the main structure of the model. Examples for such

probabilistic grammars include context-free grammars (Charniak, 1996), tree ad-

16



joining grammars (Joshi, 2003) with an added probabilistic interpretation, and

combinatory categorial grammar (Hockenmaier and Steedman, 2002; Clark and

Curran, 2007).

In spite of their advantages, naı̈vely using probabilistic grammars for unsu-

pervised learning results in low performance (Klein and Manning, 2004). How-

ever, as statistical models, probabilistic grammars lend themselves well to aug-

mentation by other statistical models. For example, probabilistic grammars have

been used with parametric Bayesian priors (Johnson et al., 2007; Post and Gildea,

2009), as well as nonparametric ones (Johnson et al., 2006; Liang et al., 2007;

Finkel et al., 2007). This line of research, where the performance of a probabilis-

tic grammar is improved through the use of more advanced statistical modeling

techniques, is far from being exhausted, as new advances show that better results

can be achieved through the improvement of estimation and modeling techniques,

without necessarily changing the underlying grammar. This is indeed the main

goal of this thesis: to advance state of the art in estimating probabilistic grammars

in the unsupervised setting and provide theoretical insight into the properties of

grammar estimation.

1.1 Contributions and Thesis Statement

In this thesis, we present analysis and methodology of the estimation of proba-

bilistic grammars in the unsupervised setting. We take an approach in which we

assume that a family of probabilistic grammars is given (where a probabilistic
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grammar corresponds to a grammar originating in a grammar formalism coupled

with a set of parameters to make it stochastic) and we need to identify a set of

parameters that fit a collection of sentences that we receive as an input to the

estimation procedure.

Estimating the parameters of the model can lead to a lightweight model that

enables fast processing of unseen sentences using a parsing algorithm for the cor-

responding probabilistic grammar. This is especially useful for natural language

applications, in which we are required to use a parser as a preprocessing step, and

we would rather it be fast and flexible.

The principle that we follow in our estimation procedures is that of the max-

imum likelihood principle or one of its variants. In the first part of the thesis,

we analyze some of the computational challenges that we have in following the

MLE principle in the unsupervised setting. Our results show that these challenges

are manifested both through algorithmic issues as well as issues relating to the

learning-theoretic complexity of a family of probabilistic grammars in the unsu-

pervised setting. These results align well with the empirical evidence showing

that plain likelihood maximization does not necesasrily lead to well-performing

models.

To better estimate grammatical models, in face of these challenges, we suggest

several estimation procedures. Our procedures are rooted in an empirical Bayesian

approach, i.e., we use and support the basic principles of Bayesian data analysis,

but we do it in a way which is still reminiscent of the principle of maximizing

likelihood, as well as yielding an estimation procedure. The Bayesian approach

18



requires defining a distribution over the set of parameters, a prior, which, as we

demonstrate, can have a tremendous effect on the performance of the resulting

probabilistic grammar. We present a novel set of priors for probabilistic gram-

mars, where our goal is to incorporate well-motivated features of natural language

into the estimation procedure.

Thesis Statement We claim that probabilistic grammars are a useful modeling

tool in unsupervised natural language processing. Vanilla maximum likelihood

estimation of probabilistic grammars exposes interesting and challenging compu-

tational and learning-theoretic properties of the estimation of probabilistic gram-

mars. However, vanilla maximum likelihood estimation is not sufficient to obtain

accurate probabilistic grammars. An empirical Bayesian approach to this estima-

tion problem, both in the parametric setting and in the nonparametric setting, can

improve performance considerably.

1.2 Thesis Overview

This thesis includes two main components: a theoretical and methodological pre-

sentation and an empirical study. We next describe the organization of these parts.

1.2.1 Theory and Methodology

The first part of this thesis gives a framework for analyzing computational issues

with the estimation of probabilistic grammars:
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• Chapter 3 covers an analysis of the computational complexity of the es-

timation of grammars using algorithms such as expectation-maximization

(EM), Viterbi EM and conditional Viterbi EM. This chapter is an extension

of Cohen and Smith (2010c).

• Chapter 4 covers an analysis of learning-theoretic properties of the estima-

tion of probabilistic grammars. Here, the objective function of expectation-

maximization is analyzed in the empirical risk minimization framework

with the log-loss. This chapter is an extension of Cohen and Smith (2010b).

• Chapter 5 covers a novel estimation procedure for probabilistic grammars in

the empirical Bayesian setting. This procedure uses a prior which is based

on the logistic normal prior. This chapter is an extension of Cohen et al.

(2008) and Cohen and Smith (2009).

• Chapter 6 covers another estimation technique for probabilistic grammars in

the empirical Bayesian setting. This procedure is based on a nonparametric

model called adaptor grammars, introduced in Johnson et al. (2006). This

chapter is an extension of Cohen et al. (2010).

1.2.2 Empirical Study

The second part of this thesis uses the estimation techniques covered in the first

part:

• Chapter 7 describes the main application in this thesis, dependency gram-

20



mar induction, as well as related work on this application.

• Chapter 8 describes multilingual experiments of applying the techniques

from Chapter 5 and Chapter 6 for dependency grammar induction.

We then summarize and discuss future work in Chapter 9.
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Chapter 2

Preliminaries

When designing a statistical inference procedure, there are two main approaches

that modern statistics offers: frequentist and Bayesian. The frequentist approach

is associated with the frequency interpretation of probability, which means that

the outcome of an experiment, or a sample, should be viewed as one possible

outcome in a sequence of repetitions of the same experiment. With the frequen-

tist approach, the parameters of a model are often treated as fixed and unknown

quantities. The end-result of the frequentist method, for example, can often be

confidence intervals on these unknown parameters.

The Bayesian approach, on the other hand, offers a subjective interpretation

of probability. This approach introduces a prior, a distribution over the possi-

ble models, which encodes various prior beliefs (possibly subjective) about these

models. The introduction of a prior over the space of models makes the use of

Bayes’ rule readily available to invert the relationship which describes the proba-
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bility of the data given the model, to a description of the probability of the model

given the data:

P (model | data) = P (data | model)P (model)

P (data)

Here, P (data) is a normalization constant, which denotes the marginal distri-

bution of the data, and which can be computed as:

P (data) =
�

model

P (data | model)P (model)

The question of whether the Bayesian approach or the frequentist approach

should serve as the foundation of statistics is subject to debate (Berger, 2010).

Any attempt to summarize this debate will not do justice to this complicated issue.

However, it is important to note some of the main criticisms that Bayesians and

frequentists have about each other’s approaches to explain our statistical approach

in this thesis.

The main criticism that frequentists have about Bayesians is that they usu-

ally give treatment to very basic examples and fail to handle more complicated

examples; they focus on priors which are computationally convenient; and that

their methods are brittle in settings where there is a disagreement between the

prior and the data, because the Bayesian approach depends on very specific pri-

ors. Bayesians criticise aspects of the frequentist method as well: they often
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claim that the frequentist methods do not offer a flexible way of incorporating

prior knowledge; and that frequentists lack a principled procedure which can be

systematically used for performing statistical inference (Carlin and Louis, 2000).

We believe that criticism from both sides reveals important concerns. In the

context of computational linguistics and machine learning, frequentist methods

do not permit the incorporation of prior knowledge in an easy or systematic way.

There have been some recent attempts in the context of computational linguistics

and machine learning to present frameworks which make it possible to encode

such prior knowledge (Ganchev, 2010; McCallum et al., 2007). Posterior regu-

larization (Ganchev, 2010) is one such framework, in which the distribution over

inferred variables is constrained to fit various pieces of prior knowledge during

the inference process. Another example of such a framework is that of the gen-

eralized expectation (McCallum et al., 2007), in which preferences about model

parameters are incorporated into the objective function which is used for learning.

The generalized expectation criterion is quite like the idea of eliciting priors in the

Bayesian approach, in which experts help construct a specific prior distribution

over the parameters through elicitation.

Yet, most of the frameworks suggested do not offer a solution which can be

contained within probability theory, like the Bayesian framework is able to. In-

deed, the elegance of the Bayesian approach directly lies in the fact that, from a

theoretical point of view, we can systematically apply inference in the presence of

prior knowledge by identifying the posterior.

We believe that some criticism towards the Bayesian approach warrants our at-
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tention, specifically that it currently relies too heavily on simple priors. If we again

consider computational linguistics, where the multinomial family is the main

building block of a typical statistical model for language, there is a widespread

use of the Dirichlet prior for computational convenience. This is the result of the

Dirichlet prior being conjugate to the multinomial family (Section 5.1.1), which

enables closed-form solutions for statistical inference in the Bayesian setting.

It is for this reason that we choose to combine these two approaches, that of

the frequentists and the Bayesians, in an empirical Bayesian approach (Herbert,

1956; Carlin and Louis, 2000; Berger, 2010). The empirical Bayesian approach

assumes that the prior itself is parametrized using hyperparameters and our goal

is to estimate these parameters from data. We propose a procedure that uses the

estimation of these hyperparameters to assist us in finding a point estimate for the

model at hand. Bayesians typically manage uncertainty by computing the poste-

rior, which is a distribution over the parameters. After estimating the hyperparam-

eters of the prior, and computing the posterior, we summarize this information in

a point-estimate such as the posterior mean or mode. This is another divergence

from the typical Bayesian approach, which we justify from a practical point of

view: a natural language model is usually used in a pipeline of building blocks,

and requires a fast inference procedure. Running a full Bayesian procedure for

inference on unseen data would lead to significant practical runtime limitations in

such a pipeline.

In the rest of this chapter, we detail the two foundational concepts on which

this thesis stands. The first is that of probabilistic grammars, which is the fam-
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ily of models for which we focus on presenting the estimation procedures, as

described in Chapter 1. We then turn to describing the maximum likelihood prin-

ciple and maximum marginal likelihood estimation in the Bayesian setting.

2.1 Probabilistic Grammars

Probabilistic grammars define a probability distribution over a structured object

(a derivation of underlying symbolic grammar) step-by-step as a stochastic pro-

cess. Hidden Markov models (HMMs), for example, can be understood as a

random walk through a probabilistic finite-state network, with an output sym-

bol sampled at each state. Probabilistic context-free grammars (PCFGs) generate

phrase-structure trees by recursively rewriting nonterminal symbols as sequences

of “child” symbols (each itself a nonterminal symbol or a terminal symbol analo-

gous to an HMM’s emissions).

Each step or emission of an HMM and each rewriting operation of a PCFG

is conditionally independent of the others given a single structural element (one

HMM or PCFG state); this Markov property permits efficient inference over deriva-

tions given a string.

In general, a probabilistic grammar is a pair �G,θ�, where G is a grammar

originating in some grammar formalism, such as a context-free grammar or a lin-

ear context-free rewriting system, and θ is the set of parameters for the probabilis-

tic grammar. The probabilistic grammar �G,θ� defines the joint probability of a
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string x and a grammatical derivation y:

p(x,y | θ,G) =
K�

k=1

Nk�

i=1

θ
ψk,i(x,y)
k,i = exp

K�

k=1

Nk�

i=1

ψk,i(x,y) log θk,i (2.1)

where ψk,i is a function “counting” the frequency of a kth distribution’s ith event

in a derivation. Here, G dictates permitted derivations, hence dictating the non-

zero probability frequency vectors. The parameters θ are a group of K multi-

nomials �θ1, . . . ,θK�, the kth of which includes Nk competing events. Where

θk = �θk,1, . . . , θk,Nk
�, each θk,i is a probability, such that

∀k, ∀i, θk,i ≥ 0 (2.2)

∀k,
Nk�

i=1

θk,i = 1 (2.3)

We denote by ΘG this parameter space for θ. We use deg(G) denote the

“degree” of G, i.e., deg(G) = maxk Nk. We let |x| denote the length of the string

x, and |y| =
�K

k=1

�Nk
i=1 ψk,i(y) denote the “length” (number of event tokens) of

the derivation y.

As in many probabilistic models, the variables can be divided various ways.

We can consider x and y correlated structure variables (often x is known if y

is known), or derivation event counts f(x,y) = �fk,i(x,y)�1≤k≤K,1≤i≤Nk
as an

integer-vector random variable.

Note that there may be many derivations y for a given string x—perhaps even
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infinitely many in some kinds of grammars. For HMMs, there are three kinds

of multinomials: a starting state multinomial, a transition multinomial per state

and an emission multinomial per state. With HMMs, K = 2s + 1, where s is

the number of states. The value of Nk depends on whether the kth multinomial

is the starting state multinomial (in which case Nk = s), transition multinomial

(Nk = s) or emission multinomial (Nk = t, with t being the number of symbols in

the HMM). For PCFGs, each multinomial among the K multinomials correspond

to a set of Nk context-free rules headed by the same nonterminal. θk,i is then the

probability of the ith rule for the kth nonterminal.

Probabilistic grammars are an expressive family of models, that can represent

models which do not seem, at first glance, like grammatical models.

Example 2.1 Class-based unigram model (Brown et al., 1990) – Let the observed

symbols in x range over words in some language’s vocabulary W. Let each word

token xi have an associated word class from a finite set Λ, denoted yi; the yi

are all hidden. The derivation in this model is the sequence �y1, . . . , yn�. The

probabilistic model consists of two parts:

1. For all y ∈ Λ ∪ {stop}, θc(y) is the probability that the next word will be

generated by class y. θc(stop) is the stopping probability.

2. For all y ∈ Λ and all x ∈ W, θw(x | y) is the conditional probability that

class y will generate word x.

In this simple model, K = 1 + |Λ|, N1 = |Λ|, and for k > 1, Nk = |W|.

This model can be thought of as an hidden Markov model with zero order, i.e.,
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it has no dependencies between the different hidden states. In addition, if we

place a Dirichlet prior on the grammar parameters θ and sample them once per

document, this model becomes equivalent to the latent Dirichlet allocation model

(Blei et al., 2003). In this case, the derivation vector y corresponds to a set

of topics selected for each word in the bag of words representing the document.

This model (latent Dirichlet allocation) can also be formulated as a context-free

grammar. See Johnson (2010) for details.

We use the following notation for G:

• L(G) is the set of all strings (sentences) x that can be generated using the

grammar G (the “language of G”).

• D(G) is the set of all possible derivations y that can be generated using the

grammar G.

• Dx(G) is the set of all possible derivations y that can be generated using

the grammar G and have the yield x.

We turn now to a more detailed explanation and definition of probabilistic

context-free grammars, which are of special interest in this disseration. A PCFG

�G,θ� consists of:

• A finite set of nonterminal symbols N = N(G);

• A finite set of terminal symbols W;
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• For each A ∈ N, a set of rewrite rules RA of the form A → α, where

α ∈ (N ∪W)∗, and R = R(G) = ∪A∈NRA;

• For each rule A → α, a probability θA→α. The collection of probabilities is

denoted θ, and they are constrained such that:

∀(A → α) ∈ RA, θA→α ≥ 0

∀A ∈ N,
�

α:(A→α)∈RA

θA→α = 1

That is, θ is grouped into |N| multinomial distributions.

Under the PCFG, the joint probability of a string x ∈ W∗ and a grammatical

derivation y is1

p(x,y | θ,G) =
�

(A→α)∈R

(θA→α)
ψA→α(y) = exp

�

(A→α)∈R

ψA→α(y) log θA→α

where ψA→α(y) is a function that “counts” the number of times the rule A → α

appears in the derivation y. ψA(y) will similarly denote the number of times that

nonterminal A appears in y. Given a sample of derivations y = �y1, . . . ,yn�, we

1Note that x = yield(y); if the derivation is known, the string is also known. On the other
hand, there may be many derivations with the same yield, perhaps even infinitely many.
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denote:

FA→α(y) =
n�

i=1

ψA→α(yi)

FA(y) =
n�

i=1

ψA(yi).

2.2 Maximum Likelihood Principle

Roughly speaking, the maximum likelihood principle states that in order to iden-

tify the parameters of the model, we need to maximize the likelihood function of

the data with respect to the parameters. In the case of probabilistic grammars,

the data can be complete (which means that the data includes sentences and gram-

matical derivations for these sentences), or it can be incomplete (which means that

the data includes sentences only). Parameter estimation in the latter case is also

referred to as “unsupervised learning.”

In the case of complete data, the MLE principle can be formalized as follows.

Given (x1,y1), . . . , (xn,yn), where xi represent strings and yi represent deriva-

tions for these strings under some grammar G, we are interested in identifying

parameters θ∗:

θ∗ = argmax
θ

1

n

n�

i=1

log p(xi,yi | θ)

In the case of incomplete data, we can no longer include yi in the specification
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of the log-likelihood, as only xi are available. Instead of maximizing the complete

likelihood in this case, we focus on identifying the θ∗ that maximize the marginal

log-likelihood:

θ∗ = argmax
θ

1

n

n�

i=1

log
�

y

p(xi,y | θ)

There are a few problems with the latter setting. Specifically:

• The objective function of the marginal log-likelihood, for which we are try-

ing to identify a maximizer, has many local maxima in many cases. As a

consequence, it is not trivial to find the global maximizer, unlike the super-

vised case, in which there is a closed-form solution for the log-likelihood’s

maximizer. We address this issue in Chapter 3, and describe some hardness

results for maximization of the marginal log-likelihood as well as closely

related objectives.

• The marginalized distribution over strings, with the derivations being marginal-

ized out, is non-identifiable. This means that there can be sets of parameters,

all different from each other, that lead to the same marginalized distribution

over strings. We address this issue in Chapter 4.

The algorithm that is most commonly used to maximize the objective function

in Equation 2.2 is the expectation-maximization (EM) algorithm (Dempster et al.,

1977). The EM algorithm iterates between two steps, updating at iteration t a set
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of parameters, θt:

• E-step. Compute the function

Q(θ) =
�

y

p(y | x,θt−1) log p(x,y | θ).

• M-step. Update

θt = argmax
θ

Q(θ).

EM and its variants have been used in many cases for the estimation of proba-

bilistic grammars (Pereira and Schabes, 1992; Carroll and Charniak, 1992; Chen,

1995; Klein and Manning, 2002, 2004). In our empirical study (Chapter 8), we

show that using EM for the estimation of probabilistic grammars is not sufficient

to obtain good performance. We suggest an alternative, in the form of a variational

EM algorithm, which sets a Bayesian prior on the grammar parameters.

Maximum Marginal Likelihood Estimation As mentioned above, for a large

part of this thesis, we choose to work in an empirical Bayesian setting. Bayesian

analysis depends on a prior to obtain model parameters, p(θ). This means that we

now have a joint model over both parameters and variables in the model:

p(θ,x,y) = p(θ)p(y | θ)p(x | θ,x).
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The prior in this thesis will either be parametric (Chapter 5) or nonparametric

(Chapter 6). Priors (both parametric and nonparametric) often depend on un-

known hyperparameters α. We can have a hyperprior over α as well, but we

instead choose to stop the hierarchy at the level of the hyperparameters, and esti-

mate these hyperparameters (as we discuss earlier in this chapter). Given a set of

hyperparameters α which parametrize p(θ | α), we show that the marginal distri-

bution of the data, when observing only strings (i.e. in the unsupervised setting),

is:

p(x | α) =

�

θ

�

y

p(x,y | θ)p(θ | α)dθ (2.4)

Empirical Bayesian estimation uses the marginal distribution in Equation 2.4

to estimate α̂, and then sets the prior to be p(θ | α̂). A common approach for

estimating α̂ is to again use the maximum likelihood principle. Indeed, this kind

of estimation is also known as “maximum marginal likelihood estimation.”

We see in Chapters 5 and 6 that it is not trivial to maximize the marginal

likelihood in our case. To overcome these difficulties, we use variational inference

within a variational EM algorithm (Wainwright and Jordan, 2008).
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Part I

Theory and Methodology
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Chapter 3

Computational Complexity of

Estimation of Probabilistic

Grammars

We presented in Section 2.2 the maximum likelihood principle and its application

to the estimation of probabilistic grammars in the unsupervised setting. In Sec-

tion 2.2 we reviewed the expectation-maximization algorithm, which attempts to

maximize the marginalized likelihood of a given set of strings and a probabilistic

grammar. The EM algorithm is a coordinate ascent algorithm, and therefore iter-

ative in nature. There are other iterative algorithms, variants to the EM algorithm,

most notably the Viterbi EM algorithm (or “hard” EM), on which we focus in the

first part of this chapter. The goal of this chapter is to describe computational

complexity results for Viterbi EM and other algorithms from the same family,
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including the EM algorithm described in Section 2.2.

For the most part, we restrict our discussion in this chapter to probabilistic

context-free grammars. We argue that most grammar formalisms in computational

linguistics which are used for modeling natural language syntax include at least

the expressivity which exists in context-free grammars, and therefore the results

we present in this chapter, which are hardness results, are generally applicable to

any type of probabilistic grammar.

The main results described in this chapter are:

• NP-hardness of optimizing the objective function of Viterbi EM, conditional

Viterbi EM and EM (when the grammar is not fixed, i.e., when it is given as

an input to the learner).

• NP-hardness of finding an approximate solution to the maximizer of the

objective function of Viterbi EM (when the grammar is not fixed).

• #P-hardness result of counting the number of local maxima the objective

function of Viterbi EM has.

• A polynomial time algorithm for maximizing the objective function of Viterbi

EM when the grammar is fixed.

Some of the work in this chapter has been described in Cohen and Smith

(2010c).
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3.1 Viterbi Training

Viterbi EM is an unsupervised learning algorithm, used in NLP in various settings

(Choi and Cardie, 2007; Wang et al., 2007; Goldwater and Johnson, 2005; DeNero

and Klein, 2008; Spitkovsky et al., 2010b). In the context of PCFGs, it aims to

select parameters θ and phrase-structure trees y jointly. It does so by iteratively

updating a state consisting of (θ,y). The state is initialized with some value, then

the algorithm alternates between (i) a “hard” E-step, where the strings x1, . . . ,xn

are parsed according to a current, fixed θ, giving new values for y, and (ii) an

M-step, where the θ are selected to maximize likelihood, with y fixed.

With PCFGs, the E-step requires running an algorithm such as (probabilis-

tic) CKY or Earley’s algorithm, while the M-step normalizes frequency counts

FA→α(y) to obtain the maximum likelihood estimate’s closed-form solution.

We can understand Viterbi EM as a coordinate ascent procedure that approxi-

mates the solution to the following declarative problem:

Problem 3.1 ViterbiTrain

Input: G context-free grammar, x1, . . . ,xn training instances from L(G)

Output: θ and y1, . . . ,yn such that

(θ,y1, . . . ,yn) = argmax
θ,y

n�

i=1

p(xi,yi | θ) (3.1)

The optimization problem in Equation 3.1 is non-convex (with potentially
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many local optima) and, as we will show in Section 3.2, hard to optimize. There-

fore it is necessary to resort to approximate algorithms like Viterbi EM.

Neal and Hinton (1998) use the term “sparse EM” to refer to a version of the

EM algorithm where the E-step finds the modes of hidden variables (rather than

marginals as in standard EM). Viterbi EM is an example of this, where the E-step

finds the mode for each xi’s derivation, argmaxy∈Dxi (G) p(xi,y | θ).

We will refer to

L(θ,y) =
n�

i=1

p(xi,yi | θ)

as “the objective function of ViterbiTrain,” or “the Viterbi likelihood” for short.

Viterbi training and Viterbi EM are closely related to self-training, an impor-

tant concept in semi-supervised NLP (Charniak, 1997; McClosky et al., 2006a,b).

With self-training, the model is learned with some seed annotated data, and then

iterates by labeling new, unannotated data and adding it to the original annotated

training set. McClosky et al. consider self-training to be “one round of Viterbi

EM” with supervised initialization using labeled seed data. We refer the reader to

Abney (2007) for more details.

Viterbi training is attractive because it essentially requires only a decoding

algorithm to run. Viterbi EM for PCFGs, for example, requires parsing a cor-

pus during the E-step. While computing feature expectations, which would be

required in EM, can be done using a relatively small choice for algorithms, there

is a larger selection of decoding algorithms, all of them can be used with Viterbi
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training. These algorithms can also be specialized to run much faster using heuris-

tics such as A∗-search (Klein and Manning, 2003a).

3.2 Hardness of Viterbi Training
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Sφ2

Sφ1

A1 A2

UY1,0 UY2,1 UY4,0 UY1,0 UY2,1 UY3,1

VȲ1
VY1 VY2 VȲ2

VȲ4
VY4 VȲ1

VY1 VY2 VȲ2
VY3 VȲ3

1 0 1 0 1 0 1 0 1 0 1 0

Figure 3.1: An example of a Viterbi parse tree which represents a satisfying assignment for φ = (Y1 ∨ Y2 ∨ Ȳ4) ∧
(Ȳ1 ∨ Ȳ2 ∨ Y3). In θφ, all rules appearing in the parse tree have probability 1. The extracted assignment would be
Y1 = 0, Y2 = 1, Y3 = 1, Y4 = 0. Note that there is no usage of two different rules for a single nonterminal.
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We now describe hardness results for Problem 3.1. We first note that the fol-

lowing problem is known to be NP-hard, and in fact, NP-complete (Sipser, 2006):

Problem 3.2 3-SAT

Input: A formula φ =
�m

i=1 (ai ∨ bi ∨ ci) in conjunctive normal form, such that

each clause has 3 literals.

Output: 1 if there is a satisfying assignment for φ and 0 otherwise.

We now describe a reduction of 3-SAT to Problem 3.1. Given an instance of

the 3-SAT problem, the reduction will, in polynomial time, create a grammar and

a single string such that solving the ViterbiTrain problem for this grammar and

string will yield a solution for the instance of the 3-SAT problem.

Let φ =
�m

i=1 (ai ∨ bi ∨ ci) be an instance of the 3-SAT problem, where ai,

bi and ci are literals over the set of variables {Y1, . . . , YN} (a literal refers to a

variable Yj or its negation, Ȳj). Let Cj be the jth clause in φ, such that Cj =

aj ∨ bj ∨ cj . We define the following context-free grammar Gφ and string to parse

sφ:

3. The terminals of Gφ are the binary digits Σ = {0, 1}.

4. We create N nonterminals VYr , r ∈ {1, . . . , N} and rules VYr → 0 and VYr →

1.

5. We create N nonterminals VȲr
, r ∈ {1, . . . , N} and rules VȲr

→ 0 and VȲr
→

1.

6. We create UYr,1 → VYrVȲr
and UYr,0 → VȲr

VYr .
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7. We create the rule Sφ1 → A1. For each j ∈ {2, . . . ,m}, we create a rule

Sφj → Sφj−1Aj where Sφj is a new nonterminal indexed by φj �
�j

i=1 Ci and

Aj is also a new nonterminal indexed by j ∈ {1, . . . ,m}.

8. Let Cj = aj ∨ bj ∨ cj be clause j in φ. Let Y (aj) be the variable that aj

mentions. Let (y1, y2, y3) be a satisfying assignment for Cj where yk ∈ {0, 1}

and is the value of Y (aj), Y (bj) and Y (cj) respectively for k ∈ {1, 2, 3}. For

each such clause-satisfying assignment, we add the rule:

Aj → UY (aj),y1UY (bj),y2UY (cj),y3

For each Aj , we would have at most 7 rules of that form, since one rule will be

logically inconsistent with aj ∨ bj ∨ cj .

9. The grammar’s start symbol is Sφn .

10. The string to parse is sφ = (10)3m, i.e. 3m consecutive occurrences of the

string 10.

A parse of the string sφ using Gφ will be used to get an assignment by setting

Yr = 0 if the rule VYr → 0 or VȲr
→ 1 are used in the derivation of the parse

tree, and 1 otherwise. Notice that at this point we do not exclude “contradictions”

coming from the parse tree, such as VY3 → 0 used in the tree together with VY3 →

1 or VȲ3
→ 0. The following lemma gives a condition under which the assignment

is consistent (so contradictions do not occur in the parse tree):
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Lemma 3.1 Let φ be an instance of the 3-SAT problem, and let Gφ be a proba-

bilistic CFG based on the above grammar with weights θφ. If the (multiplicative)

weight of the Viterbi parse of sφ is 1, then the assignment extracted from the parse

tree is consistent.

Proof Since the probability of the Viterbi parse is 1, all rules of the form {VYr , VȲr
} →

{0, 1} which appear in the parse tree have probability 1 as well. There are two

possible types of inconsistencies. We show that neither exists in the Viterbi parse:

1. For any r, an appearance of both rules of the form VYr → 0 and VYr → 1 cannot

occur because all rules that appear in the Viterbi parse tree have probability 1.

2. For any r, an appearance of rules of the form VYr → 1 and VȲr
→ 1 cannot

occur, because whenever we have an appearance of the rule VYr → 0, we have

an adjacent appearance of the rule VȲr
→ 1 (because we parse substrings of

the form 10), and then again we use the fact that all rules in the parse tree have

probability 1. The case of VYr → 0 and VȲr
→ 0 is handled analogously.

Thus, both possible inconsistencies are ruled out, resulting in a consistent assign-

ment. �

Figure 3.1 gives an example of an application of the reduction.

Lemma 3.2 Define φ, Gφ as before. There exists θφ such that the Viterbi parse

of sφ is 1 if and only if φ is satisfiable. Moreover, the satisfying assignment is the

one extracted from the parse tree with weight 1 of sφ under θφ.
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Proof (=⇒) Assume that there is a satisfying assignment. Each clause Cj =

aj ∨ bj ∨ cj is satisfied using a tuple (y1, y2, y3) which assigns value for Y (aj),

Y (bj) and Y (cj). This assignment corresponds the following rule

Aj → UY (aj),y1UY (bj),y2UY (cj),y3

Set its probability to 1, and set all other rules of Aj to 0. In addition, for each r,

if Yr = y, set the probabilities of the rules VYr → y and VȲr
→ 1 − y to 1 and

VȲr
→ y and VYr → 1− y to 0. The rest of the weights for Sφj → Sφj−1Aj are set

to 1. This assignment of rule probabilities results in a Viterbi parse of weight 1.

(⇐=) Assume that the Viterbi parse has probability 1. From Lemma 3.1,

we know that we can extract a consistent assignment from the Viterbi parse. In

addition, for each clause Cj we have a rule

Aj → UY (aj),y1UY (bj),y2UY (cj),y3

that is assigned probability 1, for some (y1, y2, y3). One can verify that (y1, y2, y3)

are the values of the assignment for the corresponding variables in clause Cj ,

and that they satisfy this clause. This means that each clause is satisfied by the

assignment we extracted. �

In order to show an NP-hardness result, we need to “convert” ViterbiTrain to

a decision problem. The natural way to do it, following Lemmas 3.1 and 3.2, is

to state the decision problem for ViterbiTrain as “given G and x1, . . . ,xn and
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α ≥ 0, is the optimized value of the objective function L(θ,y) ≥ α?” and use

α = 1 together with Lemmas 3.1 and 3.2. (Naturally, an algorithm for solving

ViterbiTrain can easily be used to solve its decision problem.) Following this

argument, we conclude with the main theorem statement for this section:

Theorem 3.3 The decision version of the ViterbiTrain problem is NP-hard.

3.3 Hardness of Approximation

A natural path of exploration following the hardness result we showed is deter-

mining whether an approximation of ViterbiTrain is also hard. Perhaps there is

an efficient approximation algorithm for ViterbiTrain we could use instead of co-

ordinate ascent algorithms such as Viterbi EM. Recall that such algorithms’ main

guarantee is identifying a local maximum; we know nothing about how far it will

be from the global maximum.

We next show that approximating the objective function of ViterbiTrain with

a constant factor of ρ is hard for any ρ ∈ (12 , 1] (i.e., 1/2 + � approximation is

hard for any � ≤ 1/2). This means that, under the P �= NP assumption, there is no

efficient algorithm that, given a grammar G and a sample of sentences x1, . . . ,xn,

returns θ� and y� such that:

L(θ�,y�) ≥ ρ ·max
θ,y

n�

i=1

p(xi,yi | θ)

We will continue to use the same reduction from Section 3.2. Let sφ be the string
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from that reduction, and let (θ,y) be the optimal solution for ViterbiTrain given

Gφ and sφ. We first note that if p(sφ, y | θ) < 1 (implying that there is no

satisfying assignment), then there must be a nonterminal which appears along

with two different rules in y.

This means that we have a nonterminal B ∈ N with some rule B → α that

appears k times, while the nonterminal appears in the parse r ≥ k+1 times. Given

the tree y, the θ that maximizes the objective function is the maximum likelihood

estimate (MLE) for y (counting and normalizing the rules).1 We therefore know

that the ViterbiTrain objective function, L(θ, y), is at most
�
k

r

�k

, because it

includes a factor equal to
�
ψB→α(y)

ψB(y)

�ψB→α(y)

, where ψB(y) is the number of

times nonterminal B appears in y (hence ψB(y) = r) and ψB→α(y) is the number

of times B → α appears in y (hence ψB→α(y) = k). For any k ≥ 1, r ≥ k + 1:

�
k

r

�k

≤
�

k

k + 1

�k

≤ 1

2
(3.4)

This means that if the value of the objective function of ViterbiTrain is not 1 using

the reduction from Section 3.2, then it is at most 1
2 . If we had an efficient approx-

imate algorithm with approximation coefficient ρ > 1
2 (Equation 3.3 holds), then

in order to solve 3-SAT for formula φ, we could run the algorithm on Gφ and sφ

and check whether the assignment to (θ,y) that the algorithm returns satisfies φ

or not, and return our response accordingly.

1Note that we can only make p(y | θ, x) greater by using θ to be the MLE for the derivation
y.
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If φ were satisfiable, then the true maximal value of L would be 1, and the

approximation algorithm would return (θ,y) such that L(θ,y) ≥ ρ > 1
2 . y

would have to correspond to a satisfying assignment, and in fact p(y | θ) = 1,

because in any other case, the probability of a derivation which does not repre-

sent a satisfying assignment is smaller than 1
2 . If φ were not satisfiable, then the

approximation algorithm would never return a (θ,y) that results in a satisfying

assignment (because such a (θ,y) does not exist).

The conclusion is that an efficient algorithm for approximating the objective

function of ViterbiTrain (Equation 3.1) within a factor of 1
2 + � is unlikely to

exist. If there were such an algorithm, we could use it to solve 3-SAT using the

reduction from Section 3.2.

We note that the hardness of approximation result can be improved to a con-

stant of 1/4+� instead of a constant of 1/2+�. The reason for that is that whenever

we have a rule, for nonterminal A, firing in derivation less than the total number of

times that nonterminal A appears, there must be at least two rules like that. Each

of the rules, having counts k1 and k2, will contribute to the likelihood a value of
�
ki
r

�ki ≤ 1/4, which means that the total likelihood we obtain will be smaller or

equal to 1/4. (See Equation 3.4.) Then we can follow the same line of argumen-

tation we followed in this section to tighten the hardness of approximation factor

from 1/2 to 1/4, showing that the problem of approximation is harder.
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3.4 Extensions of the Hardness Result

We include in this section several extensions to the hardness result of ViterbiTrain.

3.4.1 Hardness Results for Other Objectives

An alternative problem to Problem 3.1, a variant of Viterbi training, is the follow-

ing (see, for example, Klein and Manning, 2001):

Problem 3.3 ConditionalViterbiTrain

Input: G context-free grammar, x1, . . . ,xn training instances from L(G)

Output: θ and y1, . . . ,yn such that

(θ,y1, . . . ,yn) = argmax
θ,y

n�

i=1

p(yi | θ,xi)

Here, instead of maximizing the likelihood, we maximize the conditional like-

lihood. Note that there is a hidden assumption in this problem definition, that xi

can be parsed using the grammar G. Otherwise, the quantity p(yi | θ,xi) is not

well-defined. We can extend ConditionalViterbiTrain to return ⊥ in the case of

not having a parse for one of the xi—this can be efficiently checked using a run

of a cubic-time parser on each of the strings xi with the grammar G.

An approximate technique for this problem is similar to Viterbi EM, only mod-

ifying the M-step to maximize the conditional, rather than joint, likelihood. This
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new M-step will not have a closed form and may require auxiliary optimization

techniques like gradient ascent.

Our hardness result for ViterbiTrain applies to ConditionalViterbiTrain as

well. The reason is that if p(y, sφ | θφ) = 1 for a φ with a satisfying assignment,

then L(G) = {sφ} and D(G) = {y}. This implies that p(y | θφ, sφ) = 1. If φ is

unsatisfiable, then for the optimal θ of ViterbiTrain we have y and y� such that 0 <

p(y, sφ | θφ) < 1 and 0 < p(y�, sφ | θφ) < 1, and therefore p(y | θφ, sφ) < 1,

which means the conditional objective function will not obtain the value 1. (Note

that there always exist some parameters θφ that generate sφ.) So, again, given

an algorithm for ConditionalViterbiTrain, we can discern between a satisfiable

formula and an unsatisfiable formula, using the reduction from Section 3.2 with

the given algorithm, and identify whether the value of the objective function is 1

or strictly less than 1. We get the result that:

Theorem 3.4 The decision problem of ConditionalViterbiTrain problem is NP-

hard.

where the decision problem of ConditionalViterbiTrain is defined analogously to

the decision problem of ViterbiTrain.

We can similarly show that finding the global maximum of the marginalized

likelihood:

max
θ

1

n

n�

i=1

log
�

y

p(xi,y | θ) (3.5)

is NP-hard. The reasoning follows. Using the reduction from before, if φ is satis-

fiable, then Equation 3.5 gets value 0. If φ is unsatisfiable, then we would still get
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value 0 only if L(G) = {sφ}. If Gφ generates a single derivation for (10)3m, then

we actually do have a satisfying assignment from Lemma 3.1. Otherwise (more

than a single derivation), the optimal θ would have to give fractional probabilities

to rules of the form VYr → {0, 1} (or VȲr
→ {0, 1}). In that case, it is no longer

true that (10)3m is the only generated sentence, which is a contradiction.

The quantity in Equation 3.5 can be maximized approximately using algo-

rithms like EM, so this gives a hardness result for optimizing the objective func-

tion of EM for PCFGs. Day (1983) previously showed that maximizing the

marginalized likelihood for hidden Markov models is NP-hard.

We note that the grammar we use for all of our results is not recursive. There-

fore, we can encode this grammar as a hidden Markov model, strengthening our

result from PCFGs to HMMs.

3.4.2 #P-hardness of Viterbi Training

We conclude the extensions to the hardness result with a note about the #P-

hardness of the counting problem of Viterbi training. The counting problem we

consider is:

Problem 3.4 ViterbiTrainCount

Input: G context-free grammar, x1, . . . ,xn training instances from L(G)i, α ∈

[0, 1]

Output: The count m of θ1, ...,θm and yj1, . . . ,yjn for j ≤ m, such that for
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every j ≤ m we have:
n�

i=1

p(xi,yji | θj) ≤ α

It is known that the problem of counting the number of assignments that satisfy

a 3-SAT formula is #P-complete (in fact, this is true even for a 2-SAT formula).

If we had an algorithm for solving ViterbiTrainCount, we could have done the

following to count the number of assignments satisfying a 3-SAT formula:

• Use the reduction described in Section 3.2 to convert a 3-SAT formula φ to

a grammar Gφ and a string s.

• Return the result of ViterbiTrainCount on these inputs (G and sφ), together

with α = 1.

Indeed, this algorithm is correct, because of Lemma 3.2: the 3-SAT formula

is satisfied using an assignment if and only if the corresponding assignment parse

tree is realizable with probability 1 using G. The conclusion is that ViterbiTrain-

Count is #P-hard.

3.5 Polynomial Time Algorithm for Solving Viterbi

Training

We now show that the complexity of the Viterbi training algorithm comes from

the arbitrariness in the selection of a grammar as an input. More specifically, we
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show that if the grammar is fixed (i.e. not given as part of the input), then there is

a polynomial time algorithm that solves Viterbi training, where polynomial here

is with respect to the total length of the corpus being input to the Viterbi training

problem. We note that our algorithm cannot be used in practice. Even though it

is a polynomial time algorithm, the exponent depends on the size of the grammar.

There are other cases in which related problems, such as parsing in linear context-

free rewriting systems, are polynomial when the grammar is fixed, with exponent

depending on the grammar (Satta, 1992; Kaji et al., 1992).

We next describe the setting in which our algorithm works. Consider a context-

free grammar G, as specified in Section 2.1. We assume that there are no unary

rules possible in this grammar and also no � rules. The immediate consequence of

this assumption, is that for any sentence of length r, the number of rules that can

be used in a derivation in this grammar is upper-bounded by 2r: starting bottom

up, the number of rules used at depth d of the tree has to be, at least, halved when

moving to depth d − 1. Therefore the total number of rules firing in a derivation

is upper bounded by r + r/2 + r/4 + ... = 2r.

We now turn to describe a polynomial time algorithm for solving the Viterbi

training problem with a context-free grammar of the kind specified above. In

Section 3.5.1 we describe a semiring which will be used with a parsing algorithm,

such as CKY or Earley’s algorithms, during the execution of the algorithm for

solving Viterbi training. In Section 3.5.2 we describe the algorithm itself and the

way it uses the semiring from Section 3.5.1.
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3.5.1 The Minkowski Semiring

The polynomial algorithm that we present for solving the Viterbi training prob-

lem (for a fixed grammar) requires us to use, as a sub-routine, a parsing algorithm

over a semiring that we call “the Minkowski semiring,” since the operation we

use for summation with this semiring is Minkowski sum. A similar semiring has

been used by Dyer (2010) for describing the computations done by a machine

translation training algorithm. Coupling a semiring parsing algorithm (Goodman,

1998) with this semiring yields an enhanced recognition algorithm for parsing.

This algorithm takes as an input a string, a grammar and a vector over the natural

numbers of the size of the number of rules in the grammar. The algorithm will de-

termine whether there exists a derivation that uses each rule precisely the number

of times specified in the input vector.

For brevity of notation, we denote by |G| the quantity |R(G)|, the total num-

ber of rules in the context-free grammar G. The Minkowski semiring S(G) =

�R,⊕,⊗� is then defined as follows:

1. R is defined to be the power set of vectors over the natural numbers of length

|G|: R = 2(N∪{0})
|G| .

2. The addition operation a⊕ b is defined to be the union of a and b: a⊕ b �

a ∪ b. This is also called “Minkowski sum.”

3. The multiplication operation a⊗ b is defined to be:

a⊗ b � {v1 + v2 | v1 ∈ a, v2 ∈ b},
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i.e. the set of the sum of all pairs of vectors from a and b.

Lemma 3.5 For any context-free grammar G, S(G) is a semiring.

Proof The additive identity element for this semiring, 0, would be the empty set,

∅. The multiplicative identity element for this semiring, 1, would be {a} where a

is a natural number vector of length |G| containing only zeros. It is easy to verify

distributivity of ⊗ over ⊕ and that 0 is an annihilator for S(G) with respect to ⊗.

�

For this semiring to be usable with a parsing algorithm, we are left to specify

the weights in S(G) of the grammar rules. For the grammar rule indexed by i, we

let its weight be {(0, . . . , 0, 1, 0, . . . , 0)} where the 1 appears in the ith position of

the vector.

In that case, whenever we use the Minkowski semiring to parse a string, the

resulting weight for the parse would be a set of vectors, containing all possible

counts for the grammar rules realizable by some derivation which uses the gram-

mar. Now, we can construct an algorithm that takes as an input a string s and

a grammar G and a vector of counts for the rules v, and outputs 1 if there ex-

ists a derivation that uses these counts, and 0 otherwise. This algorithm is the

result of running the parsing algorithm with S(G) and then checking whether v

belongs to the final set returned by the parsing algorithm. We call this algorithm

CountRecognize(G, s, v).

Let r be the length of s. The complexity of CountRecognize takes O(r3)

semiring operations using an algorithm such as CKY or Earley. Addition in this

55



semiring takes linear time in the size of set operands (merging two sets). Multi-

plication of a⊗ b takes O(|a|× |b|) to achieve. Note that at each point during the

running of the parsing algorithm, the size of the set weight of each constituent is

going to be polynomial in r, where the exponent of the polynomial is the num-

ber of rules in the grammar |G|. This means that the total amount of time the

algorithm takes to run is O(r3+|G| + r|G|) = O(r3+|G|).

3.5.2 A New Viterbi Training Algorithm

Equipped with CountRecognize, we are ready to present the polynomial time

algorithm for solving Viterbi training. The algorithm is based on the observation

that there is a rather limited space of parameters that we need to explore in order

to find the global maximum of the Viterbi likelihood.

For simplicity, and without loss of generalization, we will assume that we have

a single string x for which we are interested in finding the optimal Viterbi likeli-

hood. The reason we do not lose generality is that we could always concatenate

all data strings together with some new symbol σ separating each string, and then

add a rule to the context-free grammar S � → SσS � and S � → Sσ where S � will

function as a new start symbol in the CFG.

Now, consider the global maximum for the Viterbi likelihood, realized by y.

Clearly, the solution for the θ would be the normalized counts of the rules from y,

since computing θ this way can only increase the Viterbi likelihood – this solution

for θ is the maximum likelihood solution when observing y. The consequence

of this fact is simple. If r is the length of x, then we know that y contains at
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most 2r rules. Therefore, we only need to consider, for θ, rational numbers with

denominator smaller or equal to 2r, if we are to find the global maximum. With

this in mind, we can enumerate all possible vectors over natural numbers of length

|G|, where the sum of the elements in the vector is smaller or equal to 2r.

A simple combinatorial fact is that the number of vectors over natural numbers

(of length |G|) such that the sum of the elements of each vector is exactly l for

some l ∈ N is
�

l
|G|−1

�
.2 Therefore, the total number of vectors where the sum of

elements is smaller than or equal to 2r would be:

2r�

l=0

�
l

|G|− 1

�
=

2r�

l=0

�
l + 1

|G|

�
−
�

l

|G|

�

This is a telescopic sum that equals
�
2r
|G|

�
, which is O(r|G|). For each vector v

that we scan in this set of vectors of natural numbers with the sum being smaller

or equal to to 2r, we need to run CountRecognize(x,G, v). This means that the

total running time of this algorithm is O(r(3+2|G|)).

3.5.3 Generalizing the Polynomial Time Algorithm

We conclude this section about the polynomial time algorithm for Viterbi training

with two notes about generalizing it to other scenarios:

• We do not have to restrict ourselves necessarily to context-free grammars

without �-rules or unary rules. Any context-free grammar which entails a
2This is also called “the stars and bars problem.”
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polynomial bound on the number of nodes in a parse tree for that grammar

is sufficient. For example, instead of requiring that there are no �-rules or

unary rules, we can allow the grammar to be “lexicalized:” each rule that

fires must lead to a terminal rewriting using constant number of rules. See

discussion in Rambow and Satta (1994).

• As a matter of fact, we do not have to restrict ourselves to context-free

grammars for this polynomial time algorithm to stay polynomial. We just

require a polynomial time parsing algorithm. For example, synchronous

grammars, which have a polynomial parsing time algorithm, could also be

trained using Viterbi training in a polynomial time, assuming the number of

rules firing in a derivation is bounded.

3.6 Discussion

Viterbi training is closely related to the k-means clustering problem, where the

objective is to find k centroids for a given set of d-dimensional points such that

the sum of distances between the points and the closest centroid is minimized.

The analog for Viterbi EM for the k-means problem is the k-means clustering

algorithm (Lloyd, 1982), a coordinate ascent algorithm for solving the k-means

problem. It works by iterating between an E-like-step, in which each point is

assigned the closest centroid, and an M-like-step, in which the centroids are set to

be the center of each cluster.

“k” in k-means corresponds, in a sense, to the size of our grammar. k-means
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has been shown to be NP-hard both when k varies and d is fixed and when d varies

and k is fixed (Aloise et al., 2009; Mahajan et al., 2009), yet it is polynomial when

both k and d are fixed. Analogously, we showed that Viterbi training is NP-hard

when the grammar size varies, but that there is a polynomial time algorithm when

the grammar is fixed.

Many combinatorial problems in NLP involving phrase-structure trees, align-

ments, and dependency graphs are hard (Sima’an, 1996; Goodman, 1998; Knight,

1999; Casacuberta and de la Higuera, 2000; Lyngsø and Pederson, 2002; Udupa

and Maji, 2006; McDonald and Satta, 2007; DeNero and Klein, 2008, inter alia).

Of special relevance to the results presented in this chapter is Abe and Warmuth

(1992), who showed that the problem of finding maximum likelihood model of

probabilistic automata is hard even for a single string and an automaton with two

states.

3.7 Summary

In this chapter we analyzed the computational complexity of various learning

problems for probabilistic grammars in the unsupervised setting. We found that

learning problems, such as Viterbi training and log-likelihood maximization are

NP-hard, and in fact even their approximation is NP-hard, when the grammar is

part of the input to the learning algorithm. We also described an algorithm for

solving Viteri training which is polynomial in the input sentences, but exponential

in the grammar size.
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Chapter 4

Learning-Theoretic Analysis of

Probabilistic Grammars

In Chapter 3, we showed that the problem of maximizing likelihood (and problems

similar to that) is computationally hard. In this chapter, we assume we are given a

blackbox that maximizes likelihood, and turn to a learning-theoretic analysis that

yields sample complexity results for the estimation of probabilistic grammars.

Our results generalize to the case when an algorithm such as EM is used instead

of a global likelihood maximizer.

Here, a sample complexity result quantifies the number of samples required to

accurately learn a probabilistic grammar either in a supervised or in an unsuper-

vised way. If bounds on the requisite number of samples are sufficiently tight, then

they may offer guidance to learner performance, given various amounts of data

and wide range of parametric families. Being able to analytically reason about the
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amount of data to annotate, and the relative gains in moving to a more restricted

parametric family, could offer practical advantages to language engineers.

We develop a framework for deriving sample complexity bounds using the

maximum likelihood principle for probabilistic grammars in a distribution-dependent

setting. Distribution dependency is introduced here by making empirically justi-

fied assumptions about the distributions that generate the natural language data.

Our framework uses and significantly extends ideas that have been introduced for

deriving sample complexity bounds for probabilistic graphical models (Dasgupta,

1997). Maximum likelihood estimation is put in the empirical risk minimization

framework (Vapnik, 1998) with the loss function being the log-loss. Following

that, we develop a set of learning theoretic tools to explore rates of estimation

convergence for probabilistic grammars. We also develop algorithms for perform-

ing empirical risk minimization. As a precursor to our analysis in the unsupervised

setting, we also describe a learning-theoretic analysis for the supervised setting.

Much research has been devoted to the problem of learning finite state au-

tomata (which can be thought of as a class of grammars) in the PAC setting, lead-

ing to the conclusion that it is a very hard problem (Kearns and Valiant, 1989;

Ron et al., 1995; Ron, 1995). Typically, the setting in these cases is different

than our setting: error is measured as the probability mass of strings which are

not identified correctly by the learned finite state automaton, instead of measuring

KL divergence between the automaton and the true distribution. In addition, in

many cases, there is also a focus on the distribution-free setting. To the best of our

knowledge, it is still an open problem whether finite state automata are learnable
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in the distribution-dependent setting when measuring the error as the fraction of

misidentified strings. More recent work (Clark and Thollard, 2004; Palmer and

Goldberg, 2007) also gives treatment to probabilistic automata with an error mea-

sure which is more suitable for the probabilistic setting, such as KL divergence or

variation distance. The work mentioned above also focuses on learning the struc-

ture of finite state machines. In our setting we assume that the grammar is fixed,

and that our goal is to estimate its parameters.

We note an important connection to an earlier study about the learnability of

probabilistic automata and hidden Markov models (Abe and Warmuth, 1992). In

that earlier study, the authors provided positive results for the sample complex-

ity for learning probabilistic automata—they showed that a polynomial sample

is sufficient for maximum likelihood estimation. We demonstrate positive results

for the more general class of probabilistic grammars which goes beyond proba-

bilistic automata. Abe and Warmuth also showed that the problem of finding or

even approximating the maximum likelihood solution for a two-state probabilistic

automaton with an alphabet of an arbitrary size is hard. We extend our proofs

from Chapter 3 to a proof that illustrates the NP-hardness of identifying the max-

imum likelihood solution for probabilistic grammars in the specific framework of

“proper approximations” that we define in this chapter.

The main results described in this chapter are:

• A set of empirically motivated assumptions on distributions that generate

natural language data. These assumptions make analysis of probabilistic

grammars in the learning-theoretic setting manageable.
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• A learning-theoretic analysis of the sample complexity of probabilistic gram-

mars in the supervised setting.

• A similar analysis for the unsupervised setting.

• A description of a variant of the expectation-maximization algorithm that

fits our learning-theoretic framework.

We also provide a description of a new normal form for probabilistic context-

free grammars, which is easier to analyze in our learning framework (§4.2.2).

We note that our analysis of the supervised case is mostly described as a prepa-

ration for the unsupervised case. This analysis is mostly described as a preparation

for the unsupervised case. In general, the families of probabilistic grammars we

give a treatment to are parametric families, and the maximum likelihood estima-

tor for these families is a consistent estimator in the supervised case. However,

in the unsupervised case, lack of identifiability prevents us from getting these tra-

ditional consistency results. Also, the traditional results about the consistency of

maximum likelihood estimation are based on the assumption that the sample is

generated from the parametric family we are trying to estimate. This is not the

case in our analysis, where the distribution that generates the data does not have

to be a probabilistic grammar.

Some of the work in this chapter has been described in Cohen and Smith

(2010b) and Cohen and Smith (2011).
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4.1 Empirical Risk Minimization and Maximum Like-

lihood Estimation

We begin by introducing some notation and the general formulation of the frame-

work of empirical risk minimization (Vapnik, 1998). In this general setting, we

seek to construct a predictive model that maps inputs from space X to outputs from

space Z. In this chapter, X is a set of strings using some alphabet Σ (X ⊆ Σ∗), and

Z is be a set of derivations allowed by a grammar (e.g., a context-free grammar).

We assume the existence of an unknown joint probability distribution p(x,y) over

X× Z. (Since we are discussing discrete input and output spaces, p will denote a

probability mass function.) We are interested in estimating the distribution p from

examples, either in a supervised setting, where we are provided with examples of

the form (x,y) ∈ X × Z, or in the unsupervised setting, where we are provided

only with examples of the form x ∈ X. We first consider the supervised setting

and return to the unsupervised setting in section 4.4. We will use q to denote the

estimated distribution.

In order to estimate p as accurately as possible using q(x,y), we are interested

in minimizing the log-loss, i.e., in finding qopt, from a fixed family of distributions

Q (also called “the concept space”), such that

qopt = argmin
q∈Q

Ep[− log q]

= argmin
q∈Q

−
�

x,y

p(x,y) log q(x,y). (4.1)
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Note that if p ∈ Q, then this quantity achieves the minimum when qopt = p, in

which case the value of the log-loss is the entropy of p. Indeed, more generally,

the above optimization is equivalent to finding q such that it minimizes the KL

divergence from p to q.

Since p is unknown, we cannot hope to minimize the log-loss directly. How-

ever, given a set of examples (x1,y1), . . . , (xn,yn) there is a natural candidate,

the empirical distribution p̃n, for use in Equation 4.1 instead of p, defined as:

p̃n(x,y) = n−1
n�

i=1

I {(x,y) = (xi,yi)}

where I {(x,y) = (xi,yi)} is 1 if (x,y) = (xi,yi) and 0 otherwise.1 We then set

up the problem as the problem of empirical risk minimization (ERM), i.e., trying

to find q such that:

q∗ = argmin
q∈Q

Ep̃n [− log q]

= argmin
q∈Q

−n−1
n�

i=1

log q(xi,yi)

= argmax
q∈Q

n−1
n�

i=1

log q(xi,yi) (4.2)

Equation 4.2 immediately shows that minimizing empirical risk using the log-loss

is equivalent to the maximizing likelihood (Section 2.2).2

1We note that p̃n itself is a random variable, because it depends on the sample drawn from p.
2We note that being able to attain the minimum through an hypothesis q∗ is not necessarily

possible in the general case. However, in our instantiations of ERM for probabilistic grammars,
the minimum can be attained. In fact, in the unsupervised case the minimum can be attained by
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As mentioned above, our goal is to estimate the probability distribution p while

quantifying how accurate our estimate is. One way to quantify the estimation

accuracy is by bounding the excess risk, which is defined as:

Ep(q;Q) = Ep(q) � Ep[− log q]−min
q�∈Q

Ep[− log q�]

We are interested in bounding the excess risk for q∗, Ep(q∗). The excess risk is

reduced to KL-divergence between p and q if p ∈ Q, since in this case the quantity

minq�∈Q E[− log q�] is minimized with q� = p, and equals the entropy of p. In a

typical case, where we do not necessarily have p ∈ Q, then the excess risk of q is

bounded from above by the KL divergence between p and q.

We can bound the excess risk by showing the double-sided convergence of the

empirical process Rn(Q), defined as follows:

Rn(Q) � sup
q∈Q

|Ep̃n [− log q]− Ep[− log q]| → 0

as n → ∞. For any � > 0, if, for large enough n it holds that

sup
q∈Q

|Ep̃n [− log q]− Ep[− log q]| < � (4.3)

(with high probability), then we can “sandwich” the following quantities:

more than a single hypothesis. In these cases, q∗ is arbitrarily chosen to be one of these minimizers.
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Ep[− log qopt] ≤ Ep[− log q∗] (4.4)

≤ Ep̃n [− log q∗] + �

≤ Ep̃n [− log qopt] + �

≤ Ep[− log qopt] + 2� (4.5)

where the inequalities come from the fact that qopt minimizes the expected risk

Ep[− log q] for q ∈ Q, and q∗ minimizes the empirical risk Ep̃n [− log q] for q ∈ Q.

The consequence of Equations 4.4–4.5 is that the expected risk of q∗ is at most 2�

away from the expected risk of qopt, and as a result, we find the excess risk Ep(q∗),

for large enough n, is smaller than 2�. Intuitively, this means that, under a large

sample, q∗ does not give much worse results than qopt under the criterion of the

log-loss.

Unfortunately, the regularity conditions which are required for the conver-

gence of Rn(Q) do not hold because the log-loss can be unbounded. This means

that a modification is required for the empirical process in a way that will actu-

ally guarantee some kind of convergence. We give a treatment of this in the next

section.

We note that all discussion of convergence in this section has been about con-

vergence in probability. For example, we want Equation 4.3 to hold with high

probability—for most samples of size n. We will make this notion more rigorous

in section 4.1.2.
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4.1.1 Empirical Risk Minimization and Structural Risk Mini-

mization Methods

It has been noted in the literature (Vapnik, 1998; Koltchinskii, 2006) that often the

class Q is too complex for empirical risk minimization using a fixed number of

data points. It is therefore desirable in these cases to create a family of subclasses

{Qα | α ∈ A} that have increasing complexity. The more data we have, the more

complex our Qα can be for empirical risk minimization. Structural risk minimiza-

tion (Vapnik, 1998) and the method of sieves (Grenander, 1981) are examples of

methods that adopt this such an approach. Structural risk minimization, for ex-

ample, can be represented in many cases as a penalization of the empirical risk

method, using a regularization term.

In our case, the level of “complexity” is related to allocation of small probabil-

ities to derivations in the grammar by a distribution q ∈ Q. The basic problem is

this: whenever we have a derivation with a small probability, the log-loss becomes

very large (in absolute value), and this makes it hard to show the convergence of

the empirical process Rn(Q). Because grammars can define probability distribu-

tions over infinitely many discrete outcomes, probabilities can be arbitrarily small

and log-loss can be arbitrarily large.

To solve this issue with the complexity of Q, we define in section 4.3 a series of

approximations {Qn | n ∈ N} for probabilistic grammars such that
�

n Qn = Q.

Our framework for empirical risk minimization is then set up to minimize the

empirical risk with respect to Qn, where n is the number of samples we draw for
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the learner:

q∗n = argmin
q∈Qn

Ep̃n [− log q] (4.6)

We are then interested in the convergence of the empirical process

Rn(Qn) = sup
q∈Qn

|Ep̃n [− log q]− Ep[− log q]| (4.7)

In section 4.3 we show that the minimizer q∗n is an asymptotic empirical risk

minimizer (in our specific framework), which means that Ep[− log q∗n] → Ep[− log q∗].

Since we have
�

n Qn = Q, the implication of having asymptotic empirical risk

minimization is that we have Ep(q∗n;Qn) → Ep(q∗;Q).

4.1.2 Sample Complexity Bounds

Knowing that we are interested in the convergence of Rn(Qn) = supq∈Qn
|Ep̃n [− log q]−

Ep[− log q]|, a natural question to ask is, “at what rate does this empirical process

converge?”

Since the quantity Rn(Qn) is a random variable, we need to give a probabilis-

tic treatment to its convergence. More specifically, we ask the question that is

typically asked when learnability is considered (Vapnik, 1998): “how many sam-

ples n are required so that with probability 1− δ we have Rn(Qn) < �?” Bounds

on this number of samples are also called “sample complexity bounds,” and in a

distribution-free setting they are described as a function N(�, δ,Q), independent
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of the distribution p that generates the data.

A complete distribution-free setting is not appropriate for analyzing natural

language. This setting poses technical difficulties with the convergence of Rn(Qn)

and needs to take into account pathological cases that can be ruled out in natural

language data. Instead, we will make assumptions about p, parametrize these

assumptions in several ways, and then calculate sample complexity bounds of

the form N(�, δ,Q, p), where the dependence on the distribution is expressed as

dependence on the parameters in the assumptions about p.

The learning setting, then, can be described as follows. The user decides on

a level of accuracy (�) which the learning algorithm has to reach with confidence

(1−δ). Then, N(�, δ,Q, p) samples are drawn from p and presented to the learning

algorithm. The learning algorithm then returns a hypothesis according to Equa-

tion 4.6.

4.2 General Setting

We first lay out the connection between Section 4.1 and probabilistic grammars

as they are described in Section 2.1. Going back to the notation in section 4.1,

Q would be a collection of probabilistic grammars, parametrized by θ, and q

would be a specific probabilistic grammar with a specific θ. We therefore treat

the problem of ERM with probabilistic grammars as the problem of parameter

estimation—identifying θ from complete data or incomplete data (strings x are

visible but the derivations y are not). We can also view parameter estimation as
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the identification of a hypothesis from the concept space Q = H(G) = {hθ(y) |

θ ∈ ΘG} (where hθ is a distribution of the form of Equation 2.1) or, equivalently,

from negated log-concept space F(G) = {− log hθ(y) | θ ∈ ΘG} For simplicity

of notation, we assume that there is a fixed grammar G and use H to refer to

H(G) and F to refer to F(G).

4.2.1 Distributional Assumptions about Language

In this section, we describe a parametrization of assumptions we make about the

distribution p(x,y), the distribution that generates derivations from D(G) (note

that p does not have to be a probabilistic grammar). We first describe empirical

evidence about the decay of the frequency of long strings x.

Figure 4.1 shows the frequency of sentence length for treebanks in various lan-

guages.3 The trend in the plots clearly shows that in the extended tail of the curve,

all languages have an exponential decay of probabilities as a function of sentence

length. To test this, we performed a simple regression of frequencies using an

exponential curve. We estimated each curve for each language using a curve of

the form f(l; c,α) = clα. This estimation was done by minimizing squared error

between the frequency vs. sentence length curve and the approximate version of

this curve. The data points used for the approximation are (li, pi), where li de-

notes sentence length and pi denotes frequency, selected from the extended tail

3Treebanks offer samples of cleanly segmented sentences. It is important to note that the
distributions estimated may not generalize well to samples from other domains in these languages.
Our argument is that the family of the estimated curve is reasonable, not that we can correctly
estimate the curve’s parameters.
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Figure 4.1: A plot of the tail of frequency vs. sentence length in treebanks for
English, German, Bulgarian, Turkish, Spanish and Chinese. Red lines denote data
from the treebank (not data used for estimation), blue lines denote an approxima-
tion using which uses an exponential function of the form f(l; c,α) = clα. The pa-
rameters (c,α) are (0.19, 0.92) for English, (0.06, 0.94) for German, (0.26, 0.89)
for Bulgarian, (0.26, 0.83) for Turkish, (0.11, 0.93) for Spanish and (0.03, 0.97)
for Chinese. Squared errors are 0.0005, 0.0003, 0.0007, 0.0003, 0.001, 0.002 for
English, German, Bulgarian, Turkish, Spanish, and Chinese, respectively.
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of the distribution. Extended tail here refers to all points with length longer than

l1, where l1 is the length with the highest frequency in the treebank. The goal

of focusing on the tail is to avoid approximating the head of the curve, which is

actually a monotonically increasing function. We plotted the approximate curve

together with a length versus frequency curve for new syntactic data. It can be

seen (Figure 4.1) that the approximation is rather accurate in these corpora.

As a consequence of this observation, we make a few assumptions about G

and p(x,y):

• Derivation length proportional to sentence length: There is an α ≥ 1 such

that, for all y, |y| ≤ α|s(y)|. Further, |y| ≥ |x|. (This prohibits unary

cycles.)

• Exponential decay of derivations: There is a constant r < 1 and a constant

L ≥ 0 such that p(y) ≤ Lr|y|. Note that the assumption here is about

the frequency of length of separate derivations, and not the aggregated fre-

quency of all sentences of a certain length (cf. the discussion above referring

to Figure 4.1).

• Exponential decay of strings: Let Λ(k) = |{z ∈ D(G) | |y| = k}| be the

number derivations of length k in G. We assume that Λ(k) is an increasing

function, and complete it such that it is defined over positive numbers by

taking Λ(t) � Λ(�t�). Taking r as above, we assume there exists a constant

q < 1, such that Λ2(k)rk ≤ qk (and as a consequence, Λ(k)rk ≤ qk). This

implies that the number of derivations of length k may be exponentially
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large (e.g., as with many PCFGs), but is bounded by (q/r)k.

• Bounded expectations of rules: There is a B < ∞ such that Ep[ψk,i(y)] ≤

B for all k and i.

These assumptions must hold for any p whose support consists of a finite set.

These assumptions also hold in many cases when p itself is a probabilistic gram-

mar. Also, we note that the last requirement of bounded expectations is optional,

and it can be inferred from the rest of the requirements: B ≤ L/(1−q)2. We make

this requirement explicit for simplicity of notation later. We denote the family of

distributions that satisfy all of the requirements above by P(α, L, r, q, B,G).

There are other cases in the literature of language learning where additional

assumptions are made on the learned family of models in order to obtain positive

learnability results. For example, Clark and Thollard (2004) put a bound on the

expected length of strings generated from any state of probabilistic finite state

automata, which resembles the exponential decay of strings we have for p in this

chapter.

An immediate consequence of the above assumptions is that the entropy of

p is finite and bounded by a quantity that depends on L, r and q.4 Bound-

ing entropy of labels (derivations) given inputs (sentences) is a common way to

quantify the noise in a distribution. Here, both the sentential entropy (Hs(p) =

−
�

x p(x) log p(x)) is bounded as well as the derivational entropy (Hd(p) =

−
�

x,y p(x,y) log p(x,y)). This is stated in the following result:

4For simplicity and consistency with the log-loss, we measure entropy in nats, which means
we use the natural logarithm when computing entropy.
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Proposition 4.1 Let p ∈ P(α, L, r, q, B,G) be a distribution. Then, we have:

Hs(p) ≤ Hd(p) ≤ − logL+
L log r

(1− q)2
log

1

r
+
�(1 + logL)/ log 1

r�
e

Λ

��
1 + logL

log 1
r

��

Proof First note that Hs(p) ≤ Hd(p) holds because the sentential probability

distribution p(x) is a coarser version of the derivational probability distribution

p(x,y). Now, consider p(x,y). For simplicity of notation, we use p(y) instead of

p(x,y). The yield of y, x, is a function of y, and therefore can be omitted from

the distribution. It holds that:

Hd(p) = −
�

y

p(y) log p(y)

= −
�

z∈y1

p(y) log p(y)−
�

z∈y2

p(y) log p(y)

= Hd(p,y1) +Hd(p,y2)

where y1 = {y | p(y) > 1/e} and y2 = {y | p(y) ≤ 1/e}. Note that the function

−α logα reaches its maximum for α = 1/e. We therefore have:

Hd(p,y1) ≤
|y1|
e

We give a bound on |y1|, the number of “high probability” derivations. Since

we have p(x,y) ≤ Lr|y|, we can find the maximum length of a derivation that

has a probability of more than 1/e (and hence, it may appear in y1) by solving
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1/e ≤ Lr|y| for |y|, which leads to |y| ≤ log(1/eL)/ log r. Therefore, there are

at most
��(1+logL)/ log 1

r �
k=1 Λ(k) derivations in |y1| and therefore we have

|y1| ≤
�
(1 + logL)/ log

1

r

�
Λ

��
(1 + logL)/ log

1

r

��

Hd(p,y1) ≤
�
(1 + logL)/ log 1

r

�

e
Λ

��
(1 + logL)/ log

1

r

��
(4.8)

where we use the monotonicity of Λ. Consider Hd(p,y2) (the “low probability”

derivations). We have:

Hd(p,y2) ≤ −
�

y∈y2

Lr|y| log
�
Lr|y|

�

≤ − logL− (L log r)
�

y∈y2

|y|r|y|

≤ − logL− (L log r)
∞�

k=1

Λ(k)krk

≤ − logL− (L log r)
∞�

k=1

kqk (4.9)

= − logL+
L log r

(1− q)2
log

1

q
(4.10)

where Equation 4.9 holds from the assumptions about p. Putting Equation 4.8 and

Equation 4.10 together, we obtain the result. �

We note that another common way to quantify the noise in a distribution is

through the notion of Tsybakov noise (Tsybakov, 2004; Koltchinskii, 2006). We

discuss this further in section 4.6.1, where we show that Tsybakov noise is too

permissive, and probabilistic grammars do not satisfy its conditions.
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4.2.2 Limiting the Degree of the Grammar

When approximating a family of probabilistic grammars, it is much more conve-

nient when the degree of the grammar is limited. See Section 4.3 for discussion.

In this chapter, we limit the degree of the grammar by making the assumption that

all Nk ≤ 2. This assumption may seem, at first glance, somewhat restrictive, but

we show next that for probabilistic context-free grammars (and as a consequence,

other formalisms, such as tree substitution grammars), this assumption does not

limit the total generative capacity that we can have across all context-free gram-

mars.

We first show that any context-free grammar with arbitrary degree can be

mapped to a corresponding grammar that generates derivations equivalent to deriva-

tions in the original grammar. Such a grammar is also called a “covering gram-

mar” (Nijholt, 1980; Leermakers, 1989). Let G be a CFG. Let A be the kth

nonterminal. Consider the rules A → αi for i ≤ Nk where A appears on the left

side. For each rule A → αi, i < Nk, we create a new nonterminal in G� such

that Ai has two rewrite rules: Ai → αi and Ai → Ai+1. In addition, we create

rules A → A1 and ANk
→ αNk

. Figure 4.2 demonstrates an example of this

transformation on a small context-free grammar.

It is easy to verify that the resulting grammar G� has an equivalent capacity

to the original CFG, G. A simple transformation that converts each derivation in

the new grammar to a derivation in the old grammar would involve collapsing any

path of nonterminals added to G� (i.e. all Ai for nonterminal A) so that we end

up with nonterminals from the original grammar only. Similarly, any derivation
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Context-free grammar
S → NP VP
S → NP VP NP
S → NP VP PP
PP → P NP
NP → N | DET N
VP → V
N → park | boy | girl | I
DET → a | the
P → at | on | in
V → watch

Binarized
grammar
S → NP VP |
S1
S1 → NP VP
NP | S2
S2 → NP VP
PP
PP → P NP
NP → N | DET
N
VP → V
N → park | N1
N1 → boy | N2
N2 → girl | N3
N3 → I

DET → a |
the
P → at | P1
P1 → on | P2
P2 → in
V → watch

Figure 4.2: Exampe of a context-free grammar and its equivalent binarized form.

in G can be converted to a derivation in G�, by adding new nonterminals through

unary application of rules of the form Ai → Ai+1. Given a derivation y in G,

we denote by ΥG �→G�(y) the corresponding derivation in G� after adding the new

non-terminals Ai to y. Throughout this chapter, we will refer to the normalized

form of G� as a “binary normal form.”5

Note that K �, the number of multinomials in the binary normal form, is a func-

tion of both the number of nonterminals in the original grammar and the number

5We note that this notion of binarization is different from previous types of binarization ap-
pearing in computational linguistics for grammars. Typically in previous work about binarized
grammars such as context free-grammars, the grammars are constrained to have at most two non-
terminals in the right side in Chomsky normal form. Another form of binarization for linear
context-free rewriting systems is restriction of the fan-out of the rules to two (Gómez-Rodrı́guez
and Satta, 2009; Gildea, 2010). We, however, limit the number of rules for each nonterminal (or
more generally, the number of elements in each multinomial).
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of rules in that grammar. More specifically, we have that K � =
�K

k=1 Nk +K. To

make the equivalence complete, we need to show that any probabilistic context-

free grammar can be translated to a PCFG with maxk Nk ≤ 2 such that the two

PCFGs induce the same equivalent distributions over derivations.

Utility Lemma 4.2 Let ai ∈ [0, 1], i ∈ {1, . . . , N} such that
�

i ai = 1. Define

b1 = a1, c1 = 1 − a1, bi =
�

ai
ai−1

��
bi−1

ci−1

�
and ci = 1 − bi for i ≥ 2. Then

ai =

�
i−1�

j=1

cj

�
bi.

Proof See Appendix A. �

Theorem 4.3 Let �G,θ� be a probabilistic context-free grammar. Let G� be the

binarizing transformation of G as defined above. Then, there exists θ� for G� such

that for any y ∈ D(G) we have p(y | θ,G) = p(ΥG �→G�(y) | θ�,G�).

Proof For the grammar G, index the set {1, ..., K} with nonterminals ranging

from A1 to AK . Define G� as above. We need to define θ�. Index the multinomials

in G� by (k, i), each having two events. Let µ(k,i),1 = θk,i, µ(k,i),2 = 1 − θk,i for

i = 1 and set µk,i,1 = θk,i/µ(k,i−1),2, and µ(k,i−1),2 = 1− µ(k,i−1),2.

�G�,µ� is a weighted context-free grammar such that the µ(k,i),1 corresponds

to the ith event in the k multinomial of the original grammar. Let y be a derivation

in G and y� = ΥG �→G�(y). Then, from Utility Lemma 4.2 and the construction of
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g�, we have that:

p(y | θ,G) =
K�

k=1

Nk�

i=1

θ
ψk,i(y)
k,i

=
K�

k=1

Nk�

i=1

ψk,i(y)�

l=1

θk,i

=
K�

k=1

Nk�

i=1

ψk,i(y)�

l=1

�
i−1�

j=1

µ(k,j),2

�
µ(k,i),1

=
K�

k=1

Nk�

i=1

�
i−1�

j=1

µ
ψk,i(y)
(k,j),2

�
µ
ψk,i(y)
(k,i),1

=
K�

k=1

Nk�

j=1

2�

i=1

µ
ψk,j(y�)
(k,j),i

= p(y� | µ,G�)

From Chi (1999), we know that the weighted grammar �G�,µ� can be con-

verted to a probabilistic context-free grammar �G�,θ��, through a construction of

θ� based on µ, such that p(y� | µ,G�) = p(y� | θ�,G�). �

The proof for Theorem 4.3 gives a construction the parameters θ� of G� such

that �G,θ� is equivalent to �G�,θ��. The construction of θ� can also be reversed:

given θ� for G�, we can construct θ for G so that again we have equivalence

between �G,θ� and �G�,θ��.

In this section, we focused on presenting parametrized, empirically justified

distributional assumptions about language data that will make the analysis in later

sections more manageable. We showed that these assumptions bound the amount
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of entropy as a function of the assumption parameters. We also made an assump-

tion about the structure of the grammar family, and showed that it entails no loss of

generality for context-free grammars. Many other formalisms can follow similar

arguments to show that the structural assumption is justified for them as well.

4.3 Proper Approximations

In order to follow the empirical risk minimization described in section 4.1.1, we

have to define a series of approximations for F, which we denote by the log-

concept spaces F1,F2, . . .. We also have to replace two-sided uniform conver-

gence (Equation 4.3) with convergence on the sequence of concept spaces we de-

fined (Equation 4.7). The concept spaces in the sequence vary as a function of the

number of samples we have. We next construct the sequence of concept spaces,

and in section 4.4 we return to the learning model. Our approximations are based

on the concept of bounded approximations (Abe et al., 1990; Dasgupta, 1997),

which were originally designed for graphical models.6 A bounded approximation

is a subset of a concept space which is controlled by a parameter that determines

its tightness. Here we use this idea to define a series of subsets of the original

concept space F as approximations, while having two asymptotic properties that

control the series’ tightness.

Let Fm (for m ∈ {1, 2, . . .}) be a sequence of concept spaces. We consider

6There are other ways to manage the unboundedness of KL divergence in the language learning
literature. Clark and Thollard (2004), for example, decompose the KL divergence between proba-
bilistic finite-state automata into several terms according to a decomposition Carrasco (1997) and
then bound each term separately.
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three properties of elements of this sequence, which should hold for m > M for

a fixed M .

The first is containment in F:

Fm ⊆ F

The second property is boundedness:

∃Km ≥ 0, ∀f ∈ Fm, E
�
|f |× I {|f | ≥ Km}

�
≤ �bound(m)

where �bound is a non-increasing function such that �bound(m) −→
m→∞

0. This states

that the expected values of functions from Fm on values larger than some Km

is small. This is required to obtain uniform convergence results in the revised

empirical risk minimization model from section 4.1.1. Note that Km can grow

arbitrarily large.

The third property is tightness:

∃Cm ∈ F → Fm, p

�
�

f∈F

{y | Cm(f)(y)− f(y) ≥ �tail(m)}
�

≤ �tail(m)

where �tail is a non-increasing function such that �tail(m) −→
m→∞

0, and Cm denotes

an operator that maps functions in F to Fm. This ensures that our approximation

actually converges to the original concept space F. We will show in section 4.3.3

that this is actually a well-motivated characterization of convergence for proba-

bilistic grammars in the supervised setting.
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We say that the sequence Fm properly approximates F if there exist �tail(m),

�bound(m), and Cm such that, for all m larger than some M , containment, bound-

edness, and tightness all hold.

In a good approximation, Km would increase at a fast rate as a function of

m and �tail(m) and �bound(m) and decrease quickly as a function of m. As we

will see in section 4.4, we cannot have an arbitrarily fast convergence rate (by, for

example, taking a subsequence of Fm), because the size of Km has a great effect

on the number of samples required to obtain accurate estimation.

4.3.1 Constructing Proper Approximations for Probabilistic Gram-

mars

We now focus on constructing proper approximations for probabilistic grammars

whose degree is limited to 2.

Proper approximations could, in principle, be used with losses other than the

log-loss, though their main use is for unbounded losses. Starting from this point

in the chapter, we focus on using such proper approximations with the log-loss.

We construct Fm. For each f ∈ F we define a transformation T (f, γ) that

shifts every binomial parameter θk = �θk,1, θk,2� in the probabilistic grammar by

at most γ:

�θk,1, θk,2� ←






�γ, 1− γ� if θk,1 < γ

�1− γ, γ� if θk,1 > 1− γ

�θk,1, θk,2� otherwise
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Rule θ approx. #1 approx. #2 approx. #3
S → NP VP 0.09 0.1 0.1 0.1
S → NP 0.11 0.11 0.1 0.105
S → VP 0.8 0.79 0.8 0.795

Table 4.1: Example of a PCFG where there is more than a single way to approxi-
mate it by truncation, because it has more than two rules. We assume γ = 0.1.

Note that T (f, γ) ∈ F for any γ ≤ 1/2. Fix a constant s > 1.7 We denote by

T (θ, γ) the same transformation on θ (which outputs the new shifted parameters)

and we denote by ΘG(γ) = Θ(γ) the set {T (θ, γ) | θ ∈ ΘG}. For each m ∈ N,

define Fm = {T (f,m−s) | f ∈ F}.

When considering our approach to approximate a probabilistic grammar by in-

creasing its parameter probabilities to be over a certain threshold, it becomes clear

why we are required to limit the grammar to have only two rules and why we are

required to use the normal from Section 4.2.2 with grammars of degree 2. Con-

sider the PCFG rules in Table 4.1. There are different ways to move probability

mass to the rule with small probability. This leads to a problem with identifa-

bility of the approximation: how does one decide how to reallocate probability

to the small probability rules? By binarizing the grammar in advance, we ar-

rive at a single way to reallocate mass when required (i.e., move mass from the

high-probability rule to the low-probability rule). This leads to a simpler proof

for sample complexity bounds and a single bound (rather than different bounds

depending on different smoothing operators). We note, however, that the choices

7By varying s we get a family of approximations. The larger s is, the tighter the approximation
is. Also, the larger s is, as we see later, the more loose our sample complexity bound will be.
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made in binarizing the grammar imply a particular way of smoothing the proba-

bility across the original rules.

We now describe how the construction of approximations mentioned above

satisfies the properties in section 4.3, specifically the boundedness property and

the tightness property.

Proposition 4.4 Let p ∈ P(α, L, r, q, B,G) and let Fm as defined above. There

exists a constant β = β(L, q, s,N) > 0 such that Fm has the boundedness prop-

erty with Km = sN log3 m and �bound(m) = m−β logm.

Proof See Appendix A. �

We next show that Fm is tight with respect to F with �tail(m) =
N log2 m

ms − 1
.

Proposition 4.5 Let p ∈ P(α, L, r, q, B,G) and let Fm as defined above. There

exists an M such that for any m > M we have:

p

�
�

f∈F

{y | Cm(f)(y)− f(y) ≥ �tail(m)}
�

≤ �tail(m)

for �tail(m) =
N log2 m

ms − 1
and Cm(f) = T (f,m−s).

Proof See Appendix A. �

We now have proper approximations for probabilistic grammars. These ap-

proximations are defined as a series of probabilistic grammars, related to the fam-

ily of probabilistic grammars we are interested in estimating. They consist of three

85



properties: containment (they are a subset of the family of probabilistic grammars

we are interested in estimating), boundedness (their log-loss does not diverge to

infinity quickly) and they are tight (there is a small probability mass at which they

are not tight approximations).

4.3.2 Coupling Bounded Approximations with Number of Sam-

ples

At this point, the number of samples n is decoupled from the bounded approxima-

tion (Fm) that we choose for grammar estimation. To couple between these two,

we need to define m as a function of the number of samples, m(n). As mentioned

above, there is a clear trade-off between choosing a fast rate for m(n) (such as

m(n) = n) and a slower rate (such as m(n) = log n). The faster the rate is, the

tighter the family of approximations that we use for n samples. However, if the

rate is too fast, then Km grows quickly as well. In that case, because our sample

complexity bounds are increasing functions of such Km, the bounds will degrade.

To balance the trade-off, we choose m(n) = n. As we see later, this gives

sample complexity bounds which are asymptotically interesting for both the su-

pervised and unsupervised case.

4.3.3 Asymptotic Empirical Risk Minimization

It would be compelling to determine whether the empirical risk minimizer over

Fn is an asymptotic empirical risk minimizer. This would mean that the risk of
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the empirical risk minimizer over Fn converges to the risk of the maximum like-

lihood estimate. As a conclusion to this section about proper approximations, we

motivate the three requirements that we posed on proper approximations by show-

ing that this is indeed true. We now unify n, the number of samples, and m, the

index of the approximation of the concept space F. Let f ∗
n be the minimizer of

the empirical risk over F, (f ∗
n = argminf∈F Ep̃n [f ]) and let gn be the minimizer

of the empirical risk over Fn (gn = argminf∈Fn
Ep̃n [f ]).

Let D = {y1, ...,yn} be a sample from p(y). The operator (gn =) argminf∈Fn
Ep̃n [f ]

is an asymptotic empirical risk minimizer if E [Ep̃n [gn]− Ep̃n [f
∗
n]] → 0 as n → ∞

(Shalev-Shwartz et al., 2009). Then, we have the following:

Lemma 4.6 Denote by Z�,n the set
�

f∈F{y | Cn(f)(y)− f(y) ≥ �}. Denote by

A�,n the event “one of yi ∈ D is in Z�,n.” Then if Fn properly approximates F

then:

E [Ep̃n [gn]− Ep̃n [f
∗
n]] (4.11)

≤
��E

�
Ep̃n [Cn(f

∗
n)] | A�,n

��� p(A�,n) +
��E

�
Ep̃n [f

∗
n] | A�,n

��� p(A�,n) + �tail(n)

where the expectations are taken with respect to the dataset D.

Proof See Appendix A. �

Proposition 4.7 Let D = {y1, ...,yn} be a sample of derivations from G. Then

gn = argminf∈Fn
Ep̃n [f ] is an asymptotic empirical risk minimizer.
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Proof Let f0 ∈ F be the concept that puts uniform weights over θ, i.e., θk =

�12 ,
1
2� for all k. Note that

|E[Ep̃n [f
∗
n] | A�,n]|p(A�,n)

≤ |E[Ep̃n [f0] | A�,n]|p(A�,n) =
log 2
n

�n
l=1

�
k,i E[ψk,i(yl) | A�,n]p(A�,n)

Let Aj,�,n for j ∈ {1, . . . , n} be the event “yj ∈ Z�,n”. Then A�,n =
�

j Aj,�,n.

We have that:

E[ψk,i(yl) | A�,n]p(A�,n) ≤
�

j

�

yl

p(yl, Aj,�,n)|yl|

≤
�

j �=l

�

yl

p(yl)p(Aj,�,n)|yl|+
�

yl

p(yl, Al,�,n)|yl| (4.12)

≤
�
�

j �=l

p(Aj,�,n)

�
B + E[ψk,i(y) | y ∈ Z�,n]p(z ∈ Z�,n)

≤ (n− 1)Bp(z ∈ Z�,n) + E[ψk,i(y) | y ∈ Z�,n]p(z ∈ Z�,n)

where Equation 4.12 comes from yl being independent. Also, B is the constant

from section 4.2.1. Therefore, we have:

1

n

n�

l=1

�

k,i

E[ψk,i(yl) | A�,n]p(A�,n) ≤

�

k,i

(E[ψk,i(y) | y ∈ Z�,n]p(z ∈ Z�,n) + (n− 1)Bp(z ∈ Z�,n))

From the construction of our proper approximations (Proposition 4.5), we know
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that only derivations of length log2 n or greater can be in Z�,n. Therefore:

E[ψk,i | Z�,n]p(Z�,n) ≤
�

z:|y|>log2 n

p(y)ψk,i(y) ≤
∞�

l>log2 n

LΛ(l)rll ≤ κqlog
2 n = o(1)

where κ > 0 is a constant. Similarly, we have p(z ∈ Z�,n) = o(n−1). This

means that |E[Ep̃n [− log−f ∗
n] | A�,n]|p(A�,n) −→

n→∞
0. In addition, it can be shown

that |E[Ep̃n [Cn(f ∗
n) | A�,n]|p(A�,n) −→

n→∞
0 using the same proof technique we used

above, while relying on the fact that Cn(f ∗
n) ∈ Fn, and therefore Cn(f ∗

n)(y) ≤

sN |y| log n. �

4.4 Sample Complexity Bounds

Equipped with the framework of proper approximations as described above, we

now give our main sample complexity results for probabilistic grammars. These

results hinge on the convergence of supf∈Fn
|Ep̃n [f ] − Ep[f ]|. Indeed, proper

approximations replace the use of F in these convergence results. The rate of this

convergence can be fast, if the covering numbers for Fn do not grow too fast.

4.4.1 Covering Numbers and Bounds on Covering Numbers

We next give a brief overview of covering numbers. A cover provides a way to

reduce a class of functions to a much smaller (finite, in fact) representative class

such that each function in the original class is represented using a function in the

smaller class. Let G be a class of functions. Let d(f, g) be a distance measure
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between two functions f, g from G. An �-cover is a subset of G, denoted by G�,

such that for every f ∈ G there exists an f � ∈ G� such that d(f, f �) < �. The

covering number N(�,G, d) is the size of the smallest �-cover of G for the distance

measure d.

We are interested in a specific distance measure which is dependent on the

empirical distribution p̃n that describes the data y1, ...,yn. Let f, g ∈ G. We will

use:

dp̃n(f, g) = Ep̃n [|f − g|] =
�

y∈D(G) |f(y)− g(y)| p̃n(y) = 1
n

�n
i=1 |f(yi)− g(yi)|

Instead of using N(�,G, dp̃n) directly, we bound this quantity with N(�,G) =

supp̃n N(�,G, dp̃n), where we consider all possible samples (yielding p̃n). The fol-

lowing is the key result regarding the connection between covering numbers and

the double-sided convergence of the empirical process supf∈Fn
|Ep̃n [f ] − Ep[f ]|

as n → ∞. This result is a general purpose result that has been used frequently

to prove the convergence of empirical processes of the type we discuss in this

chapter.

Lemma 4.8 Let Fn be a permissible class8 of functions such that for every f ∈ Fn

we have E[|f |× I {|f | ≤ Kn}] ≤ �bound(n). Let Ftruncated,n = {f × I {f ≤ Kn} |

f ∈ Fm}, i.e., the set of functions from Fn after being truncated by Kn. Then for

8The “permissible class” requirement is a mild regularity condition regarding measurability
that holds for proper approximations. We refer the reader to Pollard (1984) for more details.
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� > 0 we have,

p

�
sup
f∈Fn

|Ep̃n [f ]− Ep[f ]| > 2�

�
≤ 8N(�/8,Ftruncated,n) exp

�
− 1

128
n�2/K2

n

�
+ �bound(n)/�

provided n ≥ K2
n/4�

2 and �bound(n) < �.

Proof See Pollard (1984) (Chapter 2, pages 30–31). See also Appendix A. �

Covering numbers are rather complex combinatorial quantities which are hard

to compute directly. Fortunately, they can be bounded using the pseudo-dimension

(Anthony and Bartlett, 1999), a generalization of the VC dimension for real func-

tions. In the case of our “binomialized” probabilistic grammars, the pseudo-

dimension of Fn is bounded by N , because we have Fn ⊆ F, and the functions

in F are linear with N parameters. Hence, Ftruncated,n also has pseudo-dimension

that is at most N . We have:

Lemma 4.9 (From Pollard (1984); Haussler (1992).) Let Fn be the proper ap-

proximations for probabilistic grammars, for any 0 < � < Kn we have:

N(�,Ftruncated,n) < 2

�
2eKn

�
log

2eKn

�

�N
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4.4.2 Supervised Case

Lemmas 4.8 and 4.9 can be combined to get the following sample complexity

result:

Theorem 4.10 Let G be a grammar. Let p ∈ P(α, L, r, q, B,G) (section 4.2.1).

Let Fn be a proper approximation for the corresponding family of probabilistic

grammars. Let y1, ...,yn be a sample of derivations. Then there exists a constant

β(L, q, s,N) and constant M such that for any 0 < δ < 1 and 0 < � < Kn and

any n > M and if

n ≥ max

�
128K2

n

�2

�
2N log(16eKn/�) + log

32

δ

�
,
log 4/δ + log 1/�

β(L, q, s,N)

�

then we have

P

�
sup
f∈Fn

|Ep̃n [f ]− Ep[f ]| ≤ 2�

�
≥ 1− δ

where Kn = sN log3 n.

Proof Sketch β(L, q, s,N) is the constant from Proposition 4.4. The main idea

in the proof is to solve for n in the following two inequalities (based on Equa-

tion 17) while relying on Lemma 4.9:

8N(�/8,Ftruncated,n) exp

�
− 1

128
n�2/K2

n

�
≤ δ/2

�bound(n)/� ≤ δ/2
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�

Theorem 4.10 gives little intuition about the number of samples required for

accurate estimation of a grammar because it considers the “additive setting:” the

empirical risk is within � from the expected risk. More specifically, it is not clear

how we should pick � for the log-loss, since the log-loss can obtain arbitrary val-

ues.

We turn now to converting the additive bound in Theorem 4.10 to a multiplica-

tive bound. Multiplicative bounds can be more informative than additive bounds

when the range of the values that the log-loss can obtain is not known a priori.

However, it is important to note that the two views are equivalent, and it is pos-

sible to convert a multiplicative bound to an additive bound and vice versa. Let

ρ ∈ (0, 1) and choose � = ρKn. Then, substituting this � in Theorem 4.10, we get

that if:

n ≥ max

�
128

ρ2

�
2N log

16e

ρ
+ log

32

δ

�
,
log 4/δ + log 1/ρ

β(L, q, s,N)

�

then with probability 1− δ:

sup
f∈Fn

����1−
Ep̃n [f ]

Ep[f ]

���� ≤
ρ× 2sN log3(n)

H(p)
(4.13)

where H(p) is the Shannon entropy of p. This stems from the fact that Ep[f ] ≥

H(p) for any f . This means that if we are interested in computing a sample

complexity bound such that the ratio between the empirical risk and the expected
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risk (for log-loss) is close to 1 with high probability, we need to pick ρ such

that the righthand side of Equation 4.13 is smaller than the desired accuracy level

(between 0 and 1). Note that Equation 4.13 is an oracle inequality—it requires

knowing the entropy of p or some upper bound on it.

4.4.3 Unsupervised Case

In the unsupervised setting, we have n yields of derivations from the grammar,

x1, ..., xn, and our goal again is to identify grammar parameters θ from these

yields. Our concept classes are now the sets of log marginalized distributions

from Fn. For each fθ ∈ Fn, we define f �
θ as:

f �
θ(x) = − log

�

y∈Dx(G)

exp(−fθ(y)) = − log
�

y∈Dx(G)

exp

�
K�

k=1

Nk�

i=1

ψi,k(y)θi,k

�

We denote the set of {f �
θ} by F�

n. Analogously, we define F�. Note that we also

need to define the operator C �
n(f

�) as a first step towards defining F�
n as proper

approximations (for F�) in the unsupervised setting. Let f � ∈ F�. Let f be

the concept in F such that f �(x) =
�

y f(x,y). Then we define C �
n(f

�)(x) =
�

y Cn(f)(x,y).

It does not immediately follow that F�
n is a proper approximation for F�. It

is not hard to show that the boundedness property is satisfied with the same Kn

and the same form of �bound(n) as in Proposition 4.4 (we would have ��bound(m) =

m−β� logm for some β�(L, q, s,N) = β� > 0). This relies on the property of

bounded derivation length of p. See Appendix A, Proposition A.2. The following
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result shows that we have tightness as well:

Utility Lemma 4.11 For ai, bi ≥ 0, if − log
�

i ai + log
�

i bi ≥ � then there

exists an i such that − log ai + log bi ≥ �.

Proposition 4.12 There exists an M such that for any n > M we have:

p

�
�

f �∈F�

{x | C �
n(f

�)(x)− f �(x) ≥ �tail(n)}
�

≤ �tail(n)

for �tail(n) =
N log2 n

ns − 1
and the operator C �

n(f) as defined above.

Proof Sketch From Utility Lemma 4.11 we have:

p

�
�

f �∈F�

{x | C �
n(f

�)(x)− f �(x) ≥ �tail(n)}
�

≤ p

�
�

f∈F

{x | ∃yCn(f)(y)− f(y) ≥ �tail(n)}
�

Define X(n) to be all x such that there exists a y with s(y) = x and |y| ≥

log2 n. From the proof of Proposition 4.5 and the requirements on p, we know that

there exists an α ≥ 1 such that

p
��

f∈F{x | ∃y s.t.Cn(f)(y)− f(y) ≥ �tail(n)}
�

≤
�

x∈X(n)

p(x)

≤
�

x:|x|≥log2 n/α

p(x) ≤
∞�

k=�log2 n/α�

LΛ(k)rk ≤ �tail(n)

where the last inequality happens for some n larger than a fixed M . �

Computing either the covering number or the pseudo-dimension of F�
n is a

hard task, because the function in the classes includes the “log-sum-exp.” Das-
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gupta (1997) overcomes this problem for Bayesian networks with fixed structure

by giving a bound on the covering number for (his respective) F� which depends

on the covering number of F.

Unfortunately, we cannot fully adopt this approach, because the derivations of

a probabilistic grammar can be arbitrarily large. Instead, we present the following

Proposition, which is based on the “Hidden Variable Rule” from Dasgupta (1997).

This proposition showed that the covering number of F� (or more accurately, its

bounded approximations) can be bounded in terms of the covering number of the

bounded approximations of F, and the constants which control the underlying

distribution p mentioned in Section 4.2.

Utility Lemma 4.13 For any two positive-valued sequences (a1, ..., an) and (b1, ..., bn)

we have that
�

i | log ai/bi| ≥ | log (
�

ai/
�

bi) |.

Proposition 4.14 (Hidden Variable Rule for Probabilistic Grammars) Let m =

log
4Kn

�(1− q)

log
1

q

. Then, N(�,F�
truncated,n) ≤ N

�
�

2Λ(m)
,Ftruncated,n

�
.

Proof Let Z(m) = {y | |y| ≤ m} be the subset of derivations of length shorter

than m. Consider f, f0 ∈ Ftruncated,n. Let f � and f �
0 be the corresponding functions

in F�
truncated,n. Then, for any distribution p:
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dp(f �, f �
0) =

�

x

|f �(x)− f �
0(x)| p(x) ≤

�

x

�

z

|f(x,y)− f0(x,y)| p(x)

=
�

x

�

z∈Z(m)

|f(x,y)− f0(x,y)| p(x) +
�

x

�

z /∈Z(m)

|f(x,y)− f0(x,y)| p(x)

≤
�

x

�

z∈Z(m)

|f(x,y)− f0(x,y)| p(x) +
�

x

�

z /∈Z(m)

2Knp(x) (4.14)

≤
�

x

�

z∈Z(m)

|f(x,y)− f0(x,y)| p(x) + 2Kn

�

x : |x|≥m

|Dx(G)|p(x)

≤
�

x

�

z∈Z(m)

|f(x,y)− f0(x,y)| p(x) + 2Kn

∞�

k=m

Λ2(k)rk

≤ dp
�
(f, f0)|Z(m)|+ 2Kn

qm

1− q

where p�(x,y) is a probability distribution that uniformly divides the probability

mass p(x) across all derivations for the specific x, i.e.:

p�(x,y) =
p(x)

|Dx(G)|

The inequality in Equation 4.14 stems from Utility Lemma 4.13.

Set m to be the quantity that appears in the proposition to get the necessary

result (f � and f are arbitrary functions in F�
truncated,n and Ftruncated,n respectively.

Then consider f �
0 and f0 to be functions from the respective covers.) �

For the unsupervised case, then, we get the following sample complexity re-
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sult:

Theorem 4.15 Let G be a grammar. Let F�
n be a proper approximation for the

corresponding family of probabilistic grammars. Let p(x,y) be a distribution

over derivations which satisfies the requirements in section 4.2.1. Let x1, ..., xn

be a sample of strings from p(x). Then there exists a constant β�(L, q, s,N) and

constant M such that for any 0 < δ < 1 and 0 < � < Kn and any n > M and if

n ≥ max

�
128K2

n

�2

�
2N log

�
32eKnΛ(m)

�

�
+ log

32

δ

�
,
log 4/δ + log 1/�

β�(L, q, s,N)

�

(4.15)

where m =
log

4Kn

�(1− q)

log
1

q

, we have that

p

�
sup
f∈F�

n

|Ep̃n [f ]− Ep[f ]| ≤ 2�

�
≥ 1− δ

where Kn = sN log3 n.

Theorem 4.15 states that the number of samples we require in order to accu-

rately estimate a probabilistic grammar from unparsed strings depends on the level

of ambiguity in the grammar, represented as Λ(m). We note that this dependence

is polynomial, and we consider this a positive result for unsupervised learning of

grammars. More specifically, if Λ is an exponential function (such as the case

with PCFGs), when compared to the supervised learning, there is an extra multi-

plicative factor in the sample complexity in the unsupervised setting that behaves
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like O(log log
Kn

�
).

We note that Equation 4.15 can again be reduced to a multiplicative case,

similarly to the way we described it for the supervised case. Setting � = ρKn

(ρ ∈ (0, 1)), we get the following requirement on n:

n ≥ max

�
128

ρ2

�
2N log

�
32e× t(ρ)

ρ

�
+ log

32

δ

�
,
log 4/δ + log 1/�

β�(L, q, s,N)

�

where t(ρ) =
log

4

ρ(1− q)

log
1

q

.

4.5 Algorithms for Empirical Risk Minimization

We turn now to describing algorithms and their properties for minimizing empiri-

cal risk using the framework described in section 4.3.

4.5.1 Supervised Case

ERM with proper approximations leads to simple algorithms for estimating the

probabilities of a probabilistic grammar in the supervised setting. Given an � > 0

and a δ > 0, we draw n examples according to Theorem 4.10. We then set

γ = n−s. To minimize the log-loss with respect to these n examples, we use the

proper approximation Fn.

Note that the value of the empirical log-loss for a probabilistic grammar parametrized
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by θ is:

Ep̃n [− log h(x,y | θ)] = −
�

x,y

p̃n(x,y) log h(x,y | θ)

= −
�

x,y

p̃n(x,y)
K�

k=1

Nk�

i=1

ψk,i(x,y) log(θk,i)

= −
K�

k=1

Nk�

i=1

log(θk,i)Ep̃n [ψk,i]

Since we make the assumption that deg(G) ≤ 2 (section 4.2.2), we have:

Ep̃n [− log h(x,y | θ)] = −
K�

k=1

(log(θk,1)Ep̃n [ψk,1] + log(1− θk,1)Ep̃n [ψk,2])(4.16)

To minimize the log-loss with respect to Fn, we need to minimize Equation 4.16

under the constraint that γ ≤ θk,i ≤ 1− γ and θk1 + θk,2 = 1. It can be shown that

the solution for this optimization problem is:

θk,i = min

�
1− γ,max

�
γ,

�
n�

j=1

ψ̂j,k,i

�
/

�
n�

j=1

2�

i�=1

ψ̂j,k,i�

���
(4.17)

where ψ̂j,k,i is the number of times that ψk,i fires in example j. (We include a

full derivation of this result in Appendix B.) The interpretation of Equation 4.17

is simple: we count the number of times a rule appears in the samples and then

normalize this value by the total number of times rules associated with the same
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multinomial appear in the samples. This frequency count is the maximum like-

lihood solution with respect to the full hypothesis class H (Corazza and Satta,

2006). Since we constrain ourselves to obtain a value away from 0 or 1 by a

margin of γ, we need to truncate this solution, as done in Equation 4.17.

This truncation to a margin γ can be thought of as a smoothing factor that

enables us to compute sample complexity bounds. We explore this connection to

smoothing with a Dirichlet prior in a MAP Bayesian setting in section 4.6.2.

4.5.2 Unsupervised Case

Similarly to the supervised case, minimizing the empirical log-loss in the unsu-

pervised setting requires minimizing (with respect to θ):

Ep̃n [− log h(x | θ)] = −
�

x

p̃n(x) log
�

z

h(x,y | θ) (4.18)

with the constraint that γ ≤ θk,i ≤ 1− γ (i.e. θ ∈ Θ(γ)) where γ = n−s. This is

done after drawing n examples according to Theorem 4.15.

Hardness of ERM with Proper Approximations

It turns out that minimizing Equation 4.18 under the specified constraints is actu-

ally an NP-hard problem when G is a PCFG. This result follows using a similar

proof to the one in Chapter 3 for the hardness of Viterbi training and maximizing

log-likelihood for PCFGs. We turn to describe the modification required to the
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proofs in Chapter 3 to the case of having an arbitrary γ margin constraint.

We first begin by by stating the following decision problem:

Problem 4.1 (Unsupervised Minimization of the Log-Loss with Margin) Input:

A binarized context-free grammar G, a set of sentences x1, . . . ,xn, a value γ ∈

[0, 12) and a value α ∈ [0, 1].

Output: 1 if there exists θ ∈ Θ(γ) (and hence, h ∈ H(G)) such that

−
�

x

p̃n(x) log
�

z

h(x,y | θ) ≤ − log(α) (4.19)

and 0 otherwise.

We will show the hardness result both when γ is not restricted at all as well

as when we allow γ > 0. Given an instance φ of the 3-SAT problem, we create a

grammar G and a string sφ as described in Section 3.2.

Theorem 4.16 Problem 4.1 is NP-hard when either requiring γ > 0 or when

fixing γ = 0.

Proof We first describe the reduction for the case of γ = 0. In Problem 4.1, set

γ = 0, α = 1, G = Gφ, γ = 0 and x1 = sφ. If φ is satisfiable, then the left

side of Equation 4.19 can get value 0, by setting the rule probabilities according

to Lemma 3.2, hence we would return 1 as the result of running Problem 4.1.

If φ is unsatisfiable, then we would still get value 0 only if L(G) = {sφ}. If

Gφ generates a single derivation for (10)3m, then we actually do have a satisfying
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assignment from Lemma 3.1. Otherwise (more than a single derivation), the opti-

mal θ would have to give fractional probabilities to rules of the form VYr → {0, 1}

(or VȲr
→ {0, 1}). In that case, it is no longer true that (10)3m is the only gener-

ated sentence, and this is a contradiction to getting value 0 for Problem 4.1.

We next show that Problem 4.1 is NP-hard even if we require γ > 0. Let γ <

1
20m . Set α = γ, and the rest of the inputs to Problem 4.1 the same just as before.

Assume that φ is satisfiable. Let θ be the rule probabilities from Equation 3.2

after being shifted with a margin of γ. Then, since there is a derivation that uses

only rules that have probability 1− γ, we have:

h(x1 | T (θ, γ),Gφ) =
�

y

p(x1,y | T (θ, γ),Gφ)

≥ (1− γ)10m

> α

because the size of the parse tree for (10)3m is at most 10m (using the binarized

Gφ) and assuming α = γ < (1 − γ)10m. This inequality indeed holds whenever

γ <
1

20m
. Therefore, we have − log h(x1 | θ) > − logα. Problem 4.1 would

return 0 in this case.

Now, assume that φ is not satisfiable. That means that any parse tree for the

string (10)3m would have to contain two different rules headed by the same non-
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terminal. This means that:

h(x1 | T (θ, γ),Gφ) =
�

y

p(x1,y | T (θ, γ),Gφ)

≤ γ

and therefore − log h(x1 | T (θ, γ)) ≤ − logα, and Problem 4.1 would return

1. �

An Expectation-Maximization Algorithm

Instead of solving the optimization problem implied by Equation 4.16, we propose

a rather simple modification to the expectation-maximization algorithm (Demp-

ster et al., 1977) to approximate the optimal solution—this algorithm finds a local

maximum for the maximum likelihood problem using proper approximations. The

modified algorithm is given in Algorithm 1.

The modification from the usual expectation-maximization algorithm is done

in the M-step: instead of using the expected value of the sufficient statistics by

counting and normalizing, we truncate the values by γ. It can be shown that if

θ(0) ∈ Θ(γ), then the likelihood is guaranteed to increase (and hence, the log-loss

is guaranteed to decrease) after each iteration of the algorithm.

The reason for this likelihood increase stems from the fact that the M-step

solves the optimization problem of minimizing the log-loss (with respect to θ ∈

Θ(γ)) when the posterior calculate at the E-step as the base distribution is used.

This means that the M-step minimizes (in iteration t): Er[− log h(x,y | θ(t))]
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where the expectation is taken with respect to the distribution r(x,y) = p̃n(x)p(y |

x,θ(t−1)). With this notion in mind, the likelihood increase after each iteration

follows from principles similar to those described in Bishop (2006) for the EM

algorithm.

Algorithm 1: Expectation-Maximization Algorithm with Proper Approxi-
mations.

Input: grammar G in binary normal form, initial parameters θ(0), � > 0,
δ > 0, s > 1

Output: learned parameters θ
draw x = �x1, ...,xn� from p following Theorem 4.15 ;
t ← 1 ;
γ ← n−s;
repeat

// Eθ(t−1) [ψk,i(y) | xj] denotes the expected counts of event i in
multinomial k under the distribution p̃n(x)p(y | x,θ(t−1))
Compute for each training example j ∈ {1, . . . , n}, for each event
i ∈ {1, 2} in each multinomial k ∈ {1, . . . , K}:
ψ̂j,k,i ← Eθ(t−1) [ψk,i(y) | xj];
Set θ(t)

i,k = min{1− γ,max{γ,
��n

j=1 ψ̂j,k,i

�
/
��n

j=1

�2
i�=1 ψ̂j,k,i�

�
}};

t ← t+ 1;
until convergence;
return θ(t)

4.6 Discussion

Our framework can be specialized to improve the two main criteria which have a

trade-off: the tightness of the proper approximation and the sample complexity.

For example, we can improve the tightness of our proper approximations by taking
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criterion as Kn increases . . . as s increases . . .
tightness of proper approximation improves improves
sample complexity bound degrades degrades

Table 4.2: Trade-off between quantities in our learning model and effectiveness
of different criteria. Kn is the constant that satisfies the boundedness property
(Theorems 4.10 and 4.15) and s is a fixed constant larger than 1 (section 4.3.1).

a subsequence of Fn. However, this will make the sample complexity bound

degrade, because Kn will grow faster. Table 4.2 shows the trade-offs between

parameters in our model and the effectiveness of learning.

We note that the sample complexity bounds that we give in this chapter give

insight about the asymptotic behavior of grammar estimation, but are not neces-

sarily sufficiently tight to be used in practice. It still remains an open problem to

obtain sample complexity bounds which are sufficiently tight in this respect. For

a discussion about the connection of grammar learning in theory and practice, we

refer the reader to Clark and Lappin (2010). See also Section 7.1.3.

4.6.1 Tsybakov Noise

In this chapter, we chose to introduce assumptions about distributions that gen-

erate natural language data. The choice of these assumptions was motivated by

observations about properties shared among treebanks. The main consequence of

making these assumptions is bounding the amount of noise in the distribution, i.e.,

the amount of variation in probabilities across labels given a fixed input.

There are other ways to restrict the noise in a distribution. One condition
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for such noise restriction, which has received considerable recent attention in the

statistical literature is the Tsybakov noise condition (Tsybakov, 2004; Koltchin-

skii, 2006). Showing that a distribution satisfies the Tsybakov noise condition en-

ables the use of techniques (e.g., from Koltchinskii 2006) for deriving distribution-

dependent sample complexity bounds that depend on the parameters of the noise.

It is therefore of interest to see whether Tsybakov noise holds under the assump-

tions presented in section 4.2.1. We show that this is not the case, and that Tsy-

bakov noise is too permissive. In fact, we show that p can be a probabilistic

grammar itself (and hence, satisfy the assumptions in section 4.2.1), and still not

satisfy the Tsybakov noise conditions.

Tsybakov noise was originally introduced for classification problems (Tsy-

bakov, 2004), and was later extended to more general settings, such as the one we

are facing in this chapter (Koltchinskii, 2006). We next explain the definition of

Tsybakov noise in our context.

Let C > 0 and κ ≥ 1. We say that a distribution p(x,y) satisfies the (C,κ)

Tsybakov noise condition if for any � > 0 and h, g ∈ H such that h, g ∈ {h� |

Ep(h�,H) ≤ �}, we have:

dist(g, h) �

����Ep

��
log g

log h

�2
�
≤ C�1/k (4.20)

This interpretation of Tsybakov noise implies that the diameter of the set of func-

tions from the concept class that has small excess risk should shrink to 0 at the

rate in Equation 4.20. Distribution-dependent bounds from Koltchinskii (2006)

107



are monotone with respect to the diameter of this set of functions, and therefore,

demonstrating that it goes to 0 enables sharper derivations of to derive sharper

sample complexity bounds.

We turn now to illustrating that the Tsybakov condition does not hold for

probabilistic grammars in most cases. Let G be a probabilistic grammar. De-

fine A = AG(θ) as a matrix such that:

(AG(θ))(k,i),(k�,i�) �
E[ψk,i × ψk�,i� ]

E[ψk,i]E[ψk�,i� ]

In Appendix C we show that AG(θ) is positive semi-definite for any choice of

θ.

Theorem 4.17 Let G be a grammar with K ≥ 2 and degree 2. Assume that p

is �G,θ∗� for some θ∗, such that θ∗1,1 = θ∗2,1 = µ and that c1 ≤ c2. If AG(θ
∗)

is positive definite, then p does not satisfy the Tsybakov noise condition for any

(C,κ), where C > 0 and κ ≥ 1.

Proof See Appendix C. �

The main intuition behind the proof is that given a probabilistic grammar p,

we can construct an hypothesis h such that the KL divergence between p and h is

small, but dist(p, h) is lower bounded and is not close to 0.

We conclude that probabilistic grammars, as generative distributions of data,

do not generally satisfy the Tsybakov noise condition. This motivates an alter-

native choice of assumptions that could lead to better understanding of rates of
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convergences and bounds on the excess risk. Section 4.2.1 stated such assump-

tions which were also justified empirically.

4.6.2 Comparison to Dirichlet Maximum A Posteriori Solutions

The transformation T (θ, γ) from section 4.3.1 can be thought of as a smoother

for the probabilities θ: it ensures that the probability of each rule is at least γ (and

as a result, the probabilities of all rules cannot exceed 1 − γ). Adding pseudo-

counts to frequency counts is also a common way to smooth probabilities in mod-

els based on multinomial distributions, including probabilistic grammars (Man-

ning and Schütze, 1999). These pseudo-counts can be framed as a maximum a

posteriori (MAP) alternative to the maximum likelihood problem, with the choice

of Bayesian prior over the parameters in the form of a Dirichlet distribution. In

comparison to our framework, with (symmetric) Dirichlet smoothing, instead of

truncating the probabilities with a margin γ, we would set the probability of each

rule (in the supervised setting) to:

θ̂k,i =

�n
j=1 ψ̂j,k,i + α

�n
j=1 ψ̂j,k,1 +

�n
j=1 ψ̂j,k,2 + 2α

(4.21)

for i = 1, 2, where ψ̂k,i are the counts in the data of event i in multinomial k

for example j. Dirichlet smoothing can be formulated as the result of adding a

symmetric Dirichlet prior over the parameters θk,i with hyperparameter α. Then,

Equation 4.21 is the mode of the posterior after observing ψ̂k,i appearances of

event i in multinomial k.
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The effect of Dirichlet smoothing becomes weaker as we have more samples,

because the frequency counts ψ̂j,k,i become dominant in both the numerator and

the denominator when there is more data. In this sense, the prior’s effect on learn-

ing diminishes as we use more data. A similar effect occurs in our framework:

γ = n−s where n is the number of samples—the more samples we have, the more

we trust the counts in the data to be reliable. There is a subtle difference, how-

ever. With the Dirichlet MAP solution, the smoothing is less dominant only if

the counts of the features are large, regardless of the number of samples we have.

With our framework, smoothing depends only on the number of samples we have.

These two scenarios are related, of course: the more samples we have, the more

likely it is that the counts of the events will grow large.

4.6.3 Other Derivations of Sample Complexity Bounds

In this section, we make some notes about other possible solutions to the problem

of deriving sample complexity bounds for probabilistic grammars.

Using Talagrand’s Inequality Our bounds are based on VC theory together

with classical results for empirical processes (Pollard, 1984). There have been

some recent developments to the derivation of rates of convergence in statistical

learning theory (Massart, 2000; Bartlett et al., 2005; Koltchinskii, 2006), most

prominently through the use of Talagrand’s inequality (Talagrand, 1994), which

is a concentration of measure inequality, in the spirit of Lemma 4.8.

The bounds achieved with Talagrand’s inequality are also distribution-dependent,
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and are based on the diameter of the �-minimal set—the set of hypotheses which

have an excess risk smaller than �. We saw in section 4.6.1 that the diameter of

the �-minimal set does not follow the Tsybakov noise condition, but it is perhaps

possible to find meaningful bounds for it, in which case, we may be able to get

tighter bounds using Talagrand’s inequality. We note that it may be possible to

obtain data-dependent bounds for the diameter of the �-minimal set, following

Koltchinskii (2006), by calculating the diameter of the �-minimal set using p̃n.

Simpler Bounds for the Supervised Case As noted in section 4.5.1, minimiz-

ing empirical risk with the log-loss leads to a simple frequency count for calcu-

lating the estimated parameters of the grammar. In Corazza and Satta (2006), it

has been also noted that to minimize the expected risk, it is necessary to set the

parameters of the grammar to the normalized expected count of the features.

This means that we can get bounds on the deviation of a certain parameter

from the optimal parameter by applying modifications to rather simple inequalities

such as Hoeffding’s inequality, which determines the probability of the average of

a set of i.i.d. random variables deviating from its mean. The modification would

require us to split the event space into two cases: one in which the count of some

features is larger than some fixed value (which will happen with small probability

because of the bounded expectation of features), and one in which they are all

smaller than that fixed value. Handling these two cases separately is necessary

because Hoeffding’s inequality requires that the count of the rules is bounded.

The bound on the deviation from the mean of the parameters (the true prob-
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ability) can potentially lead to a bound on the excess risk in the supervised case.

However, this formulation of the problem would not generalize to the unsuper-

vised case, where the empirical risk minimization does not amount to simple fre-

quency count.

4.7 Summary

We presented a framework for performing empirical risk minimization for prob-

abilistic grammars, in which sample complexity bounds, for the supervised case

and the unsupervised case, can be derived. Our framework is based on the idea of

bounded approximations used in the past to derive sample complexity bounds for

graphical models.

Our framework required assumptions about the probability distribution that

generates sentences or derivations in the language of the given grammar. These

assumptions were tested using corpora, and found to fit the data well.

We also discussed algorithms that can be used for minimizing empirical risk

in our framework, given enough samples. We showed that directly trying to min-

imizing empirical risk in the unsupervised case is NP-hard, and suggested an ap-

proximation based on an expectation-maximization algorithm.
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Chapter 5

Soft Parameter-Tying in Estimation

of Probabilistic Grammars

As suggested in Section 2.1, the parameter space for a typical probabilistic gram-

mar is decomposable into a collection of multinomials. Multinomial distributions,

in their simplest form, are defined on an unordered finite sample space: each event

is allocated its own probability mass. When we specify such a distribution, we do

not explicitly specify relationships between the various events of the multinomial

(in the form of a covariance structure or any other form).

Still, it is conceivable that such relationships exist with probabilistic gram-

mars. When we consider probabilistic grammars for natural languages, especially

those over words or word classes like parts of speech, we do expect to see co-

variance structure. Intuitively, the probability of a particular word or word class

having singular nouns as arguments is likely tied to the probability of the same
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word having plural nouns as arguments. Words that tend to attach to one type of

parent are expected to tend to attach to similar parents. This is a large part of the

empirical motivation for syntactic theories that make use of part of speech and

phrase categories (Kroeger, 2005).

In this chapter, we capitalize on this idea, and propose an estimation method

for probabilistic grammars that softly ties between the parameters of the grammar

using an explicit covariance structure. The estimation method has the following

advantages:

1. It permits softly tying parameters of the grammar, while estimating the

strengths that should exist between the various weights of the multinomial

distributions in a probabilistic grammar.

2. It permits one to encode prior knowledge into the learning process. In Chap-

ter 8, we will see that this prior knowledge comes in the form of a reduction

of fine-grained part-of-speech tags to coarse part-of-speech tags.

3. It has a Bayesian interpretation of placing a prior over the parameters of a

probabilistic grammar.

Since the estimation procedure we propose has a Bayesian interpretation, we

begin by explaining how one would apply the Bayesian approach to probabilistic

grammars. We first present the current approach to Bayesian learning of prob-

abilistic grammars, and then suggest our alternative approach. We then explain

how our approach yields the proposed estimation procedure.
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Some of the work in this chapter has been described in Cohen et al. (2008),

Cohen and Smith (2009), and Cohen and Smith (2010a).

5.1 The Bayesian Setting

As mentioned above, the goal of this chapter is to introduce a framework for

softly-tying between parameters of a probabilistic grammar composed of multi-

nomials. But how do we represent explicit connections between the various el-

ements of a multinomial during learning, when the events in a multinomial are

separate?

One way to do it is by introducing a Bayesian prior over the grammar param-

eters, such that there is a bias in the prior which dictates that simulating from

the prior takes into consideration connections between grammar parameters. This

prior defines a distribution over θ. It is this prior that we update in the Bayesian

setting after observing data, to get the posterior, a new distribution over the pa-

rameters which takes into account both the information in the prior and the in-

formation appearing in the data. As specified before, the prior is defined as a

distribution p(θ | α,G) where α are the hyperparameters controlling it. The pos-

terior that we find, in turn, will be a new distribution p(θ | α�,G), where α� are

the new hyperparameters for the distribution over the parameters.

When we consider the probability of the data that we observe in our Bayesian

model, we treat θ as a hidden variable. It will therefore be integrated out in defin-
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ing the probability of the data:

p(x1, . . . ,xM | α,G) =

�
p(θ | α,G)

M�

m=1

�

y

p(xm,y | θ,G) dθ. (5.1)

In this setting, it is α, the distribution over grammar parameters, that softly ties

between the various parameters of the grammar, and it will be α that we estimate

when we perform learning.

We consider two alternative variations on the Bayesian idea, illustrated in Fig-

ure 5.1. In the first, called “model I,” the grammar’s probabilities θ are drawn

randomly once per sentence for the whole corpus x1, . . . ,xM . In “model II,” the

grammar parameters are drawn once for the whole corpus.

Conceptually, both options have advantages and disadvantages when modeling

natural language. Drawing θ for each derivation permits more flexibility across

derivations, perhaps allowing the learner to capture variation across the corpus

(even if not systematically, as the grammars are drawn IID), arising from different

authors, for example. Generating θ only once suggests we need to do inference

in a smaller space: we only need to find the posterior over a single θ, perhaps

leading to better generalization. We will consider both forms in our experiments

(Section 8.4).

5.1.1 Prior Distributions

A question that remains is what prior should we choose in order to represent ties

between the various grammar parameters. In their early work about conjugate pri-
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Model I:

For m ∈ {1, . . . ,M}:

1. Draw θm from the prior p(θ |
G, . . .).

2. Draw (xm,ym) from p(xm,ym |
θm,G).

Model II:

1. Draw θ from the prior p(θ |
G, . . .).

2. For m ∈ {1, . . . ,M}:

Draw (xm,ym) from p(xm,ym |
θ,G).

Figure 5.1: Two variations on Bayesian modeling of probabilistic grammars.

ors, Raiffa and Schlaifer (1961) set desiderata for prior distributions in parametric

models. These desiderata include: (i) analytical tractability—the posterior using

a certain prior family should stay in the prior family, while it is reasonably easy

to identify the posterior from a sample and a prior; (ii) richness—there should

be a member in the prior family that is able to express the modeler’s beliefs and

prior information; (iii) interpretability—the prior should be easily interpreted so

the modeler can verify that the choice of prior matches prior judgments.

Much of the Bayesian literature for probabilistic grammars and even in gen-

eral has diverged considerably from these desiderata, and focused only on the first

requirement of analytical tractability, which usually yields closed-form solutions

for identifying the posterior. There are probably two reasons for this: (i) un-

like richness and interpretability, analytical tractability is rigorously defined; (ii)

the fact that probabilistic grammars define distributions over combinatorial struc-

tures, such as trees, requires fast learning algorithms, which is the result of having

an analytically tractable prior. As a result, most of the Bayesian language learning
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literature has focused on Bayesian models with a Dirichlet prior (Johnson et al.,

2007; Goldwater and Griffiths, 2007; Toutanova and Johnson, 2007; Kurihara and

Sato, 2006, inter alia), which is conjugate to the multinomial family (satisfying

analytical tractability), and therefore – the posterior after observing sentences and

their derivations, which is a distribution over the probabilistic grammar param-

eters, is a Dirichlet as well. The family of Dirichlet priors is the only family

of priors which is conjugate to the multinomial distributions. As a result, a set

of independent Dirichlet distributions, defining a distribution over collections of

multinomials, is the only possible prior which is conjugate to the parameters of a

probabilistic grammar.

We argue that the last two requirements in the desiderata are actually more im-

portant than the first one, which is motivated by mere mathematical and compu-

tational convenience (and leads to the definition of conjugate priors). We suggest

replacing the first requirement with “computational tractability”, which requires

the following:

• It should be easy to represent the posterior (or an approximation of it) com-

putationally (as opposed to having an analytic “closed-form” solution).

• There should be an efficient procedure for identifying the posterior (or its

approximation) computationally.

When we replace analytical tractability with computational tractability, the

modeler can focus on choosing rich priors that can more properly model different

structural elements of a grammar. To solve the problem of inference, we can
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now use approximate inference algorithms such as the one we give in Section 5.4.

Indeed, approximations are sometimes required even for the conjugate case, and

are always required when the data are incomplete.

We have already defined richness, in a sense, as the notion of softly tying

between grammar parameters by using a covariance structure. In the next section,

we describe the Dirichlet prior, and explain why it does not satisfy this definition

of richness.

5.1.2 Dirichlet Distributions

From the computational perspective, the Dirichlet distribution is indeed a natural

choice for a prior over the parameters of the grammar because of its analytical

tractability, which makes inference more elegant and less computationally inten-

sive in Bayesian (Equation 5.1) settings. In addition, a Dirichlet prior can en-

courage sparse solutions (i.e., many θk,i = 0), a property which is desirable in

natural language learning (Johnson et al., 2007), as it corresponds to eliminating

unnecessary grammar rules. (Indeed, learning to exclude rules by setting their

probabilities to zero might be one way of going about symbolic grammar induc-

tion.)

If we use a Dirichlet distribution with a probabilistic grammar, then the hyper-

parameters for the grammar consist of K vectors with positive elements, the kth

of which has length Nk. We denote these hyperparameters by α, in which case
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the prior over the grammar parameters θ has the form:

p(θ | α) =
K�

k=1




�Nk

i=1 Γ(αk,i)

Γ
��Nk

i=1 αk,i

�
Nk�

i=1

θ
αk,i−1
k,i



 = B(α)×
K�

k=1

Nk�

i=1

θ
αk,i−1
k,i ,

where Γ(·) is the Gamma function and the factor B(α) is constant with respect to

θ.

Consider again the simple model of Example 2.1. If we embed it inside model

I (Figure 5.1) we arrive at the latent Dirichlet allocation model of Blei et al. (2003),

where each example is a document (not a sentence).

The Dirichlet distribution can also be derived as a normalized set of variables

of exponentiated independent Gamma-distributed variables. More precisely, for

each multinomial θk (k ∈ {1, . . . , K}), we can draw Nk independent random

samples vk,1, . . . , vk,Nk
from Gamma distributions with shapes αk,1, . . . ,αk,Nk

, re-

spectively, and scale 1 and then let:

θk,i =
vk,i�Nk

i�=1 vk,i�
.

This alternative representation of the Dirichlet distribution points to a weak-

ness: there is no explicit covariance structure present when θ are drawn from a

Dirichlet. The only way θk covary is through the normalization that maps vk,i to

the probability simplex. In fact, the correlation between θk,i and θk,i� is always

negative and equals − (αk,iαk,i�)1/2

((αk,0 − αk,i)(αk,0 − αk,i�))
1/2

where αk,0 =
�Nk

i=1 αk,i.

This relates back to the desiderata of Raiffa and Schaifer: the covariance (and in
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fact, variance) structure that the Dirichlet distribution offers is not rich. This is

especially true when modeling language, as we explain in the section below.

5.2 Modeling Covariance with Logistic Normal Dis-

tributions

A natural candidate for a distribution that models covariance is the multivariate

normal distribution. However, values drawn from the multivariate normal distri-

bution can be both positive and negative, and they also do not necessarily normal-

ize to 1, both are requirements from θ (see Equations 2.2–2.3). Aitchison (1986)

suggested a logistic transformation on a multivariate normal variable to get values

which correspond to points on the probability simplex. He called it the “logistic

normal” distribution.

The logistic normal (LN) distribution maps a (d−1)-dimensional multivariate

Gaussian to a distribution on the d-dimensional probability simplex, {�z1, . . . , zd� ∈

Rd : zi ≥ 0,
�d

i=1 zi = 1}, as follows:

1. Draw η = �η1, . . . , ηd−1� from a multivariate Gaussian with mean µ and

covariance matrix Σ.

2. Let ηd = 0.

3. For i ∈ {1, . . . , d}, let:

zi =
exp ηi�d
j=1 exp ηj

.
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Drawing from a (d−1)-dimensional Gaussian preserves identifiability; a d-dimensional

Gaussian would have an extra degree of freedom, allowing more than one outcome

of η to lead to the same z.

For probabilistic grammars, we define one LN distribution per multinomial.

This gives a prior over each θk that permits covariance among �θk,1, . . . , θk,Nk
�.

Blei and Lafferty (2006) and Ahmed and Xing (2007) successfully used the

LN distribution for topic models, extending the latent Dirichlet allocation model

(Blei et al., 2003). This permits one to have correlation between the various topics

for a given document.

We note that the family of logistic normal distributions and the family of

Dirichlet distributions are very different from each other. One cannot find two

distributions from each class which are arbitrary close to each other in any mean-

ingful sense. However, it can be shown (Aitchison, 1986) that given a Dirichlet

distribution with very large α, we can find a logistic normal distribution such that

the KL-divergence between the Dirichlet distribution and logistic normal distribu-

tion is small.

5.2.1 Sharing Across Multinomials
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I1 = {1:2, 3:6, 7:9} = { I1,1, I1,2, I1,L1 }
I2 = {1:2, 3:6} = { I2,1, I2,L2 }
I3 = {1:4, 5:7} = { I3,1, I3,L3 }
IN = {1:2} = { I4,L4 }

J1 J2 JK






partition structure S

η1 = �η1,1, η1,2, η1,3, η1,4, η1,5, η1,6, η1,7, η1,8, η1,�1� ∼ Normal(µ1,Σ1)
η2 = �η2,1, η2,2, η2,3, η2,4, η2,5, η2,�2� ∼ Normal(µ2,Σ2)
η3 = �η3,1, η3,2, η3,3, η3,4, η3,5, η3,6, η3,�3� ∼ Normal(µ3,Σ3)
η4 = �η4,1, η4,�4� ∼ Normal(µ4,Σ4)





sample η

η̃1 = 1
3�η1,1 + η2,1 + η4,1, η1,2 + η2,2 + η4,2�

η̃2 = 1
3�η1,3 + η2,3 + η3,1, η1,4 + η2,4 + η3,2, η1,5 + η2,5 + η3,3,
η1,6 + η2,6 + η3,4�

η̃3 = 1
2�η1,7 + η3,5, η1,8 + η3,6, η1,9 + η3,7�





combine η

θ1 = (exp η̃1)
��N1

i�=1 exp η̃1,i�

θ2 = (exp η̃2)
��N2

i�=1 exp η̃2,i�

θ3 = (exp η̃3)
��N3

i�=1 exp η̃3,i�





softmax

Figure 5.2: An example of a shared logistic normal distribution, illustrating Def. 5.1. N = 4 experts are used
to sample K = 3 multinomials; L1 = 3, L2 = 2, L3 = 2, L4 = 1, �1 = 9, �2 = 6, �3 = 7, �4 = 2, N1 = 2,
N2 = 4, and N3 = 3. From top to bottom: the partition structure S describes Ij which tell how segment a normal
expert into parts which are matched to multinomials (“partition structure S”). Each normal expert is sampled from
a multivariate normal (“sample η”), and then matched and averaged according to the partition strcture (“combine
η”). The final step is exponentiating and normalizing η to get θ (“softmax”). This figure is best viewed in color.
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The LN distribution has an inherent limitation when we consider probabilistic

models made up of more than one multinomial distribution, such as probabilistic

grammars. Each multinomial is drawn separately from an independent Gaussian,

so that covariance can only be imposed among events competing within one multi-

nomial, not across multinomials.
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Figure 5.3: Distributions over dependents for plural noun and singular noun for dependency trees (over part-of-
speech tags) extracted from the Penn Treebank. NN corresponds to a singular noun and NNS corresponds to a plural
noun. The Penn Treebank’s phrase-structure annotations were converted to dependencies using the head rules of
Yamada and Matsumoto, which are very similar to the ones by Collins (2003). See http://www.jaist.ac.
jp/˜h-yamada.
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The question that should be brought up at this point is whether we actually

expect this kind of correlation with language data, i.e., correlation across multi-

nomials. Figure 5.3 gives an affirmative answer. The plot in the figure describes

two distributions over dependents of singular noun and dependents of plural nouns

for dependency trees extracted from the Penn Treebank in English (Marcus et al.,

1993). One can imagine these two distributions functioning as two multinomials

for generating the children of singular nouns and plural nouns in a probabilistic

grammar defined for dependency trees. The key observation here is that clearly

see striking similarities between these two distributions. Not only are the distri-

butions over parameters correlated, they actually obtain similar probabilities for

various part-of-speech tags being dependents. Therefore, there is real limitation

in the inability to model correlation across multinomials.

One way to mend this limitation is to define a single Gaussian over N �
�K

k=1 Nk variables with one N × N covariance matrix. Then, instead of apply-

ing the logistic transformation to the whole vector as a single multinomial, we

can apply it to subvectors to get disjoint multinomials. When learning, the large

covariance matrix captures correlations between all pairs of events in all multi-

nomials. The induced distribution is called the partitioned logistic normal (PLN)

distribution. It is a generalization of the LN distribution (see Aitchison, 1986).

In practice, creating a covariance matrix of size N × N is likely to be too

expensive. The dependency model with valence (Klein and Manning, 2004), a

grammar that we use for our experiments in Chapter 8, for example, has O(t2)

weights for a part-of-speech vocabulary of size t, requiring a very large multivari-
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ate normal distribution with O(t4) covariance parameters.

To solve this problem, we suggest a refinement of the class of PLN distri-

butions. Instead of using a single normal vector for all of the multinomials, we

use several normal vectors, partition each one and then recombine parts which

correspond to the same multinomial, as an average. Next, we apply the logis-

tic transformation on the mixed vectors (each of which is normally distributed as

well). Figure 5.2 gives an example of a non-trivial case of using a SLN distribu-

tion, where three multinomials are generated from four normal experts.

We now formalize this notion. For a natural number N , we denote by 1:N the

set {1, . . . , N}. For a vector in v ∈ RN and a set I ⊆ 1:N , we denote by vI the

vector created from v by using the coordinates in I . Recall that K is the number of

multinomials in the probabilistic grammar, and Nk is the number of events in the

kth multinomial. We define a shared logistic normal distribution with N “experts”

over a collection of K multinomial distributions:

Definition 5.1 Let ηn ∼ Normal(µn,Σn) be a set of multivariate normal vari-

ables for n ∈ 1:N , where the length of ηn is denoted �n. Let In = {In,j}Ln
j=1 be

a partition of 1:�n into Ln sets, such that ∪Ln
j=1In,j = 1:�n and In,j ∩ In,j� = ∅

for j �= j�. Let Jk for k ∈ 1:K be a collection of (disjoint) subsets of {In,j |

n ∈ 1:N, j ∈ 1:�n, |In,j| = Nk}, such that all sets in Jk are of the same size, Nk.

Let η̃k = 1
|Jk|

�
In,j∈Jk ηn,In,j

, and θk,i = exp(η̃k,i) /
�

i� exp(η̃k,i�) . We then say

θ distributes according to the shared logistic normal distribution with partition

structure S = ({In}Nn=1, {Jk}Kk=1) and normal experts {(µn,Σn)}Nn=1 and denote

it by θ ∼ SLN(µ,Σ, S).
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The partitioned LN distribution in Aitchison (1986) can be formulated as a

shared LN distribution where N = 1. The LN collection presented in Section 5.2

is the special case where N = K, each Ln = 1, each �k = Nk, and each Jk =

{Ik,1}.

We note that there is an issue with identifiability that we need to resolve with

SLN distributions, as with the LN distribution. It is required that for all multi-

nomials, we set the first value of the samples from the normal expert to 0. For

simplicity, we did not include it explicitly in Definition 5.1, because this can be

achieved by setting the normal expert’s mean and variance values to 0 in the first

index of each normal expert (ηn,1 = 0 for all n).

The covariance among arbitrary θk,i is not defined directly; it is implied by the

definition of the normal experts ηn,In,j
, for each In,j ∈ Jk. We note that a SLN can

be represented as a PLN by relying on the distributivity of the covariance operator,

and merging all the partition structure into one (perhaps sparse) covariance matrix.

SLNs, in that case, represent a subset of PLNs with a factored structure on the

covariance matrices.

It is convenient to think of each ηi,j as a weight associated with a unique

event’s probability, a certain outcome of a certain multinomial in the probabilis-

tic grammar. By letting different ηi,j covary with each other, we strengthen the

relationships among θk,j and permit learning of the one to affect the learning of

the other. Definition 5.1 also suggests that in order to get the multinomial fam-

ily, we define local log-linear models in the form of a product-of-experts (Hinton,

1999), because the exponential of an average of normals becomes a product of
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(unnormalized) probabilities. We discuss this more in Section 5.2.2.

We note that the partition structure is a predetermined hyperparameter, which

remains fixed during learning. In our experiments, it encodes domain knowledge

about the languages we experiment with (Section 8.5). We believe this is a key

advantage of SLN in this setting: marrying the notions of prior knowledge and a

Bayesian prior. The beliefs of the model about a language can be encoded as a

distribution over the parameters.

5.2.2 Local Log-Linear Models over Parameters

We give now another interpretation of the shared logistic normal prior using a fea-

ture representation. A probabilistic grammar with a shared logistic normal prior

can be thought of as a probabilistic grammar where the grammar’s parameters are

themselves modeled using a local log-linear model with a Gaussian prior over the

weights of this log-linear model. Let θk be a multinomial in the collection of

multinomials for a probabilistic grammar. Then, according to Definition 5.1 we

have:

θk,i =
exp (gk(i) · η)

Zk(η)
,

where η is a vector of length
�N

n=1 �n, a concatenation of all normal experts, and

gk(i) is a feature vector, again of length
�N

n=1 �n, which is divided into subvectors

gk,n(i) each of length �n. gk,n,j(i) = 1/|Jk| if the ith event in the kth multinomial

uses the jth coordinate of the nth normal expert—that is, there exists an In,r ∈
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In ∩ Jk such that j ∈ In,r (according to Definition 5.1)—and 0 otherwise. The

term Zk(η) is a normalization constant of the form:

Zk(η) =
�

i�

exp (gk(i
�) · η) .

Note that the features in the local log-linear model refer to the hyperparam-

eters of the SLN, more specifically, the partition structure. They do not refer to

the observed data or the latent structural elements in the probabilistic grammar.

These features have a Gaussian prior over them, represented by the normal ex-

perts’ mean values and covariance matrices (µ and Σ). In that case, the Gaussian

prior which we optimize during inference using empirical Bayes (Section 5.4) can

be thought of as a quadratic penalty on the local log-linear weights. We note that

in most cases in the literature, Gaussian priors (or L2 regularizers) are used with

mean value 0 and a uniform diagonal covariance matrix, in order to push feature

weights to values close to 0. This is not the case with our model.

Berg-Kirkpatrick et al. (2010) used the idea of local log-linear models for sev-

eral unsupervised natural language processing tasks, including dependency gram-

mar induction and part-of-speech tagging. Instead of using features that are based

on a Gaussian prior, they used a set of ordinary binary features, which describe

relationships between different parameters in a similar way to the ones presented

in Section 8.5. In Berg-Kirkpatrick et al. (2010), one can use essentially any bi-

nary feature on the parameter space, which would require estimating an additional

parameter for the model (the weight of the feature). With the logistic normal, the
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number of parameters we require to estimate grows with the number of normal

experts that we use for estimation. Each such normal expert introduces a new set

of features according to the formulation above.

5.3 Variational Inference with Logistic Normal Dis-

tributions

The lack of conjugacy of the logistic normal distribution to the multinomial family

complicates the inference of distributions over θ and distributions over the hidden

derivations y from the probabilistic grammar, given a sequence of observed sen-

tences x1, ...,xM .

Mimno et al. (2008) explored inference with the logistic normal distribution

using sampling with an auxiliary variable method. However, sampling is notori-

ously slow to converge, especially with complicated structures such as grammat-

ical derivations. The algorithm Mimno et al. suggest is also rather complicated,

while alternatives, such as mean-field variational inference (Wainwright and Jor-

dan, 2008), offer faster convergence and a more intuitive solution to the problem

of non-conjugacy of the logistic normal distribution.

Variational inference is a deterministic alternative to MCMC, which casts pos-

terior inference as an optimization problem (Jordan et al., 1999; Wainwright and

Jordan, 2008). The optimized function is a bound on the marginal likelihood of

the observations, which is expressed in terms of a so-called “variational distribu-

tion” over the hidden variables. When the bound is tightened, that distribution is
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close to the posterior of interest. Not only do variational methods tend to converge

faster than MCMC, they can be more easily parallelized over multiple processors

in a framework such as MapReduce (Dean and Ghemawat, 2004).

Variational inference algorithms have been successfully applied to various

grammar and syntax learning tasks (Kurihara and Sato, 2006; Liang et al., 2007;

Cohen et al., 2008; Headden et al., 2009; Boyd-Graber and Blei, 2010, inter alia).

We give the full technical details of mean-field variational inference for proba-

bilistic grammars with logistic normal priors in Section 5.3.2, and turn to give a

brief overview of the main technical details next, under the simplifying assump-

tion that we have a single observation x.

Mean-field variational inference in the Bayesian setting relies on two prin-

cipal approximations: the first approximation is done to the marginalized log-

likelihood. Using Jensen’s inequality and an auxiliary distribution q(θ,y), later

to be used as our approximate posterior, we bound the log-likelihood, marginaliz-

ing out the parameters and the hidden derivations in the grammar:

log

� �

y

p(x,y,θ | µ,Σ, S,G) dθ ≥ Eq[log p(x,y,θ | µ,Σ, S,G)] +H(q),

(5.2)

where H(q) denotes the Shannon entropy of q. The goal of the approximation in

Equation 5.2 is to derive a bound which is optimized with respect to q, instead of

optimizing the marginalized log-likelihood, which is intractable. The distribution
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q serves as our approximate posterior.

The bound in Equation 5.2 requires further approximation, the mean-field ap-

proximation, to be tractable. This mean-field approximation states that q(θ,y) is

factorized and has the following form:

q(θ,y) = q(θ)q(y).

The variational distributions, q(θ) and q(y) can take an arbitrary form, as long

as the bound in Equation 5.2 can be efficiently maximized with respect to these

variational distributions. For the case of logistic normal priors, an additional ap-

proximation will be necessary (a first-order Taylor approximation to the log of the

normalization of the logistic normal distribution), because of the lack of conju-

gacy of the logistic normal priors to the multinomial family (see Section 5.3.2).

We show in Section 5.3.2 that even though q(y) can have an arbitrary form, in or-

der to maximize the variational bound it needs to have the form of a probabilistic

grammar, dominated by the grammar’s variational parameters. This makes in-

ference tractable through the use of an inside-outside algorithm with a weighted

grammar of the same form as the original model. The mean-field approximation

yields an elegant algorithm, which looks similar to the Expectation-Maximization

algorithm (Section 2.2), alternating between optimizing the bound in Equation 5.2

with respect to q(θ) and with respect to q(y).
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5.3.1 Variational EM

The variational inference algorithm in Section 5.3 assumes that the µ and Σ are

fixed. We are interested in obtaining an estimate for µ and Σ, so that we can fit the

data and then use the learned model as described in Section 5.4.1 to decode new

data (e.g., the test set in our experiments). To achieve this, we will use the above

variational method within an EM algorithm that estimates µ and Σ in empirical

Bayes fashion. In the E-step, we maximize the bound with respect to the vari-

ational parameters using coordinate ascent as in Section 5.3. We optimize each

of these separately in turn, cycling through them, using appropriate optimization

algorithms for each. In the M-step, we apply maximum likelihood estimation

with respect to µ and Σ given sufficient statistics gathered from the variational

parameters in the E-step.

The algorithm for variational inference with probabilistic grammars using a

logistic normal prior is defined in Algorithms 2–4.1 Since the updates for ζ̃(t)k are

fast, we perform them after each optimization routine in the E-step (suppressed for

clarity). There are variational parameters for each training example, indexed by

m. We denote by B the variational bound in Equation 5.6. Our stopping criterion

relies on the likelihood of a held-out set using a point estimate of the model.

1An implementation of the algorithm is available at http://www.ark.cs.cmu.edu/
DAGEEM.
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5.3.2 Derivation of the Variational Inference Bound

This section can be skimmed over in first reading. Its goal is to give the de-

tails of the derivation of the variational inference algorithm. We give a deriva-

tion of a variational inference algorithm for model I, with the shared logistic nor-

mal distribution as a prior. The derivation is based on the one given in Blei and

Lafferty (2006). The derivation for model II can be followed similarly, as ex-

plained below. For model I, we seek to find an approximation posterior function

q(η1, ...,ηM ,y1, ...,yM) that maximizes a lower bound (the negated variational

free energy) on the log-likelihood, a bound which is achieved using Jensen’s in-

equality (the following probability quantities should be understood as if we always

condition on the grammar G):

M�

m=1

log
�

y

p(xm,y | µ,Σ, S)

≥
M�

m=1

�
N�

i=1

Eq

�
log p(ηm,i | µi,Σi)

�
+ Eq [log p(xm,ym | ηm, S)]

�
+H(q).(5.3)

H(·) denotes the Shannon entropy.

We make a mean-field assumption, and assume that the posterior has the fol-

lowing form:

q(η1, ...,ηM ,y1, ...,yM) =
M�

m=1

qm(ηm,ym), (5.4)
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where

qm(ηm,ym) =

�
N�

k=1

Lk�

i=1

qm(ηm,k,i | µ̃m,k,i, σ̃
2
m,k,i)

�
× qm(ym),

and qm(ηm,k,i | µ̃m,k,i, σ̃2
m,k,i) is a Gaussian with mean µ̃m,k,i and variance σ̃2

m,k,i.

Note that this means that the variational distributions have a diagonal matrix for

their covariance structure. The model covariance matrices (the hyperparameters

Σ) can still have covariance structure. This selection of variational distributions

makes inference much easier. The factorized form of Equation 5.4 implies the

following identities:

Eq

�
log p(ηm,i | µi,Σi)

�
= Eqm

�
log p(ηm,i | µi,Σi)

�
,

Eq [log p(xm,ym | ηm, S)] = Eqm [log p(xm,ym | ηm, S)] ,

H(q) =
N�

m=1

H(qm).

Let ηCk,i be an intermediate variable, denoting the average of the normal experts

which appear in the partition structure and determine the value of the ith event in

the kth multinomial of the grammar. More formally, we define the vector ηCk of

length Nk to be:

ηCk � 1

|Jk|
�

Ir,j∈Jk

ηr,Ir,j .
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Unfolding the expectation with respect to qm(ym) in the second term in Equa-

tion 5.3, while recalling that θm is a deterministic function of ηm that averages

different subvectors from the collection of multinomials ηm according to the par-

tition structure S, we have that:

Eqm [log p(xm,ym | ηm, S)]

= Eqm(ηm)

�
K�

k=1

�Nk
i=1

�

y

qm(ym)fk,i(xm,ym)

� �� �
f̃m,k,i

log θm,k,i

�

= Eqm(ηm)

�
K�

k=1

Nk�

i=1

f̃m,k,i

�
ηCm,k,i − log

Nk�

i�=1

exp ηCm,k,i�

��
, (5.5)

where f̃m,k,i is the expected number of occurrences of the ith event in distribution

k, under qm(ym). With many kinds of probabilistic grammars, this quantity can

be computed using a dynamic programming algorithm like the forward-backward

or inside-outside algorithm.

The logarithm term in Equation 5.5 is problematic because of the expectation

with respect to qm(ηm). We approximate it with a first-order Taylor expansion,

introducing M × K more variational parameters ζ̃m,k for m ∈ {1, ...,M} and

K ∈ {1, ..., K}:

log

�
Nk�

i�=1

exp ηCm,k,i�

�
≤ log ζ̃m,k − 1 +

1

ζ̃m,k

Nk�

i�=1

exp ηCm,k,i� .

We note that the value Eqm(ηm)

�
exp(ηCm,k,i�)

�
can be calculated by evaluating
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Algorithm 2: Variational EM for probabilistic grammars with LN prior
Input: initial parameters µ(0), Σ(0), training data x, and development data

x�

Output: learned parameters µ, Σ
t ← 1 ;
repeat

Call E-Step for each training example m = 1, ...,M (Algorithm 3)
Call M-Step (Algorithm 4)
t ← t+ 1;

until likelihood of held-out data, p(x� | E[µ(t)]), decreases;
return µ(t), Σ(t)

the moment-generating function of the normal distribution g(t) = Eqm(ηm)

�
exp(tηCm,k,i�)

�

at t = 1. We now have:

Eqm [log p(xm,ym | ηm, S)]

≥ Eqm(ηm)

�
K�

k=1

Nk�

i=1

f̃m,k,i

�
ηm,k,i − log ζ̃m,k + 1− 1

ζ̃m,k

Nk�

i�=1

exp ηm,k,i�

��

=
K�

k=1

Nk�

i=1

f̃m,k,i

�
µ̃m,k,i − log ζ̃m,k + 1− 1

ζ̃m,k

Nk�

i�=1

exp

�
µ̃C
m,k,i +

(σ̃C
m,k,i)

2

2

��

� �� �
ψ̃m,k,i

=
K�

k=1

Nk�

i=1

f̃m,k,iψ̃m,k,i

where we use again the properties of the shared logistic normal distribution and
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rely on the partition structure S to define:

µ̃C
m,k �

1

|Jk|
�

Ir,j∈Jk

µ̃m,r,Ir,j ,

(σ̃C
m,k)

2 � 1

|Jk|2
�

Ir,j∈Jk

σ̃2
m,r,Ir,j .

Note the shorthand ψ̃k,i to denote an expression involving µ̃C , σ̃C , and ζ̃.

The final form of our bound is:2

log p(x,y | µ,Σ) ≥
�

K�

k=1

Eq [log p(ηk | µk,Σk)]

�
+

�
K�

k=1

Nk�

i=1

f̃k,iψ̃k,i

�
+H(q).

(5.6)

Using an EM-style algorithm, we will alternate between finding the maximiz-

ing q(η) and the maximizing q(y). Maximization with respect to qm(ηm) is not

hard, because q(η) is parameterized. The following lemma shows that fortunately,

finding the maximizing qm(ym), which we did not parameterize originally, is not

hard either:

Lemma 5.2 Let r(ym | xm, eψ̃m) denote the conditional distribution over ym

given xm defined as:

rm(ym | xm, e
ψ̃) =

1

Zm(ψ̃m)

K�

k=1

Nk�

i=1

exp
�
ψ̃m,k,ifm,k,i(xm,ym)

�

where Zm(ψ̃m) is a normalization constant. Then qm(ym) = rm(ym | xm, eψ̃m)

2A tighter bound, based on a second-order approximation, was proposed in Ahmed and Xing
(2007). We use a first-order approximation for simplicity, similar to Blei and Lafferty (2006).
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maximizes the bound in Equation 5.6.

Proof First note that H(qm) = H(qm(ηm | µ̃m, σ̃m))+H(qm(ym)). This means

that the terms we are interested in maximizing from Equation 5.6 are the follow-

ing, after plugging in f̃m,k,i explicitly:

L = argmax
qm(ym)

�

ym

qm(ym)

�
K�

k=1

Nk�

i=1

fm,k,i(xm,ym)ψ̃m,k,i

�
+H(qm(ym)).

Then, note that:

L = argmin
qm(ym)

DKL

�
qm(ym)

��� rm(ym | xm, e
ψ̃m)

�
, (5.7)

where DKL denotes the KL divergence. To see that, combine the definition of

KL divergence with the fact that
�K

k=1

�Nk
i=1 fm,k,i(x,y)ψ̃m,k,i − logZm(ψ̃m) =

log rm(ym | xm, eψ̃m) where logZm(ψ̃) does not depend on qm(ym). Equa-

tion 5.7 is minimized when qm = rm. �

The above lemma demonstrates that the minimizing qm(ym) has the same form

as the probabilistic grammar G, only without having sum-to-one constraints on

the weights (leading to the required normalization constant Zm(ψ̃m)). As in clas-

sic EM with probabilistic grammars, we never need to represent qm(ym) explic-

itly; we need only f̃m, which can be calculated as expected feature values under

rm(ym | xm, eψ̃m) using dynamic programming.

Variational inference for model II is done similarly to model I (Figure 5.1).

The main difference is that instead of having variational parameters for each
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qm(ηm), we have a single distribution q(η), and the sufficient statistics from the

inside-outside algorithm are used altogether to update it during variational infer-

ence.

5.4 Decoding: Inferring y

The estimation procedure in Section 5.3.1 eventually outputs a set of hyperpa-

rameters that parametrize the distribution over the parameters. We consider four

approaches to using these estimated hyperparameters to infer y, i.e. to output

derivations or structures given unseen input sentences. These four approaches are

Viterbi decoding, minimum Bayes risk decoding, posterior decoding, and a new

method which is specialized for exploiting the covariance structure present with

the shared logistic normal distribution, which we call “committee decoding.” We

now explain each approach in detail.

5.4.1 Viterbi Decoding

Classical statistical approaches to language processing normally assume that in-

puts (here, sentences x) are independently and identically distributed. Decoding

is the problem of choosing an analysis (here, grammatical derivation y) given

the input. Most commonly this is accomplished by choosing the most probable

analysis:

y∗ = argmin
y

p(y | x,θ,G) = argmin
y

p(x,y | θ,G). (5.8)

141



This is commonly called “Viterbi” decoding, referring to the algorithm that ac-

complishes the maximization for hidden Markov models.

In this case, we use a point estimate of the θ, according to the output of the

variational EM algorithm. More specifically, we exponentiate and normalize the

mean values of the estimated logistic normal distribution to obtain θ. Then, we

proceed with Viterbi decoding according to Eq. 5.8. When the grammar is a prob-

abilistic context-free grammar, for example, Viterbi decoding would amount to

using an algorithm such as the CKY algorithm to find the most probable parse.

5.4.2 Minimum Bayes Risk Decoding

An alternative to Viterbi decoding is to choose the analysis that minimizes risk, or

the expectation (under the model) of a cost function.3 Let cost(y,y∗) denote the

nonnegative cost of choosing analysis y when the correct analysis is y∗.

y∗ = argmax
y

Ep(·|x,θ,G)cost(y, ·) = argmax
y

�

y�

p(y� | x,θ,G) cost(y,y�).

This is known as minimum Bayes risk (MBR) decoding (Goodman, 1996).4 In

Chapter 7 we define precisely the cost function in the context of dependency

grammar induction.

3We note that as a matter of fact, minimizing the expectation under the model of a cost function
is actually a generalization of Viterbi decoding. We can recover Viterbi decoding by using the 0-1
cost function.

4In some cases, decoding selects only certain salient aspects of a derivation, such as the derived
tree corresponding to a tree adjoining grammar’s derivation tree. In such cases, Viterbi and/or
MBR decoding may require approximations.
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5.4.3 Posterior Decoding

One additional option of inferring y for unseen sentences, which makes use of a

fully Bayesian setting, is that of “posterior decoding”. In the Bayesian setting, de-

coding might be accomplished using the posterior over derivations, marginalizing

out the unknown grammar weights. For model I, this would correspond to:

y∗ = argmax
y

p(y | α,G) = argmax
y

�
p(θ | α,G)p(x,y | θ,G) dθ. (5.9)

Unfortunately, there is no closed-form solution for the integral in Equation 5.9

and finding y∗ is intractable. We therefore have to resort to approximate inference

similar to the variational inference algorithm described above. More specifically,

we would have to run the variational EM algorithm with the training data, and then

take an extra E-step with the unseen sentences, to obtain the posterior distributions

over the structures of the unseen sentences.5 We performed some preliminary

experiments using this method, and concluded that its performance is very close

to the performance of Viterbi decoding. Yet, this approach to decoding is much

more expensive, because of the additional E-step. For this reason, in Chapter 8 we

do not report results for using this approach, but instead focus on the other three

methods, which are fast.

5We note that model II creates dependence among the derivations of the different sentences in
the training set, requiring a different inference procedure.
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5.4.4 Comittee Decoding

Neither Viterbi nor MBR decoding uses the entire distribution over grammar

weights. In the LN case, for example, the covariance matrix Σ is ignored. We sug-

gest “committee decoding,” in which a set of randomly sampled grammar weights

are drawn for each sentence to be parsed. The weights are drawn from the learned

distribution over grammar weights, parameterized by µ and Σ in the LN case.

Viterbi or MBR decoding can then be applied. Note that this decoding mecha-

nism is randomized: we sample a grammar per sentence, and use it to decode. In

our empirical study (Chapter 8), we apply this decoding mechanism ten times, and

average performance. This decoding method is attractive because it has general-

ization error guarantees: in a PAC-Bayesian framework, it can be shown that the

error of committee parsing on the sample given should be close to the expected

error (see Seeger, 2002; McAllester, 2003; Banerjee, 2006).

5.5 Summary

In this chapter, we presented an estimation method for probabilistic grammars

which is framed in a Bayesian setting. In this setting, the estimation method uses

a prior family based on the logistic normal distribution to softly tie between the

various parameters of the grammar.

Softly tying between various parameters in the grammar is linguistically moti-

vated. We will consider in Chapter 7 a grammar induction task, where the proba-

bilistic grammar is defined over part of speech tags. In this case, we can consider
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two versions for choosing the set of part of speech tags: coarse part of speech tags

and more fine-grained part of speech tags.

Estimating the grammar directly from the coarse part of speech tags leads to

poor results. Information is lost when we do learning this way. When using fine-

grained part of speech tags, performance improves, and it improves even more

considerably when we softly tie between the various fine-grained part of speech

tag categories.
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Algorithm 3: E-Step (subroutine for Algorithm 2)
repeat

optimize for µ̃(t)
m,k, k = 1, ..., K: use conjugate gradient descent with

∂B

∂µ̃m,k,i
= −

�
(Σ(t−1)

k )−1)(µ(t−1)
k − µ̃m,k)

�

i
− f̃m,k,i

+
Nk�

i�=1

�
f̃m,k,i�/ζ̃m,k

�
exp

�
µ̃k,i� + σ̃2

k,i�

2

�

optimize σ̃(t)
m,k, k = 1, ..., K: use Newton’s method for each coordinate

(with σ̃m,k,i > 0) with

∂B

∂σ̃2
m,k,i

= −
Σ(t−1)

k,ii

2
−

��Nk
i�=1 f̃m,k,i�

�
exp

�
µ̃m,k,i+σ̃2

m,k,i

2

�

2ζ̃m,k

+
1

2σ̃2
m,k,i

update ζ̃(t)m,k, ∀k:

ζ̃(t)m,k ←
Nk�

i=1

exp

�
µ̃(t)
m,k,i +

(σ̃(t)
m,k,i)

2

2

�

update ψ̃
(t)

m,k, ∀k:

ψ̃(t)
m,k,i ← µ̃(t)

m,k,i − log ζ̃(t)m,k + 1− 1

ζ̃(t)m,k

Nk�

i�=1

exp

�
µ̃(t)
m,k,i +

(σ̃(t)
m,k,i)

2

2

�

compute expected counts f̃ (t)m,k, k = 1, ..., K: use an inside-outside
algorithm to re-estimate expected counts f̃ (t)

m,k,i in weighted grammar
q(y) with weights eψ̃m ;

until B does not change;
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Algorithm 4: M-Step (subroutine for Algorithm 2)
Estimate µ(t) and Σ(t) using the following maximum likelihood
closed-form solution:

µ(t)
k,i ←

1

M

M�

m=1

µ̃(t)
m,k,i

�
Σ(t)

k

�

i,j
← 1

M

�
M�

m=1

µ̃(t)
m,k,iµ̃

(t)
m,k,j + (σ̃(t))2m,k,iδi,j +Mµ(t)

k,iµ
(t)
k,j

− µ(t)
k,j

M�

m=1

µ̃(t)
m,k,i − µ(t)

k,i

M�

m=1

µ̃(t)
m,k,j

�
,

where δi,j = 1 if i = j and 0 otherwise.
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Chapter 6

Estimation of Probabilistic

Grammars in the Nonparametric

Setting

Bayesian nonparametric approaches (NP Bayes) to grammar learning have an at-

tractive property, that the size of the model grows as we have more data to explain

the patterns in the data. The main application of these nonparametric methods in

computational linguistics employ the Dirichlet process (Antoniak, 1974; Pitman,

2002).

The reason for focusing on the Dirichlet process is similar to the reason for the

multinomial family being a building block in the distribution catalog of computa-

tional linguistics. In the underlying definition of the Dirichlet process (especially

when viewed through the stick breaking process) there is a multinomial over a
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discrete, infinite space of states that can correspond to nonterminals in a gram-

mar (Finkel et al., 2007; Liang et al., 2007) or other elements in a grammar.

Indeed, one example of a successful use of NP Bayes in a grammatical setting

is that of adaptor grammars (Johnson et al., 2006; Johnson, 2008b,a; Johnson

and Goldwater, 2009), which define a distribution over derivations in a PCFG such

that the posterior exhibits a rich-get-richer property: whole subtrees that have been

sampled frequently will tend to have higher weight in the posterior.

In the unsupervised setting, adaptor grammars require an expensive posterior

inference procedure. This inference procedure, which appeared first in Johnson

et al. (2006), is based on a Metropolis-Hastings sampler nested in a Gibbs sampler.

In this chapter, we offer an empirical Bayesian framework to do inference and

estimation with adaptor grammars. Like in Chapter 5, this framework is based on

variational inference. The key advantage that it has over the sampler suggested

in Johnson et al. (2006) is that it is parallelizable. This holds because of the

more general reason that the E-step in variational expectation-maximization is

parallelizable.

In a sense, our variational inference algorithm reduces the nonparametric form

of adaptor grammars to a more managable parametrically represented form. This

form is embodied in a variational distribution estimated through a variational EM

algorithm.

The rest of this chapter is organized as follows. In Section 6.1 we describe

a stick-breaking representation of adaptor grammars, which enables variational

inference (Section 6.2) and a well-defined incorporation of recursion into adaptor
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grammars. In Section 6.3 we use our variational inference algorithm to show that

it indeed achieves similar results to the sampler of Johnson et al. (2006) for the

problem of word segmentation. We discuss our framework in Section 6.4 and

summarize in 6.5.

Some of the work in this chapter has been described in Cohen et al. (2010).

6.1 Adaptor Grammars

We review adaptor grammars and develop a stick-breaking representation of the

tree distribution.

6.1.1 Definition of Adaptor Grammars

Adaptor grammars capture syntactic regularities in sentences by placing a non-

parametric prior over the distribution of syntactic trees that underlie them. The

model exhibits “rich get richer” dynamics: once a tree is generated, it is more

likely to reappear.

Adaptor grammars were developed by Johnson et al. (2006). An adaptor gram-

mar is a tuple A = �G,M,a, b,α�, which contains: (i) a context-free grammar

G = �W,N,R, S� where W is the set of terminals, N is the set of nonterminals,

R is a set of production rules, and S ∈ N is the start symbol—we denote by RA

the subset of R with left-hand side A; (ii) a set of adapted nonterminals, M ⊆ N;

and (iii) parameters a, b and α, which are described below.

An adaptor grammar assumes the following generative process of trees. First,
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the multinomial distributions θ for a PCFG based on G are drawn from Dirichlet

distributions. Specifically, multinomial θA ∼ Dir(αA) where α is collection of

Dirichlet parameters, indexed by A ∈ N.

Trees are then generated top-down starting with S. Any non-adapted nonter-

minal A ∈ N \M is expanded by drawing a rule from RA. There are two ways to

expand A ∈ M:

1. With probability (nz−bA)/(nA+aA) we expand A to subtree z (a tree rooted at

A with a yield in W∗), where nz is the number of times the tree z was previously

generated and nA is the total number of subtrees (tokens) previously generated

root being A. We denote by a the concentration parameters and b the discount

parameters, both indexed by A ∈ M. We have aA > −bA and bA ∈ [0, 1].

2. With probability (aA + kAbA)/(nA + aA), A is expanded as in a PCFG by a

draw from θA over RA, where kA is the number of subtrees (types) previously

generated with root A.

For the expansion of adapted nonterminals, this process can be explained us-

ing the Chinese restaurant process (CRP) metaphor: a “customer” (corresponding

to a partially generated tree) enters a “restaurant” (corresponding to a nontermi-

nal) and selects a “table” (corresponding to a subtree) to attach to the partially

generated tree. If she is the first customer at the table, the PCFG �G,θ� produces

the new table’s associated “dish” (a subtree). We note that our construction de-

viates from the strict definition of adaptor grammars (Johnson et al., 2006): (i)

in our construction, we assume (as prior work does in practice) that the adaptors
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in A = �G,M,a, b,α� follow the Pitman-Yor (PY) process (Pitman and Yor,

1997), though in general other stochastic processes might be used; and (ii) we

place a symmetric Dirichlet over the parameters of the PCFG, θ, whereas John-

son et al. used a fixed PCFG for the definition (though in their actual experiments

they used a Dirichlet prior).

When adaptor grammars are defined using the CRP, the PCFG G has to be

non-recursive with respect to the adapted nonterminals. More precisely, for A ∈

N, denote by Reachable(G, A) all the nonterminals that can be reached from A

using a partial derivation from G. Then we restrict G such that for all A ∈ M,

we have A /∈ Reachable(G, A). Without this restriction, we might end up in

a situation where the generative process is ill-defined: in the CRP terminology,

a customer could enter a restaurant and select a table whose dish is still in the

process of being selected. Consider the simple grammar with rules { S → S S,

S → a }. Assume that a customer enters the restaurant for S. She sits at a table,

and selects a dish, a subtree, which starts with the rule S → S S. Perhaps the first

child S is expanded by S → a. For the second child S, it is possible to re-enter

the “S restaurant” and choose the first table, where the “dish” subtree is still being

generated. In the more general form of adaptor grammars with arbitrary adaptors,

the problem amounts to mutually dependent definitions of distributions which rely

on the others to be defined. We return to this problem in Section 6.2.2.

Inference The inference problem is to compute the posterior distribution of

parse trees given observed sentences x = �x1, . . . , xn�. Typically, inference with
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adaptor grammars is done with Gibbs sampling. Johnson et al. (2006) use an em-

bedded Metropolis-Hastings sampler (Robert and Casella, 2005) inside a Gibbs

sampler, because it is intractable to compute the distribution over trees for a sen-

tence in the corpus conditioning on other trees being observed. The proposal dis-

tribution is a PCFG, resembling a tree substitution grammar (TSG; Joshi, 2003).

The sampler of Johnson et al. is based on the representation of the PY process as

a distribution over partitions of integers. This representation is not amenable to

variational inference.

In the empirical Bayesian setting, we can also estimate the hyperparameters of

adaptor grammars, more specifically, estimate a, b and α. Johnson and Goldwater

(2009) estimate these hyperparameters by using an MCMC method with a vague

prior.

6.1.2 Stick-Breaking Representation

To develop a variational inference algorithm for adaptor grammars, we require an

alternative representation of the model in Section 6.1.1. The CRP-based defini-

tion implicitly marginalizes out a random distribution over trees. For variational

inference, we construct that distribution.

We first review the Dirichlet process and its stick-breaking representation

(Sethuraman, 1994). The Dirichlet process defines a distribution over distribu-

tions. Samples from the Dirichlet process tend to deviate from a base distribution

depending on a concentration parameter. Let G ∼ DP(G0, a) be a distribution

sampled from the Dirichlet process with base distribution G0 and concentration
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parameter a. The distribution G is discrete, which means it puts positive mass on

a countable number of atoms drawn from G0. Repeated draws from G exhibit the

“clustering property,” which means that they will be assigned to the same value

with positive probability. Thus, they exhibit a partition structure. Marginalizing

out G, the distribution of that partition structure is given by a CRP with parameter

a (Pitman, 2002).

The stick-breaking process gives a constructive definition of G (Sethuraman,

1994). We describe this construction for the Pitman-Yor process, which is an ex-

tension of the Dirichlet process. With the stick-breaking process, we first sample

“stick lengths” π ∼ GEM(a, b) (in the case of Dirichlet process, we have b = 0).

The GEM partitions the interval [0, 1] into countably many segments. First, draw

vi ∼ Beta(1 − b, a + ib) for i ∈ {1, . . .}. Then, define πi � vi
�i−1

j=1(1 − vj). In

addition, we also sample infinitely many “atoms” independently zi ∼ G0. Define

G as:

G(z) =
�∞

i=1 πiδ(zi, z)

where δ(zi, z) is 1 if zi = z and 0 otherwise. It can be shown that this random

distribution G is drawn from a Pitman-Yor process. Notice the discreteness of G

is laid bare in the stick-breaking construction.

With the stick-breaking representation in hand, we turn to a constructive defi-

nition of the distribution over trees given by an adaptor grammar. Let A1, . . . , AK

be an enumeration of the nonterminals in M which satisfies: i ≤ j ⇒ Aj /∈

Reachable(G, Ai). (That this exists follows from the assumption about the lack
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of recursiveness of adapted nonterminals.) Let Yield(z) be the yield of a tree

derivation z. The process that generates observed sentences x = �x1, . . . , xn�

from the adaptor grammar A = �G,M,a, b,α� is as follows:

1. For each A ∈ N, draw θA ∼ Dir(αA).

2. (Construct grammar) For A from A1 to AK , define GA as follows:

(a) Draw πA | aA, bA ∼ GEM(aA, bA).

(b) For i ∈ {1, . . .}, grow a tree zA,i as follows:

i. Draw A → B1 . . . Bn from RA.

ii. zA,i = A
❛❛❛

✦✦✦
B1 · · · Bn

iii. While Yield(zA,i) has nonterminals:

A. Choose an unexpanded nonterminal B from yield of zA,i.

B. If B ∈ M, expand B according to GB (defined on previous iterations

of step 2).

C. If B ∈ N \M, expand B with a rule from RB according to Mult(θB).

(c) For i ∈ {1, . . .}, define GA(zA,i) = πA,i

3. (Sample corpus) For i ∈ {1, . . . , n} draw zi as follows:

(a) If S ∈ M, draw zi | GS ∼ GS .

(b) If S /∈ M, draw zi as in 2(b):

1. Draw S → B1 . . . Bn from RS

2. zi = S
❛❛❛

✦✦✦
B1 · · · Bn
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3. While Yield(zi) has nonterminals:

(a) Choose an unexpanded nonterminal B from yield of zA,i

(b) If B ∈ M, expand B according to GB.

(c) If B ∈ N\M, expand B with a rule from RB according to Mult(θB).

4. Set xi = Yield(zi) for i ∈ {1, . . . , n}.

Here, there are four collections of hidden variables: the PCFG multinomials

θ = {θA | A ∈ N}, the stick length proportions v = {vA | A ∈ M} where

vA = �vA,1, vA,2, . . .�, the adapted nonterminals’ subtrees zA = {zA,i | A ∈

M; i ∈ {1, . . .}} and the derivations z1:n = z1, . . . , zn. The symbol z refers to the

collection of {zA | A ∈ M}, and z1:n refers to the derivations of the data x.

Note that the distribution in 2(c) is defined with the GEM distribution, as men-

tioned earlier. It is a sample from the Pitman-Yor process, which is later used in

3(a) to sample trees for an adapted non-terminal.

6.2 Variational Inference

We now give a variational inference algorithm for adaptor grammars based on the

stick-breaking process we described. For general explanation about variational

inference, see Section 5.3.

156



The variational bound on the likelihood of the data is:

log p(x | a,α) ≥H(q) +
�

A∈M

Eq[log p(vA | aA)] +
�

A∈M

Eq[log p(θA | αA)]

+
�

A∈M

Eq[log p(zA | v,θ)] + Eq[log p(z,x | vA)] (6.1)

Expectations are taken with respect to the variational distribution q(v,θ, z) and

H(q) is its entropy.

Before tightening the bound, we define the functional form of the variational

distribution. We use the mean-field distribution in which all of the hidden vari-

ables are independent and governed by individual variational parameters. (Note

that in the true posterior, the hidden variables are highly coupled.) To account

for the infinite collection of random variables, for which we cannot define a

variational distribution, we use the truncated stick distribution (Blei and Jordan,

2005). Hence, we assume that, for all A ∈ M, there is some value NA such that

q(vA,NA = 1) = 1. The assigned probability to parse trees in the stick will be 0 for

i > NA, so we can ignore zA,i for i > NA. This leads to a factorized variational

distribution:

q(v,θ, z) =

�

A∈M

�
q(θA)

NA�

i=1

q(vA,i)× q(zA,i)

�
×

n�

i=1

q(zi)

It is natural to define the variational distributions over θ and v to be Dirich-

let distributions with parameters τA and Beta distributions with parameters γA,i,
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respectively. The two distributions over trees, q(zA,i) and q(zi), are more problem-

atic. For example, with q(zi | φ), we need to take into account different subtrees

that could be generated by the model and use them with the proper probabilities

in the variational distribution q(zi | φ). We follow and extend the idea from John-

son et al. (2006) and use grammatons for these distributions. Grammatons are

“mini-grammars,” inspired by the grammar G.

For two strings in s, t ∈ W∗, we use “t ⊆ s” to mean that t is a substring of s.

In that case, a grammaton is defined as follows:

Definition 6.1 Let A = �G,M,a, b,α� be an adaptor grammar with G =

�W,N,R, S�. Let s be a finite string over the alphabet of G and A ∈ N. Let

U be the set of nonterminals U � Reachable(G, A) ∩ (N \ M). The gramma-

ton G(A, s) is the context-free grammar with the start symbol A and the rules

RA ∪
�
�

B∈U

RB

�
∪

�

A→B1...Bn∈RA

�

i∈{i|Bi∈M}

{Bi → t | t ⊆ s}.

Using a grammaton, we define the distributions q(zA,i | φA) and q(zi | φ).

This requires a preprocessing step (described in detail in Section 6.2.4) that de-

fines, for each A ∈ M, a list of strings sA = �sA,1, . . . , sA,NA�. Then, for

q(zA,i | φA) we use the grammaton G(A, sA,i) and for q(zi | φ) we use the

grammaton G(A, xi) where xi is the ith observed sentence. We parametrize the

grammaton with weights φA (or φ) for each rule in the grammaton. The selection

of these variational distributions makes the variational distributions over the trees

for strings s (and trees for x) globally normalized weighted grammars. Choosing

such distributions is motivated by their ability to make the variational bound tight
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(similar to Cohen et al., 2008, and Cohen and Smith, 2009 and Chapter 5). In

practice we do not have to use rewrite rules for all strings t ⊆ s in the gramma-

ton. It suffices to add rewrite rules only for the strings t = sA,i that have some

grammaton attached to them, G(A, sA,i).

The variational distribution above yields a variational inference algorithm for

approximating the posterior by estimating γA,i, τA, φA and φ iteratively, given a

fixed set of hyperparameters a, b and α. Let r be a PCFG rule. Let f̃(r, sB,k) =

Eq(zk|φB,k)[f(r; zk)], where f(r; zk) counts the number of times that rule r is ap-

plied in the derivation zk. Whenever a rule r does not appear in the grammaton

for nonterminal B with the string sk, we let f̃(r, sB,k) = 0. Let A → β denote

a rule from G. The quantity f̃(r, sB,k) is computed using the inside-outside (IO)

algorithm. Figure 6.1 gives the variational inference updates.

We use variational EM (Section 5.3.1) to fit the hyperparameters. The E step

performs the variational inference mentioned above (Figure 6.1). The M-step op-

timizes the hyperparameters (a, b and α) with respect to expected sufficient statis-

tics under the variational distribution. We use Newton-Raphson for each (Boyd

and Vandenberghe, 2004); Figure 6.2 gives the objectives.

6.2.1 More Details about the Derivation of the Algorithm

This section can be skimmed over on a first reading. Its goal is to give an intuition

on the Equations in Figure 6.1 and Figure 6.2. We first consider the entropy term

in Equation 6.1. This unfolds to the following:
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H(q) =
�

A∈M

�
H(q(θA))

NA�

i=1

H(q(vA,i))×H(q(zA,i))

�
×

n�

i=1

H(q(zi))

=
�

A∈M

(log(|RA|Γ(αA))− logΓ(|RA|αA) + (|RA|αA − |RA|)Ψ(|RA|αA)

−|RA|(αA − 1)Ψ(αA) +
NA�

i=1

(logΓ(γ1
A,i) + logΓ(γ2

A,i)

− logΓ(γ1
A,i + γ2

A,i) + (γ1
A,i + γ2

A,i − 2)Ψ(γ1
A,i + γ2

A,i) +H(q(zA,i)))
�

+
n�

i=1

H(q(zi)) (6.2)

Consider the variational bound on the log-likelihood in Equation 6.1. Consider

a single term Eq[log p(zA,i | v,θ)] for some A ∈ M and i ≤ NA. Then, using the

notation from Definition 6.1 we note that it actually has the following form:

Eq[log p(zA,i | v,θ)] (6.3)

=
�

A→β∈RA

f̃(A → β, sA,i)× Eq[log θA→β]

+
�

B∈U

�

B→β∈RB

f̃(B → β, sA,i)× Eq[log θB→β]

+
�

B∈M

NB�

j=1

f̃(A → sA,i, sB,j)×
�

i−1�

i�=1

Eq[log(vA,i�)] + Eq[log(1− vA,i)]

�

This is a direct result of the fact that the stick-breaking process of adaptor
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grammars is parameterized in such a way that rules in RA and RB for B ∈ U use

the probabilities in θ and the rules that rewrite to strings use the probabilities from

the stick-breaking parameters v.

Now, also note that for all A ∈ N and i we have:

Eq[log θA→β] = Ψ(τA→β)−Ψ(
�

A→β

τA→β)

Eq[vA,i] = Ψ(γ1
A,i)−Ψ(γ1

A,i + γ2
A,i)

In addition, we also have that the following terms in Equation 6.1 can be un-

folded:

Eq[log p(vA | aA)] (6.4)

=
NA�

i=1

aA
�
Ψ(γ2

A,i)−Ψ(γ1
A,i + γ2

A,i)
�
+ logΓ(aA + 1 + ibA)

+ ibA
�
Ψ(γ2

A,i)−Ψ(γ1
A,i + γ2

A,i)
�
− logΓ(ibA + aA)− logΓ(1− bA)

Eq[log p(θA | αA)] (6.5)

= logΓ(|RA|αA)− |RA| logΓ(αA)

+ (αA − 1)
��

A→β∈RA
Ψ(τA→β)−Ψ

��
A→β∈RA

τA→β

��

We turn now to consider the updates for the E-step (Figure 6.1). First, consider

the update for γ1
A,i and γ2

A,i. The only terms that depend in the variational bound
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in these two quantities are H(q(vA,i)) and Eq[log p(zB,j | v,θ)] (for B and j

in which A appears in the corresponding grammaton and sA,i is a substring of

sB,j) and also Eq[log p(vA | aA)]. Accumulating all terms that depend on these

two quantities (from Equation 6.5, Equation 6.4 and Equation 6.2) leads to the

following expression:

L(γ1
A,i, γ

2
A,i) = logΓ(γ1

A,i) + logΓ(γ2
A,i)− logΓ(γ1

A,i + γ2
A,i)

+ (γ1
A,i + γ2

A,i − 2 + aA + ibA)Ψ(γ1
A,i + γ2

A,i)

+ (γ1
A,i + aA − 1)Ψ(γ1

A,i) + (γ2
A,i + ibA − 1)Ψ(γ2

A,i)

�

B∈M

NB�

j=1

f̃(A → sA,i, sB,j)×
�

i−1�

i�=1

Eq[log(vA,i�)] + Eq[log(1− vA,i)]

�

(6.6)

We can unfold Equation 6.6 further using:

Eq[log(vA,i�)] = Ψ(γ1
A,i)−Ψ(γ1

A,i + γ2
A,i)

Eq[log(1− vA,i�)] = Ψ(γ2
A,i)−Ψ(γ1

A,i + γ2
A,i)

Taking the derivative of Equation 6.6 and equating to zero will lead to the up-

date in Equation 6.7 and Equation 6.8. This is similar to Blei et al. (2003). The

process for deriving the updates for τ•,A→β is similar, only now instead of giving

treatment to the Beta distributions for vA,i, we give a treatment to the Dirichlet dis-

tributions for θA (which are a generalization of the Beta distribution). Following
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a similar derivation, we will get the updates from Equation 6.9.

The updates for φA and φ originate in a result which is similar to Lemma 5.2.

They are also very similar to the updates one gets with variational Bayesian EM

for PCFGs when using a Dirichlet prior. The main difference is that now the rules

A → sA,i are controlled using probabilities in vA, where the probability of rule

A → sA,i is:

(1− vA,i)× (
i−1�

i�=1

vA,i�)

The updates for the M-step (Figure 6.2) are simpler to derive. They are based

on taking the relevant terms to the updated quantity from Equation 6.1. These

terms appear in Equation 6.6, Equation 6.4 and Equation 6.3.

6.2.2 Note about Recursive Grammars

With recursive grammars, the stick-breaking process representation gives proba-

bility mass to events which are ill-defined. In step 2(iii)(c) of the stick-breaking

representation, we assign nonzero probability to an event in which we choose to

expand the current tree using a subtree with the same index that we are currently

still expanding. In short, with recursive grammars, we can get “loops” inside the

trees.

We would still like to use recursion in the cases which are not ill-defined.

In the case of recursive grammars, there is no problem with the stick-breaking

representation and the order by which we enumerate the nonterminals. This is

true because the stick-breaking process separates allocating the probabilities for
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each index in the stick and allocating the atoms for each index in the stick.

Our variational distributions give probability 0 to any event which is ill-defined

in the sense mentioned above. Optimizing the variational bound in this case is

equivalent to optimizing the same variational bound with a model p� that (i) starts

with p, (ii) assigns probability 0 to ill-defined events, and (iii) renormalizes:

Proposition 6.2 Let p(x, z) be a probability distribution, where z ∈ Z, and let

S ⊂ Z. Let Q = {q | q(z) = 0, ∀z ∈ S}, a set of distributions. Then:

argmax
q∈Q

Eq[log p(x, z)] = argmax
q

Eq[log p
�(x, z)]

where p�(x, z) is a probability distribution defined as p�(x, z) = p(x, z)/
�

z∈S p(x, z)

for z ∈ S and 0 otherwise.

For this reason, our variational approximation allows the use of recursive

grammars. The use of recursive grammars with MCMC methods is problem-

atic, since it has no corresponding probabilistic interpretation, enabled by zeroing

events that are ill-defined in the variational distribution. Deciding whether a simi-

lar interpretation holds when using the sampling algorithm of Johnson et al. (2006)

remains an open problem.

6.2.3 Time Complexity

The algorithm in Johnson et al. (2006) works by sampling from a PCFG contain-

ing rewrite rules that rewrite to a whole tree fragment. This requires a procedure
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γ1A,i = 1− bA +
�

B∈M
�NB

k=1 f̃(A → sA,i, sB,k) (6.7)

γ2A,i = aA + ibA +
�i−1

j=1

�
B∈M

�NB
k=1 f̃(A → sA,j , sB,k) (6.8)

τ•,A→β = αA +
�

B∈M
�NB

k=1 f̃(A → β, sB,k) (6.9)

φ•,A→sA,i = Ψ(γ1A,i)−Ψ(γ1A,i + γ2A,i) +
�i−1

j=1

�
Ψ(γ2A,i)−Ψ(γ1A,i + γ2A,i)

�

φ•,A→β = Ψ(τ•,A→β)−Ψ
��

β τ•,A→β

�

Figure 6.1: Updates for variational inference with adaptor grammars. Ψ is the
digamma function. Note that in Equation 6.9, if A ∈ M, then the sum over
nonterminals include a single summand for nonterminal A.

max
αA

logΓ(|RA|αA)− |RA| logΓ(αA) + (αA − 1)
��

A→β∈RA
Ψ(τA→β)−Ψ

��
A→β∈RA

τA→β

��

max
aA

�NA
i=1 aA

�
Ψ(γ2A,i)−Ψ(γ1A,i + γ2A,i)

�
+ logΓ(aA + 1 + ibA)− logΓ(ibA + aA)

max
bA

�NA
i=1 ibA

�
Ψ(γ2A,i)−Ψ(γ1A,i + γ2A,i)

�
+ logΓ(aA + 1 + ibA)− logΓ(1− bA)− logΓ(ibA + aA)

Figure 6.2: Variational M-step updates. Γ is the gamma function.

that uses the inside-outside algorithm. Despite the grammar being bigger (because

of the rewrite rules to a string), the asymptotic complexity of the IO algorithm

stays O(|N|2|xi|3 + |N|3|xi|2) where |xi| is the length of the ith sentence.1

Our algorithm requires running the IO algorithm for each yield in the varia-

tional distribution, for each nonterminal, and for each sentence. However, IO runs

with much smaller grammars coming from the grammatons. The cost of running

1This analysis is true for CNF grammars augmented with rules rewriting to a whole string, like
those used in our study.
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the IO algorithm on the yields in the sticks for A ∈ M can be taken into account

parsing a string that appears in the corpus with the full grammars. This leads to

an asymptotic complexity of O(|N|2|xi|3 + |N|3|xi|2) for the ith sentence in the

same corpus each iteration.

Asymptotically, both sampling and variational EM behave the same. However,

there are different constants that hide in these asymptotic runtimes: the number of

iterations that the algorithm takes to converge (for which variational EM generally

has an advantage over sampling) and the number of additional rewrite rules that

rewrite to a string representing a tree (for which MCMC has a relative advantage,

because it does not use a fixed set of strings; instead, the size of the grammars

it uses grow as sampling proceeds). In Section 6.3, we see that variational EM

and sampling methods are similar in the time it takes to complete because of a

trade-off between these two constants. Simple parallelization, however, which is

possible only with variational inference, provides significant speed-ups.2

A note about the memory requirements of the sampling algorithm and the vari-

ational Bayes algorithm is in order. The ability to parallelize the adaptor grammar

variational EM algorithm comes with a trade-off as far as memory requirement

goes. While with sampling, we require to maintain a single PCFG (which may

contain nonterminals rewriting to whole strings) for the proposal distribution of

the Metropolis-Hastings sampler, with the variational EM algorithm we require to

maintain weighted CFGs, corresponding to variational distribution, for each of the

2Newman et al. (2009) show how to parallelize sampling algorithms, but in general, paralleliz-
ing these algorithms is more complicated than parallelizing variational algorithms and requires
further approximation.
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strings we use in the non-parametric stick. This poses a heavy memory require-

ment, if NA is large for some non-terminal A. However, note that the weighted

CFG variational distributions tend to require less memory, each separately, than

the PCFG used for the proposal distribution with sampling. The reason for that is

that the variational distributions tend to dominate shorter strings than whole sen-

tences. In addition, the variational weighted CFGs do not always consist of all of

the original PCFG rules, because their start symbol is a nonterminal which does

not necessarily reach all nonterminals in the original PCFG.

6.2.4 Heuristics for Variational Inference

For the variational approximation from Section 6.2, we need to decide on a set

of strings, sA,i (for A ∈ M and i ∈ {1, . . . , NA}) to define the grammatons in

the nonparametric stick. Any set of strings will give a valid approximation, but

to make the variational approximation as accurate as possible, we require that: (i)

the strings in the set must be likely to be generated using the adaptor grammar

as constituents headed by the relevant nonterminal, and (ii) strings that are more

likely to be generated should be associated with a lower index in the stick. The

reason for the second requirement is the exponential decay of coefficients as the

index increases.

We show that a simple heuristic leads to an order over the strings generated

by the adaptor grammars that yields an accurate variational estimation. We begin

with a weighted context-free grammar Gheur that has the same rules as in G, only
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the weight for all of its rules is 1. We then compute the quantity:

c(A, s) =
1

n

�
n�

i=1

EGheur
[fi(z;A, s)]

�
− ρ log |s|

where fi(z;A, s) is a function computing the count of constituents headed by A

with yield s in the tree z for the sentence xi. This quantity can be computed

by using the IO algorithm on Gheur. The term ρ log |s| is subtracted to avoid

preference for shorter constituents, similar to Mochihashi et al. (2009).

While computing c(A, s) using the IO algorithm, we sort the set of all sub-

strings of s according to their expected counts (aggregated over all strings s).

Then, we use the top NA strings in the sorted list for the grammatons of A. The

requirement to select NA in advance is strict. We experimented with dynamic ex-

pansions of the stick, in the spirit of Kurihara et al. (2006) and Wang and Blei

(2009), but we did not achieve better performance and it had an adverse effect on

runtime. For completeness, we give these results in Section 6.3.

6.2.5 Decoding

The variational inference algorithm gives a distributions over parameters and hid-

den structures (through the grammatons). We experiment with two commonly

used decoding methods: Viterbi decoding and minimum Bayes risk decoding

(MBR; Goodman, 1996).

To parse a string with Viterbi (or MBR) decoding, we find the tree with high-

est score for the grammaton which is attached to that string. For all rules which
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rewrite to strings in the resulting tree, we again perform Viterbi (or MBR) decod-

ing recursively using other grammatons.
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(a) Unigram grammar
Sentence → Word+

Word → Char+

(b) Collocation gram-
mar
Sentence → Colloc
Sentence → Colloc
Sentence
Colloc → Word+

Word → Char+

(c) Syllable grammar
Sentence → Colloc3+

Colloc3 → Colloc2+

Colloc2 → Colloc1+

Colloc1 → Word+

Word → SyllableIF
Word → SyllableIF (Sylla-
ble) (Syllable) SyllableF
Syllable → Onset Rhyme

Onset → Consonant+
Rhyme → Nucleus Coda
Nucleus → Vowel+
Coda → Consonant+
SyllableIF → OnsetI
RhymeF
OnsetI → Consonant+
RhymeF → Nucleus CodaF
CodaF → Consonant+
SyllableI → OnsetI Rhyme
SyllableF → Onset RhymeF

Figure 6.3: The grammars tested for the segmentation task, from Johnson and Goldwater (2009). (a) unigram
grammar. (b) collocation grammar. (c) syllable grammar with collocations. For brevity, grammars are repre-
sented compactly using regular expressions in the right hand side, though in practice they are regular PCFGs. All
grammars originally appear in (Johnson and Goldwater, 2009).
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6.3 Experiments with Word Segmentation

We follow the experimental setting of Johnson and Goldwater (2009), who present

state-of-the-art results for inference with adaptor grammars using Gibbs sampling

on a segmentation problem. With this segmentation problem, the task is to take

as an input a stream of phonemic string representations, and segment them into

phonemes corresponding to words. We use the standard Brent corpus (Brent and

Cartwright, 1996), which includes 9,790 unsegmented phonemic representations

of utterances of child-directed speech from the Bernstein-Ratner (1987) corpus.

An utterance in the corpus can be “yuwanttulUk&tDIs”, and the task is to segment

it to “yu want tu lUk &t DIs” (“you want to look at this”).

Johnson and Goldwater (2009) test three grammars for this segmentation task.

The first grammar is a character unigram grammar (GUnigram). The second gram-

mar is a grammar that takes into consideration collocations (GColloc). The third

grammar incorporates more prior knowledge about the syllabic structure of En-

glish (GSyllable). All grammars are given in Figure 6.3. Once an utterance is

parsed, Word constituents denote segments.

The value of ρ (penalty term for string length) had little effect on our results

and was fixed at ρ = −0.2. When NA (number of strings used in the variational

distributions) is fixed, we use NA = 15,000. We report results using Viterbi and

MBR decoding. Johnson and Goldwater (2009) experimented with two decoding

methods, sample average (SA) and maximal marginal decoding (MM), which are

closely related to Viterbi and MBR, respectively. With MM, we marginalize the
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this paper
Johnson and
Goldwater (2009)

grammar model Viterbi MBR SA MM

GU
ni
gr
am

Dirichlet 0.49 0.84 0.57 0.54
Pitman-Yor 0.49 0.84 0.81 0.75

Pitman-Yor+inc 0.42 0.59 - -

GC
ol
lo
c Dirichlet 0.40 0.86 0.75 0.72

Pitman-Yor 0.40 0.86 0.83 0.86
Pitman-Yor+inc 0.43 0.60 - -

G Sy
lla
bl
e Dirichlet 0.77 0.83 0.84 0.84

Pitman-Yor 0.77 0.83 0.89 0.88
Pitman-Yor+inc 0.75 0.76 - -

Table 6.1: F1 performance for word segmentation on the Brent corpus. Dirichlet
stands for Dirichlet Process adaptor (b = 0), Pitman-Yor stands for Pitman-Yor
adaptor (b optimized), and Pitman-Yor+inc stands for Pitman-Yor with iteratively
increasing NA for A ∈ M. Johnson and Goldwater (2009) are the results adapted
from Johnson and Goldwater (2009); SA is sample average decoding, and MM is
maximum marginal decoding.

tree structure, rather than the word segmentation induced, similar to MBR decod-

ing. With SA, we compute the probability of a whole tree, by averaging its count

in the samples, an approximation to finding the tree with highest probability, like

Viterbi. During learning, we initialize each complex grammar parameters by the

result of learning the less complex grammar in the hierarchy, i.e., we initialize

GColloc using the results of GUnigram, and we initialize GSyllable using the results

of GColloc.

Table 6.1 gives the results for our experiments. Notice that the results for the

Pitman-Yor process and the Dirichlet process are similar. When inspecting the

learned parameters, we noticed that the discount parameters (b) learned by the

variational inference algorithm for the Pitman-Yor process are very close to 0. In
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Figure 6.4: F1 performance of GUnigram as influenced by the length of the stick,
NWord.
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this case, the Pitman-Yor process is reduced to the Dirichlet process.

Similar to Johnson and Goldwater’s comparisons, we see superior perfor-

mance when using minimum Bayes risk over Viterbi decoding. Further notice that

the variational inference algorithm obtains significantly superior performance for

simpler grammars than Johnson et al., while performance using the syllable gram-

mar is lower. The results also suggest that it is better to decide ahead on the set of

strings available in the sticks, instead of working gradually and increase the size

of the sticks as described in Section 6.2.4. We believe that the reason is that the

variational inference algorithm settles in a trajectory that uses fewer strings, then

fails to exploit the strings that are added to the stick later. Given that selecting

NA in advance is advantageous, we may inquire if choosing NA to be too large

can lead to degraded performance, because of fragmentation of the grammar. Fig-

ure 6.4 suggests it is not the case, and performance stays steady after NA reaches

a certain value.

One of the advantages of variational approximation over sampling methods

is the ability to run for fewer iterations before convergence. For example, with

GUnigram convergence typically takes 40 iterations with variational inference, while

Johnson and Goldwater (2009) ran their sampler for 2,000 iterations, for which

1,000 were for burning in. The inside-outside algorithm dominates the iteration’s

runtime, both for sampling and variational EM. Each iteration with sampling,

however, takes less time, despite the asymptotic analysis in Section 6.2.3, be-

cause of different implementations and the different number of rules that rewrite

to a string. Figure 6.5 shows a plot of the negated log-likelihood (for sampling)
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and the free energy (for variational inference) for the two grammars: unigram and

collocation. Note that the measurements of the log-likelihood for sampling are

taken every ten iterations. We can see that indeed it takes fewer iterations for the

variational inference algorithm to converge. In fact, even all through the two thou-

sand iterations, the log-likelihood with sampling decreases, while the free energy

with variational inference stays flat after about 25 iterations.

It is interesting to note that the free energy for the collocation grammar is

larger than the free energy for the unigram grammar, while the opposite holds

for the log-likelihood with sampling. While the model of collocation grammar

indeed fits the data better (because it is more complex), with variational inference

we need to take into account more elements in the nonparametric stick with the

collocation grammar, making the free energy larger.

We now give a comparison of clock time for GUnigram for variational infer-

ence and sampling as described in Johnson and Goldwater (2009).3 Replicating

the experiment in Johnson and Goldwater (first row in Table 6.1) took 2 hours

and 14 minutes. With the variational approximation, we had the following: (i)

the preprocessing (Section 6.2.4) step took 114 seconds; (ii) each iteration took

approximately 204 seconds, with convergence after 40 iterations, leading to 8,160

seconds of pure variational EM processing; (iii) parsing took another 952 seconds.

The total time is 2 hours and 34 minutes.

At first glance it seems that variational inference is slower than MCMC sam-

3We used the code and data available at http://www.cog.brown.edu/˜mj/
Software.htm. The machine used for this comparison is a 64-bit machine with 2.6GHz CPU,
1MB of cache memory and 16GB of RAM.
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pling. However, note that the cost of the grammar preprocessing step is amortized

over all experiments with the specific grammar, and the E-step with variational

inference can be parallelized, while sampling requires an update of a global set

of parameters after each tree update. We ran our algorithm on a cluster of 20

1.86GHz CPUs and achieved a significant speed-up: preprocessing took 34 sec-

onds, each variational EM iteration took 43 seconds and parsing took 208 seconds.

The total time was 47 minutes, which is 2.8 times faster than sampling.

6.4 Discussion

We note that adaptor grammars are not limited to a selection of a Dirichlet dis-

tribution as a prior for the grammar rules. Our variational inference algorithm,

for example, can be extended (perhaps at great computational expense) to use the

logistic normal prior instead of the Dirichlet, as described in Chapter 5. We leave

this for future work. We also believe that our variational inference makes it easier

to add an additional infinite dimension to the grammar. The set of nonterminals

can be extended to be grow nonparametrically, again using a Dirichlet process,

similarly to the way it is presented in Liang et al. (2007) and Finkel et al. (2007).

In Chapter 8 we also experiment with a novel application for adaptor gram-

mars: dependency grammar induction.
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6.5 Summary

We described in this chapter a variational inference framework for adaptor gram-

mars. Our variational inference framework is based on a novel stick-breaking

representation for adaptor grammars. One big advantage of our algorithm is that

it is parallelizable. In addition, as we discuss in Chapter 9, since our algorithm is

framed in a variational inference framework, it can be extended with some effort

to use other priors than the Dirichlet, such as the logistic normal priors and other

models similar to adaptor grammars, such as fragment grammars. We demon-

strated that our algorithm gets similar performance to an MCMC sampler on a

word segmentation task.
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Figure 6.5: A plot of the free energy for variational inference (blue) and the
negated log-likelihood for sampling (red) with the unigram and collocation gram-
mars. Log-likelihood for sampling is measured every ten iterations.
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Part II

Empirical Study
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Chapter 7

Applications and Related Work

In the first part of this dissertation, we described a theoretical analysis of proba-

bilistic grammar estimation as well as some novel estimation techniques for these

grammars. In this part of the dissertation, we turn to testing the efficacy of our es-

timation techniques in a natural language application. This application, grammar

induction, which can be thought of as “computational language acquisition”, has

a rich history in the computational linguistics literature, which we also cover in

this chapter.

Grammar induction is an especially attractive application for estimation tech-

niques of probabilistic grammars, given recent research that has identified the

advantage of treating the problem of grammar induction in a modular way: con-

structing a grammar (usually a context-free grammar or one that is close to being

context-free) and then estimating it using statistical techniques. Simply put, our

estimation techniques can be readily used for computational language acquisition
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which uses probabilistic grammars that capture salient natural language phenom-

ena, as demonstrated in Chapter 8.

Early attempts at solving this problem of grammar induction were rather algo-

rithmic in nature. These attempts include development of systems and specialized

algorithms for computational language acquisition. We discuss more of this his-

tory in Section 7.1.

Grammar induction is an application that has merit other than its attractiveness

for testing the estimation of probabilistic grammars. In addition to the scientific

merit which grammar induction provides to fields such as linguistics, cognitive

science and formal language theory (which we discuss in Section 7.1), grammar

induction can advance state-of-the-art for unsupervised natural language parsers.

Such parsers are a key building block in many widespread NLP applications, espe-

cially those which perform deep analysis of text, yet, they are hard to construct for

languages where full training data (i.e. examples of sentences together with their

syntactic trees) is not available. This is where grammar induction can be used

to compensate for the absence of annotated data in order to construct a natural

language parser.

Our choice of application is in fact narrower than the general domain of gram-

mar induction. In our experiments, we focus on dependency grammar induction.

Dependency grammar (Tesnière, 1959) refers to linguistic theories that describe

syntax using directed trees (in the graph theory sense). In these trees, words are

vertices and edges that denote syntactic relationships. Such grammars can be

context-free or context-sensitive in power, and they can be made probabilistic
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(Gaifman, 1965). Dependency grammars have been found to be especially useful

for natural language applications, and thus they are widely used in NLP for infor-

mation extraction (Yangarber et al., 2000), machine translation (Ding and Palmer,

2005), question answering (Wang et al., 2007), and other applications (Johans-

son and Nugues, 2007; Das et al., 2010). We choose to focus our experimental

evaluation on dependency grammars because of their ability to capture syntactic

phenomena in an intuitive and useful manner for all of the applications mentioned

above.

Natural language applications that use dependency grammar induction require

data in order to learn and estimate the grammar. The data we use in our empirical

evaluation are treebanks from various languages. Here, a treebank refers to a

collection of sentences, usually from a very specific domain, such as newswire

text, where these sentences are annotated with grammatical derivations. We use

treebank data so that we can eventually evaluate our parser on small amounts of

annotated data that are used as a test set. Our stated objective is to build parsers

in the absence of annotated data, but for evaluation purposes, we use annotated

treebank test data, a common practice in the field of grammar induction.

We experiment with treebanks for various languages (Bulgarian, Chinese,

Czech, Danish, Dutch, English, Greek, Japanese, Portuguese, Slovene, Spanish,

Swedish, Turkish). See Appendix D for details about the treebanks that we use.

Evaluation in natural language processing, as mentioned before, is an essen-

tial step that indicates whether a model or algorithm successfully performs a given

task. Typically for supervised and unsupervised models, decoded output is com-
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pared to expert human-annotated gold standard analyses, providing an objective

measure of quality for the learned model. Quality is then measured on new test

data that is unseen during training, in order to test the generalization of the learned

model. This is an attractive approach for evaluation of the quality of induced

grammars.1

With the specification of our evaluation methodology (more about this in Sec-

tion 8.2) and the data that we use, there is still a missing piece to the puzzle.

We need to specify the grammar that we use with our estimation techniques. We

choose the dependency model with valence (Klein and Manning, 2004) for this

end. The DMV is a head automaton grammar that recursively generates parts of

speech, corresponding to the lexical units in a sentence. It starts by generating a

root tag, and then generates children to the left and to the right of the root. The

DMV then visits each child, and repeats the part-of-speech generation procedure

recursively. For a given predicate, the DMV makes a parametric distinction be-

tween those children generated first and the rest of the children.

We note that the dependency model with valence, as a context-free grammar,

induces projective dependency trees. (A tree is considered projective if all of

its arcs are projective; an arc is considered projective if every word between its

two end points can be reached from one of the arc’s endpoints.) Projectivity is

a property that dominates most trees in the data that we use, but there is a small

percentage of non-projective arcs in some of the treebanks. Our estimation tech-

1We note that an alternative to using unseen data in the unsupervised setting is to measure the
quality of the data we estimate the model from. However, this gives a weaker indication of the
generalization of the model.
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niques are not limited to the projective setting, and can be used with non-projective

probabilistic grammars such as that described in Cohen et al. (2011b).

We turn now to describing work related to the application of dependency

grammar induction. We break this related work into the following sections:

• Section 7.1.1 describes previous engineering efforts of grammar induction

models.

• Section 7.1.2 describes the relationship of computational language acqui-

sition and grammar induction to the problem of understanding human lan-

guage acquisition.

• Section 7.1.3 describes the relationship between dependency grammar in-

duction and the field of grammatical inference, that gives an alternative

treatment to the problem of computational language acquisition.

7.1 Related Work

We describe in this section related work, as mentioned above.

7.1.1 Grammar Induction

Research on grammar induction dates back to the 1950s-1960s (Solomonoff, 1958;

Horning, 1969), but the current statistical setting in which most grammar induc-

tion currently takes place started with the introduction of the inside-outside algo-

rithm for PCFGs (Baker, 1979). The inside-outside algorithm enables statistical
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inference for context-free grammars and serves as a basis for many grammar in-

duction systems.

Two main approaches to grammar induction have been developed since then.

The first approach includes a structural search of a grammar based on distribu-

tional clustering of sequences of units which are present in the surface forms. The

second approach starts with the assumption that there is a fixed grammar, and pro-

ceeds with estimation of the parameters for this grammar. While the first approach

mostly focuses on inducing bracketing or identifying constituents from surface

forms, the second approach can be used to induce other types of syntactic struc-

tures, such as dependency structures. The first approach, the structural search, is

also related to the field of grammatical inference, as we explain in Section 7.1.3.

While the focus of this dissertation is on the second approach, a brief survey

of earlier work that uses the first approach is relevant, because it has served as the

foundation for modern grammar induction. Early work about the first approach

by Stolcke and Omohundro (1994) proposed a minimum description length frame-

work based on two grammar generalization operators, merging and chunking, both

of which are applied in an iterative manner until convergence to a grammar. An-

other algorithm designed for grammar induction was introduced by van Zaanen

(2000). Their method is called “alignment based learning”. Their method is based

on the idea that two fragments of a sentence can be identified as one constituent

of the same type if they can be substituted in their respective contexts. This ap-

proach is closely related to the principle of substitutability (Harris, 1951). In fact,

alignment based learning “reverses” this principle in order to identify constituent
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types. Methods similar to alignment based learning have also been proposed, for

example, by Adriaans et al. (2000).

More recent work that combines both the first approach and the second ap-

proach uses incremental parsing (Seginer, 2007) with heuristics proposed for es-

timation of a lexicon. The structures that Seginer’s parser induces are hybrids of

dependencies and constituents. Ponvert et al. (2011) also uses cascaded finite state

models for grammar induction based on raw text, where the end goal is to identify

chunks in a text rather than identifying a complete syntactic tree.

Going back to the problem of using probabilistic grammars for grammar in-

duction, it is important to note that over the course of grammar induction re-

search, a variety of probabilistic grammars have been tested for grammar induc-

tion (Lari and Young, 1990; Pereira and Schabes, 1992; Carroll and Charniak,

1992; de Marcken, 1995; Chen, 1995; Klein and Manning, 2002, 2004; Kurihara

and Sato, 2006, inter alia) without much initial success. Early experiments, such

as those performed by Carroll and Charniak, were partially successful because of

the complexity of the grammar induction problem that led to challenges such as

local maxima. More promising results were achieved in later experiments such as

those introduced in Klein and Manning (2002). These experiments demonstrated

that natural language syntax can be induced using the expectation-maximization

algorithm if the model is chosen carefully. In Klein and Manning (2002), for ex-

ample, the estimated model is a generative one that includes all subsequences of

part-of-speech tags in the data, which are either flagged as “constituents” or “dis-

tituents.” This model was called the constituent-context model (CCM). Klein and
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Manning’s method is also related to a method proposed in Clark (2000), which is

more of a structural search approach that is designed to induce clusters of sentence

fragments based on their distributional context.

Klein and Manning recognized that the CCM model could be further improved

to obtain even higher performance on the task of bracketed parsing. Thus, in

Klein and Manning (2004), the constituent-context model was augmented by a

model for dependencies between the units of surface forms in order to improve

the performance of the CCM model. These dependencies were induced using the

dependency model with valence (DMV), which we also use in our experiments,

in Chapter 8. We explain our reasons for using the DMV in more detail below.

The DMV enabled a long thread of research about dependency grammar in-

duction and has been widely recognized as an effective probabilistic grammar for

this end. The DMV has been used to test estimation algorithms such as Viterbi EM

(Spitkovsky et al., 2010b), contrastive estimation (Smith and Eisner, 2005), algo-

rithms which gradually introduce more data to the learning process (Spitkovsky

et al., 2010a) and other modifications to the EM algorithm (Spitkovsky et al.,

2011a); it has been used to test the efficacy of multilingual learning through de-

pendency grammar induction (Ganchev et al., 2009; Berg-Kirkpatrick and Klein,

2010); it has been used as a base model that has inspired more complex lexicalized

models (Headden et al., 2009). The DMV has also been used with various esti-

mation techniques that implement it as a base model with the goal of improving

the DMV’s performance. This goal is achieved by relying on other properties of

language and text such as: dependencies between parameters in the model (Berg-
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Kirkpatrick et al., 2010), sparsity (Gillenwater et al., 2010), preference for short

attachments (Smith and Eisner, 2006), punctuation (Spitkovsky et al., 2011b),

and additional annotation offered by web pages (Spitkovsky et al., 2010c). In

addition, the DMV has also been used for inferring grammatical structures from

non-parallel corpora (Cohen et al., 2011a). It has also been used with concave

models which are used for its initialization Gimpel and Smith (2011). Finally, it

has also been modified to include information about semantic relations (Naseem

and Barzilay, 2011).

There is some recent work that does not make use of the DMV for dependency

grammar induction. Examples of these studies include the use of tree substitution

grammars in a nonparametric Bayesian model based on the Pitman-Yor process

(Blunsom and Cohn, 2010), and the use of universal linguistic knowledge to in-

duce syntax trees in partially unsupervised manner (Naseem et al., 2010).

The reasons we choose the DMV as our base grammar for dependency gram-

mar induction are two-fold. On one hand, the DMV is a widely recognized gram-

mar, and therefore, when testing our models, we can easily separate the problem

of constructing a grammar from the problem of estimating it, with the latter being

the focus of this dissertation. Our results, therefore, reflect state-of-the-art in the

estimation techniques, comparable to previous and latter techniques for estimat-

ing the DMV. On the other hand, as we see later in Chapter 8, the DMV actually

gives moderate accuracy in the supervised setting. This implies that properly esti-

mating the DMV can actually lead to high accuracy, making it an attractive model

for natural language.
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With that note about supervised learning in mind, we also note that the DMV is

related to the head-outward model used by Collins et al. (1999) and Collins (2003)

for supervised parsing; Collins’ parser is one of the best performing parsers for

English (but naturally, far more complicated than the vanilla DMV model as it is

designed for the supervised setting).

To wrap up this summary about grammar induction, we should also mention

that unsupervised parsing of natural language has also been tackled using a frame-

work called unsupervised data oriented parsing (U-DOP) (Bod, 2006a,b). Like

earlier experiments with grammar induction, this line of research focuses on in-

ducing bracketings that represent syntax. U-DOP works by assigning all possible

binary trees to a set of sentences, and then choosing the most probable tree ac-

cording to counts of subtrees in this assignment.

7.1.2 Language Learnability

In addition to the advantage of being able to construct an unsupervised parser

using grammar induction, grammar induction also impacts other fields such as

linguistics and cognitive science. More specifically, when we think of grammar

induction as computational language acquisition, it has a direct relationship to

the problem of understanding human language acquisition. The “stimuli” given

to a computer for computational language acquisition resemble the stimuli that

children receive during their language acquisition phase. Yet, current grammar

induction research has difficulty giving insight about human language acquisition

– a machine learning technique that manages to induce syntax from raw text is not
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necessarily credible as a model for language acquisition. Instead, we propose, like

others have, that grammar induction can help us gain insight about a variant of the

language acquisition problem. This variant tackles the problem of learnability of

language: in other words, it may help to develop credible models that can show

the learnability of formal languages which subsume natural languages.

Indeed, this type of question was explored by Gold (1967), who was the first to

provide results about the learnability of language in a formal way. Gold’s results

were pessimistic: his main result was a negative one, showing that, according

to a model he called “identification in the limit” (IIL), any supra-finite class of

languages, including the set of context-free grammars, is not learnable. With IIL,

the learner is presented with examples from the language, and at each step, she

returns a hypothesis about the language which the examples are taken from. Her

goal is to eventually identify the correct language, and consistently maintain that

identification in subsequent steps in which she is presented more examples.

This negative result stands in opposition to, for example, our result of the poly-

nomial complexity of learning language in the unsupervised setting from Chap-

ter 4. This could perhaps be explained by the fact that there is a problematic flaw

in the IIL model. The IIL model assumes that examples are presented in an adver-

sarial manner, an unlikely property in the process of language acquisition (Clark

and Lappin, 2011). In fact, it has been shown that adversarial environments for

language learning lead to impairments in a child’s language acquisition (Curtiss,

1977). It is difficult to extend Gold’s model to the context of a non-adversarial

model (Goldman and Mathias, 1996). Other flaws in Gold’s approach as a model
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for language acquisition are noted in Clark and Lappin (2010) and Clark and Lap-

pin (2011).

Another flaw with Gold’s main negative result is that it relies strictly on learn-

ing from positive examples (in a non-probabilistic setting). The probabilistic set-

ting (which we use in this dissertation) has been argued to offer compensation for

the absence of negative data (Angluin, 1988). The frequency in which we observe

patterns in language data can be used to create a gradient of likelihood for the

language patterns, ranging from highly probable to improbable. Indeed, since the

emergence of Gold’s results, many learnability results have been achieved which

show that large classes of grammars can be learned in the probabilistic setting (An-

gluin, 1988; Chater and Vitányi, 2007). In this context, our results from Chapter 4

complement and reinforce this idea: even though the sample complexity bounds

in the unsupervised setting are larger than their counterpart in the supervised set-

ting, they are still polynomial, and therefore the class of probabilistic grammars

are considered learnable in the setting we describe.

7.1.3 Grammatical Inference

Learning natural language using a grammar is clearly not limited to just an esti-

mation problem. One can also choose to infer the structure of the grammar itself,

rather than assuming that it is known to the learner who focuses on its estimation.

The problem of inferring the grammar itself is the focus of the grammatical infer-

ence field. The goal of this field is to develop algorithms and theory for inferring

a grammar from examples, which can include both positive as well as negative
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examples.

The field of grammatical inference, in many cases, studies artificial data, i.e.,

strings that do not originate from human generated text. For example, with the

Omphalos competition in 2004 (Starkie et al., 2004), the participants were re-

quested to identify a context-free grammar from a synthetic set of positive in-

stances. The field of grammatical inference is also, usually, more algorithmically-

driven. Researchers design algorithms for various classes of languages (Angluin,

1988; Clark et al., 2010; Yoshinaka and Clark, 2010; Clark, 2010a, interalia),

and prove the correctness of these algorithms. These developments can also shed

some light on issues regarding the learnability of language (see Section 7.1.2). In

natural language processing, however, general statistical learning algorithms are

usually used to perform the learning, and principles, such as maximum likelihood

estimation or large margin, guide researchers. Clark (2010b) discusses a more

general setting that can be used in devising algorithms for grammatical inference.

In general, it is not trivial to completely tease apart the field of grammatical

inference from the field of statistically-driven grammar induction which we focus

on in this dissertation. For example, earlier work of structural search methods for

the goal of grammar induction, as mentioned in Section 7.1.1, can be partially

thought of as relating more to grammatical inference than to current statistical

grammar induction. Indeed, perhaps some of the main distinctions between these

two communities include the types of data each works with, the class of algo-

rithms they employ and the motivations behind the work (i.e. explaining language

acquisition versus creating natural language parsers).
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We conclude with a final note about the connection between grammatical in-

ference and estimation of grammars. Perhaps there is a way to connect between

the estimation of a grammar and learning its structure. For example, with context-

free grammars, we can start with a large set of rules for the grammar, which in-

cludes practically all possible rules that use a set of nonterminals (or the set of

symbols that represent rules) in the grammar. From that point, the goal of the

learner would not just be to estimate parameters of the grammar, but rather to en-

force sparsity as well: i.e. set the probabilities of many rules in the grammar to

0. This line of research is beyond the scope of this thesis, but perhaps some of the

estimation methodology we develop can be extended to enforce sparsity on gram-

mar rules. See Gillenwater et al. (2010) for a discussion of the role of sparsity in

grammar induction. Other discussion of sparsity with parsing includes Mohri and

Roark (2006). Discussion of sparsity in the Bayesian setting appears in Johnson

(2007).

7.2 Summary

In this chapter we have detailed the main empirical setting with which we are

going to experiment in Chapter 8, and surveyed related work. We note that our es-

timation techniques, although mostly applied to dependency grammar induction,

are not limited to this setting. Indeed, our estimation techniques are appropriate

for the estimation of any type of probabilistic grammars.
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Chapter 8

Multilingual Grammar Induction

In this chapter, we provide results for an empirical evaluation of the estimation

algorithms that we described in Chapters 5 and 6 to perform the task of depen-

dency grammar induction (Chapter 7). Our focus is on controlled experiments

that compare Bayesian and non-Bayesian baselines with the logistic normal prior

estimation technique and the adaptor grammar estimation technique. We also de-

scribe a setting in which the estimation procedure along with the shared logistic

normal distribution can be used for multilingual learning from non-parallel cor-

pora, i.e. to learn the syntax of two (or more) languages at the same time by tying

the parameters of the grammars of each language.

The rest of this chapter is organized as follows. We begin with a detailed

explanation of the DMV model (Section 8.1). We then turn to describe the exper-

imental setting and report the experiment results in Sections 8.3–8.6.

Following this, we analyze some of the results in Section 8.7 and give a sum-
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mary in Section 8.8.

8.1 Dependency Model with Valence

Our experiments perform unsupervised induction of probabilistic dependency gram-

mars using a model known as “dependency model with valence” (Klein and Man-

ning, 2004). The model is a probabilistic split head automaton grammar (Alshawi

and Buchsbaum, 1996) which renders inference cubic in the length of the sentence

(Eisner, 1997). The language of the grammar is context-free, though our models

are permissive and allow the derivation of any string in Γ∗. This is a major point

of departure between theoretical work on grammatical inference and work on nat-

ural language text, particularly in the use of probabilistic grammars. Our goal is

to induce a distribution over derivations so that the most likely derivations under

the model most closely mimic those preferred by linguists.

“Valence” in “dependency model with valence”, refers to the number of argu-

ments controlled by the head of a phrase.1 In the DMV, each word has a binomial

distribution over the possibility that it has at least one child on the left (as well as

on the right), and a geometric distribution over the number of further children (for

each side).

Let x = �x1, x2, ..., xn� be a sentence (here, as in prior work, represented

as a sequence of part-of-speech tags). x0 is a special “wall” symbol, $, on the

left of every sentence. A tree y is defined by a pair of functions yleft and yright

1Here, we refer to “head of a phrase” in the linguistic sense—the word in a phrase that deter-
mines the syntactic category of a phrase.
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(both {0, 1, 2, ..., n} → 2{1,2,...,n}) that map each word to its sets of left and right

dependents, respectively. Here, the graph is constrained as a projective tree rooted

at x0 = $: each word except $ has a single parent, and there are no cycles or

crossing dependencies. yleft(0) is taken to be empty, and yright(0) contains the

sentence’s single head. Let y(i) denote the subtree rooted at position i (i.e., y(i) is

a tree consisting of all descendents of xi in the tree y). The probability P (y(i) |

xi,θ) of generating this subtree, given its head word xi, is defined recursively:

p(y(i) | xi,θ) =
�

D∈{left ,right}

θs(stop | xi,D , [yD(i) = ∅]) (8.1)

×
�

j∈yD (i)

θs(¬stop | xi,D , firsty(j))× θc(xj | xi,D)× p(y(j) | xj,θ),

where firsty(j) is a predicate defined as true iff xj is the closest child (on either

side) to its parent xi. The probability of the entire tree is given by p(x,y | θ) =

p(y(0) | $,θ). The parameters θ are the conditional multinomial distributions

θs(· | ·, ·, ·) and θc(· | ·, ·). To follow the general setting of Equation 2.1, we

index these distributions as θ1, ...,θK . Figure 8.1 shows a dependency tree and its

probability under this model (Equation 8.1).

Note that if all weights θ are greater than zero, the model permits any de-

pendency tree over any sentence in Γ∗. Hence the goal of grammar induction is

to model the distribution of derivations, not to separate grammatical strings or

derivations from ungrammatical ones.
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Klein and Manning’s (2004) dependency model with valence is widely recog-

nized as an effective probabilistic grammar for dependency grammar induction.

We refer the reader to Chapter 7 for a literature review of the use of the DMV

model in various settings.

8.2 Evaluation

Before we detail our evaluation measure, a note about the decoding process is

in order. As mentioned in Sections 5.4, we experiment with several decoding

methods, including Viterbi decoding, minimum Bayes decoding and committee

decoding (using the logistic normal prior). For minimum Bayes decoding, we

need to specify the loss function that we use, cost. With our experiments, cost

is a function that counts the number of words attached to a parent different than

the one in the correct analysis. This means that our MBR decoder attempts to

minimize the expected number of children attached to the wrong parents. MBR

decoding in this case works as follows: using a set of parameters for a grammar

and using the inside-outside algorithm, we compute the posterior probability of

each dependency attachment (directed edge in the graph) that is present in the

grammatical derivation for the sentence. Next, we find the tree with the largest

score, with the score being the sum of the posterior probabilities of each edge

present in the tree.

In our experiments, we use the “attachment accuracy” evaluation measure

which is strictly related to MBR decoding. With the attachment accuracy mea-
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sure, we calculate the fraction of parents that were correctly identified from gold

standard data. This relationship between MBR decoding and attachment accuracy

bears noteworthy implications on performance. As we see in the next chapter,

MBR decoding indeed tends to function better than Viterbi decoding.

Attachment accuracy has been standardized as the main accuracy measure

that the natural language processing community uses for evaluating dependency

parsers, both in the supervised and unsupervised context. Yet, attachment ac-

curacy has been criticized as being too fragile in the face of different annota-

tion schemas and annotations which are linguistically controversial. We refer the

reader to Schwartz et al. (2011) for a discussion of this issue. We leave it for

future work to address these issues with the standard evaluation.

8.3 Experimental Setting

We turn now to describing the experimental setting in which we test the estima-

tion methods of adaptor grammars and logistic normal priors. We note that the use

of adaptor grammars for dependency grammar induction is novel in itself. Until

now, adaptor grammars have been used mostly for segmentation (Johnson and

Goldwater, 2009), entity recognition (Elsner et al., 2009) and modeling perspec-

tive Hardisty et al. (2010). More recently, a nonparametric Bayesian model has

been devised for dependency grammar induction Blunsom and Cohn (2010), but

it is not based on adaptor grammars, but instead of a model tailored specifically

for dependency grammar induction.
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We also consider an interesting setting for the shared logistic normal priors,

which emerges naturally for multilingual learning. More specifically, we describe

how one can use SLN to tie parameters across several grammars for different

languages.

Our analysis starts with an extensive testing of adaptor grammars and logistic

normal priors for the Penn treebank for English. Later in this chapter, we ex-

tend our experiments to more languages in other treebanks. A full listing of the

treebanks that we use in this chapter is included in Appendix D.

The experimental report is organized as follows:

• (Section 8.4) Experiments with dependency grammar induction for English

text using the logistic normal distribution and adaptor grammars.

• (Section 8.4.1) Experiments with text in additional languages using the lo-

gistic normal distribution and adaptor grammars.

• (Section 8.5) Experiments with the shared logistic normal distribution for

tying parameters which correspond to the same coarse part-of-speech tag

(English, Portuguese, and Turkish).

• (Section 8.6) Experiments with the shared logistic normal distribution in

bilingual settings (English, Portuguese, and Turkish).

• (Section 8.7) Error analysis for the dependency structures induced by the

logistic normal distribution and comparison between the models learned by

adaptor grammars and the logistic normal distribution.

199



8.4 English Text

We begin our experiments with the Wall Street Journal Penn treebank (Marcus

et al., 1993). Following the standard practice, sentences were stripped of words

and punctuation, leaving just part-of-speech tags for the unsupervised induction

of the dependency structure. We note that, in this setting, it is common to use gold

standard part-of-speech tags as the input for the learning algorithm (Klein and

Manning, 2004; Smith and Eisner, 2006; Spitkovsky et al., 2010b,a; Gillenwater

et al., 2010, inter alia). We follow this practice as well.

We train our models on §2–21, tune them on §22 (without using annotations),

and report the final results on §23. Unsupervised training for these data sets can

be costly, as it requires iteratively running a cubic-time inside-outside dynamic

programming algorithm, so we follow Klein and Manning (2004) in restricting

the training set to sentences with a length of ten or fewer words. We also follow

this constraint because short sentences are less structurally ambiguous and may

therefore be easier to learn from.

To evaluate the performance of our models, we report the fraction of words

whose predicted parent matches the gold standard annotation in the treebank.2

This performance measure is known as attachment accuracy. We report attach-

ment accuracy on three subsets of the test corpus: sentences of length ≤ 10 (typi-

cally reported in prior work and most similar to the training data set), length ≤ 20,

2The Penn Treebank’s phrase-structure annotations were converted to dependencies using the
head rules of Yamada and Matsumoto, which are very similar to those proposed by Collins (2003).
See http://www.jaist.ac.jp/˜h-yamada.
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and the full test corpus.

Logistic Normal Priors Setting With the logistic normal priors, we consider

the three decoding methods mentioned in Section 5.4.1. For MBR decoding, we

use the number of dependency attachment errors as the cost function. This means

that at the point of decoding, we minimize the expected number of attachment

errors according to the prediction of the estimated model. Because committee

decoding is a randomized algorithm, we run it ten times on unseen data, and then

average the dependency attachment accuracy.

Initialization is important for all conditions, because the likelihood, as well

as our variational bound functions, are non-concave. For the multinomial values

(θ), we use the harmonic initializer from Klein and Manning (2004). This method

estimates θ using soft counts on the training data where, in an n-length sentence,

(i) each word is counted as the sentence’s head 1
n times, and (ii) each word xi

attaches to xj proportional to |i − j|−1, normalized to a single attachment per

word. This initializer is used with MLE and Dirichlet-I (where “I” stands for

model I from Figure 5.1). In the case of LN-I and LN-II, this initializer is used

both to estimate µ and to estimate variational parameters inside the E-step.

For learning with the logistic normal prior, we consider two initializations of

the covariance matrices Σk. The first is the Nk × Nk identity matrix. We then

tried to bias the solution by injecting prior knowledge about the part-of-speech

tags. To do this, we manually mapped the tag set (34 tags) to twelve disjoint tag

“families.” These are simply coarser tags: adjective, adverb, conjunction, foreign,
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interjection, noun, number, particle, preposition, pronoun, proper, verb. These

coarse tags were chosen to loosely account for the part-of-speech tag sets of seven

treebanks in different languages. The mapping from fine-grained tags to coarse

tags is based on the annotation guidelines of the relevant treebank. This mapping

into families provides the basis for an initialization of the covariance matrices

for the dependency distributions: 1 on the diagonal, 0.5 between probabilities of

possible child tags that belong to the same family, and 0 elsewhere. These results

are denoted as “families” and are compared to the identity matrix as an initializer.

Adaptor Grammar Setting In order to use adaptor grammars with the DMV,

we first have to reduce the DMV to a PCFG. We follow the reduction presented

in Smith (2006). Figure 8.2 presents this reduction in detail. With adaptor gram-

mars, it is important to determine which nonterminals are adapted in the grammar.

Ideally, we could try to have all nonterminals adapted in the DMV (represented

as a context-free grammar), and let the learning algorithm learn which strings

are important to cache, and for which strings we should use regular PCFG ex-

pansion. However, such an adaptor grammar model is extremely large, especially

when using our variational inference algorithm, thus it would not fit into computer

memory. For this reason, we carefully select the nonterminals that we choose to

adapt.

More specifically, we choose to adapt nonterminals for the part-of-speech tag

categories which are most prominent in any language: nouns and verbs. We there-

fore have two experimental settings with adaptor grammars, one that adapts noun

202



POS tags and the other that adapts verb POS tags. Because of memory limitations,

we cannot adapt nouns and verbs together.

While the reason for adapting only a subset of nonterminals can be merely

of practical convenience, there are other reasons to adapt specifically the set of

nouns and verbs. Most part-of-speech tag in a given sentence can be thought of as

revolving around the main parts of the sentence, the noun phrases and the verbial

phrases. This phrases are indeed dominated by the noun nonterminals and verb

nonterminals. It is important to note that when adapting these nonterminals ac-

cording to the reduction in Figure 8.2, we are in essence “caching” subtrees which

consist of whole left constituents, whole right constituents, or whole constituents

altogether. For example, the non-terminal N [NN], when adapted, leads to caching

whole constituents dominated by the NN part-of-speech tag.

Because of the recursive structure of the PCFG in Figure 8.2, adapting the

nonterminals corresponding to a certain part-of-speech tag implies that we cache

mostly whole constituents headed by this part-of-speech tag (or partial constituents

headed by this part-of-speech). In the case of the nonterminals Rc0 , Rc, Lc0 and

Lc, the cached strings also include dependents of some other part-of-speech tags

as well, because of the binary structure of their hand-side. Note that this means

we are also caching strings which do not necessarily represent a full noun or verb

phrase. We discuss this further in Section 8.4.1.

To decide which POS tags denote nouns and which denote verbs, we use the

same mapping for POS tags that we use with the logistic normal priors (mentioned

above). We use the preprocessing step defined in §6.2.4 along with a uniform
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grammar and take the top 15,000 (or 8,000, if memory restrictions force us to do

so) strings3 for each nonterminal of a noun or verb constituent. For decoding, we

use the MBR and Viterbi decoding mechanisms described in Chapter 6.

Baselines We compared several models where learning is accomplished using

(variational) EM: MLE, standard maximum-likelihood estimation using EM; Dirichlet-

I, a common baseline in the literature which uses a Dirichlet prior together with

variational EM; LN-I (LN-II), a model with the logistic normal distribution using

model I (model II); AG-Noun (AG-Verb), adaptor grammars with adapted noun

nonterminals (adapted verb nonterminals). In all cases, we either run the (vari-

ational) EM algorithm until convergence of the log-likelihood (or its bound) or

until the log-likelihood on an unannotated development set of sentences ceases to

increase.

We note that in the full test set, attaching each word to the word on its right

(“Attach-Right”) achieves about 30% accuracy, and attaching each word to the

word on its left (“Attach-Left”) achieves about 20% accuracy.

Report Table 8.1 shows the experimental results. Note that there are two lo-

gistic normal variants which consistently achieve lower performance than their

counterparts: use of model II (versus model I) and use of committee decoding

rather than Viterbi or MBR decoding. This suggests that the covariance matrices

play a useful role during the learning process, but that they are not informative

3When adating noun nonterminals with the Japanese treebank, we take only the top 150 strings,
because of the large number of noun part-of-speech tags in this treebank.
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when performing decoding, since they are not used in Viterbi and MBR decod-

ing. Interestingly, Smith and Eisner (2006) report a similar result for structurally

biased DMV—a model that includes a parameter which controls the length of the

decoded dependencies. Their bias parameter is useful only during the learning

process, never during decoding. In general, the logistic normal distribution with

model I substantially outperforms the baselines. It is interesting to note that LN-I

outperforms Dirichlet-I and MLE even when identity covariance matrices are used

for initialization. As a matter of fact, even when permitting diagonal covariance

matrices in our model, there is a significant improvement in performance com-

pared to Dirichlet. This is because such covariance matrices permit modeling of

variance in the parameters, while the Dirichlet prior does not permit that.

The next thing to notice is that the logistic normal priors perform substantially

better than adaptor grammars do for English. This finding is related strictly to

the data that we use with English. As we see later, adaptor grammars actually

function better, on average, than the logistic normal prior, when considering more

languages. It is also interesting to note that adaptor grammars function better

when adapting verbs (in comparison to adapting nouns). This is consistent with

our findings for other languages, where adapting verbs always performs better

than adapting nouns.

It is also interesting to note that adaptor grammars behave similarly with MBR

decoding and Viterbi decoding. With the word segmentation experiments in Chap-

ter 6, the difference between MBR and Viterbi decoding was much more substan-

tial.

205



In preparation for our next set of experiments, we note that when we tested

model II with the logistic normal prior and with committee decoding on other

languages, the decrease in performance was consistent. For the rest of the exper-

iments, we report only MBR (and possibly Viterbi) decoding results using model

I. The reason for the underperformance of model II could be a result of the small

number of parameters that are defined by the model. This small set of parameters

cannot fully capture the nuances across sentences in the data.
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y =

x = �$ DT NN IN DT NN VBD IN RBR IN CD NN�

p(x,y | θ) = θc(VBD | $, r)× p(y(1) | VBD,θ)
p(y(1) | VBD,θ) = θs(¬stop | VBD, l, f)× θc(NN | VBD, l)× p(y(2) | NN,θ)

× θs(stop | VBD, l, t)× θs(¬stop | VBD, r, f)× θc(IN | VBD, r)
× p(y(4) | IN,θ)× θs(stop | VBD, r, t)

p(y(2) | NN,θ) = θs(¬stop | NN, l, f)× θc(DT | NN, l)× θs(stop | DT, r, f)
× θs(stop | DT, l, f)θc(IN | NN, r)× p(y(3) | IN,θ)
× θs(stop | IN, l, f)× θs(stop | NN, l, t)× θs(stop | NN, r, t)

p(y(3) | IN,θ) = θs(¬stop | IN, r, f)× θc(NN | IN, r)× θc(DT | NN, l)
× θs(stop | DT, r, f)× θs(stop | DT, l, f)
× θs(stop | NN, r, f)× θs(stop | NN, l, t)

p(y(4) | IN,θ) = θs(stop | IN, l, f)× θs(¬stop | IN, r, f)× θc(NN | IN, r)
× θs(stop | NN, r, f)× θs(¬stop | NN, l, f)× θc(RBR | NN, r)
× θs(stop | RBR, l, f)× p(y(5) | RBR,θ)

p(y(5) | RBR,θ) = θs(¬stop | RBR, r, f)× θc(IN | RBR, r)× θc(CD | IN, r)
× θs(stop | IN, l, f)× θs(stop | IN, r, t)× θs(stop | CD, r, f)
× θs(stop | CD, l, f)

Figure 8.1: An example of a dependency tree (derivation y). and its probability.
The part-of-speech tags NN, VBD, DT, CD, RBR, and IN denote noun, past-
tense verb, determiner, number, comparative adverb, and preposition, respectively,
following Penn Treebank conventions. We break the probability of the tree down
into recursive parts, one per head word, marked in blue (lighter). l, r, t, and f
denote left, right, true, and false, respectively (see Equation 8.1).
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DMV weight context-free rule
θc(t | $, r) S → N [t]
θs(stop | t, r, f) N [x] → L0[x]
θs(¬stop | t, r, f) N [x] → Rc0 [x]
θc(t | r, t�) Rc0 [t] → R[t]N [t�]
θs(stop | t, r, t) R[t] → L0[t]
θs(¬stop | t, r, t) R[t] → Rc[t]
θc(t | r, t�) Rc[t] → R[t]N [t�]
θs(stop | l, f) L0[t] → t
θs(¬stop | l, f) L0[t] → Lc0 [t]
θc(t | l, t�) Lc0 [t] → N [t�]L[t]
θs(stop | l, t) L[t] → t
θs(¬stop | l, t) L[t] → Lc[t]
θc(t | l, t�) Lc[t] → N [t�]L[t]

Figure 8.2: A representation of the DMV using a probabilistic context-free gram-
mar. All nonterminals (except for the starting symbol S) are decorated with part-
of-speech tags, and instantiated for each part-of-speech tag. See Section 8.1 for a
description of the weights.
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attachment accuracy (%)
Viterbi decoding MBR decoding Committee decoding

≤ 10 ≤ 20 all ≤ 10 ≤ 20 all ≤ 10 ≤ 20 all
MLE 45.8 39.1 34.2 46.1 39.9 35.9 ∗
Dirichlet-I 45.9 39.4 34.9 46.1 40.6 36.9 ∗
LN-I, Σ(0)

k = I 56.5 42.9 36.6 58.4 45.2 39.5 56.4±.001 42.3±.001 36.2±.001

LN-I, families 59.3 45.1 39.0 59.4 45.9 40.5 56.3±.01 41.3±.01 34.9±.005

LN-II, Σ(0)
k = I 26.1 24.0 22.8 27.9 26.1 25.3 22.0±.02 20.1±.02 19.1±.02

LN-II, families 24.9 21.0 19.2 26.3 22.8 21.5 26.6±.003 22.7±.003 20.8±.0006

AG-Noun 26.6 23.5 22.3 27.7 24.9 24.2 ∗
AG-Verb 45.5 37.3 31.6 45.9 38.0 33.0 ∗

Table 8.1: Attachment accuracy of different learning methods on unseen test data from the Penn Treebank at vary-
ing levels of difficulty imposed through a length filter. MLE is a reproduction of an earlier result using EM (Klein
and Manning, 2004). LN-I and LN-II denote use of the logistic normal with model I and model II (Figure 5.1),
respectively. Committee decoding includes ten averaged runs. The numbers in small font denote variance. Results
in bold denote the best results in a column. Training is done on sentences of length ≤ 10, though testing is done on
longer sentences as well.
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8.4.1 Additional Languages

We turn now to a description of experiments, parallel to those we performed with

English, for other languages. The languages that we experiment with are Bul-

garian, Chinese, Czech, Danish, Dutch, English, Greek, Japanese, Portuguese,

Slovene, Spanish, Swedish and Turkish. Appendix D details treebank sizes, tagset

sizes and other information about the treebanks.

As in the case for English, sentences were stripped of words and punctuation,

leaving just part-of-speech tags for the unsupervised induction of the dependency

structure. All learning algorithms were run on sentences with a length of ten

words or less.

Table 8.2 gives results of using the logistic normal priors and adaptor gram-

mars compared to the baselines mentioned in Section 8.4. Just like with English,

we note that the results for adaptor grammars are not very different for Viterbi

and MBR decoding, unlike the case with word segmentation (Section 6.3). In

several cases, adaptor grammars significantly improve performance over classic

EM and variational EM that use a Dirichlet prior. It seems that this mainly hap-

pens when the verb nonterminals are adapted and not when the noun nontermi-

nals are adapted. This is consistent with the behavior mentioned in Section 8.4.

The consistent improvements of performance when adapting verb nonterminals

and not noun nonterminals is surprising at first. One may expect that adapting

noun nonterminals would work better, because noun pharses, in many cases, act

as non-compositional phrases (such as multi-word expressions) and therefore we

would want to cache them (see Johnson (2010) for explanation). Verb phrases,
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on the other hand, are usually compositional phrases, so we would want to use

the PCFG rules to expand them. There could be several explanations to explain

this result. First, note that our analysis is done on sentences which consist only

parts of speech and not words. Therefore, in many cases, verb pharse patterns oc-

cur frequently enough that caching them as non-compositional structure can help.

Another point to note (as mentioned in Section 8.4) is that because of the way the

DMV PCFG is structured, we are caching strings that contain partial constituents

from other part-of-speech tags as well (because a nonterminal headed by a verb

part-of-speech tag can dominate other partial constituents as well). This means

that verb nonterminals dominate longer substrings (than noun nonterminals) that

occur frequently in the corpus, because verb nonterminals tend to occur higher

in dependency trees. The conclusion that we arrive to is that caching longer sub-

strings for the task of part-of-speech dependency grammar induction is actually

desirable. These strings, because of the unlexicalized setting, behave somewhat

like non-compositional pharses.

It also seems that adaptor grammars behave better for treebanks for which not

much data is available, while the logistic normal prior tends to work better when

there are relatively large amounts of data available. It is not completely clear why

this is the case. With the logistic normal distribution we require estimation of

a large number of parameters, and this could hinder performance in the case of

small amounts of data. However, a similar argument can be made about adaptor

grammars – where we require estimation of the parameters of all grammatons.

More detailed results for the logistic normal are given in Figure 8.3, for Por-
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tuguese, Japanese, Czech, Chinese and Turkish. Note that for Portuguese, the dif-

ference is much smaller between the EM baselines and logistic normal variational

EM when only short sentences are considered, but there is a wider gap for longer

sentences; the LN models appear to generalize better to longer sentences. For

Turkish, no method outperforms Attach-Right, but there is still a big gap between

variational EM using the logistic normal and other EM baselines. The case is sim-

ilar for Japanese, though the logistic normal does outperform the Attach-Right

baselines for shorter sentences in this case. For Czech, it seems like Dirichlet and

EM do somewhat better than the logistic normal prior, but performance of all four

methods is close. It is conceivable that the approximation inherent in a projective

syntax representation for the Czech sentences (whose gold-standard analyses have

a relatively large fraction of nonprojective dependencies) interacts with different

models in different ways.4

In general, the covariance matrices learned when initializing with the identity

covariance matrix are rather sparse, but there is a high degree of variability across

the diagonal (for the variance values learned). For the DMV, when using an iden-

tity initializer, diagonal matrices represent the local optimum that is reached by

the variational EM algorithm. When initializing the covariance matrices with the

tag family initializer, the learned matrices are still rather sparse, but they have a

larger number of significant correlations (for Portuguese, for example, using a t-

4We note that we also experimented with other languages, including Hebrew and Arabic. We
do not include these results, because in these cases all methods, including MLE, Dirichlet-I and
LN-I performed poorly (though Dirichlet-I and MLE sometimes does better than LN-I). We believe
that for these languages, the DMV is probably not the appropriate model. Developing better
grammatical models for these languages is beyond the scope of this paper.
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test to test the significance of the correlation, we found that 0.3% of the values in

the covariance matrices had significant correlation).5

5However, it is interesting to note that most of the elements of the covariance matrices were not
exactly zero. For example, 90% of the values in the covariance matrices were larger (in absolute
value) than 2.3× 10−6.
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Figure 8.3: Attachment accuracy results for English (equivalent to Table 8.1),
Chinese, Portuguese, Turkish, Czech and Japanese. The decoding mechanism
used is MBR. Legend for the baselines: MLE (green, first column in each block);
Dirichlet-I (yellow, second column); Legend for the methods in this paper: LN-I,
Σ(0)

k = I (blue, third column), and LN-I, families initializer (red, fourth column).
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Method Pt Tr Bg Jp El Sv Es Sl Nl Da Avg
AG (Verb), MBR 45.7 39.2 52.0 66.4 59.0 54.3 62.3 35.3 47.7 54.5 51.6
AG (Noun), MBR 45.2 27.5 20.4 26.1 42.2 30.1 37.4 23.8 29.4 24.5 30.66
AG (Verb), Viterbi 45.4 31.1 53.9 65.8 59.5 51.0 62.6 34.3 47.2 50.4 47.5
AG (Noun), Viterbi 42.2 25.5 19.3 26.1 42.2 29.6 38.5 23.6 30.0 24.8 30.18
LN-I 46.0 55.3 44.0 70.9 45.0 42.6 31.1 21.8 28.8 42.2 42.7
EM 42.5 35.6 54.3 43.0 41.0 42.3 38.1 37.0 38.6 41.4 41.3
Dirichlet EM 43.8 38.6 47.9 41.1 50.2 43.1 21.0 34.2 39.4 40.5 39.9

Table 8.2: Attachment accuracy for various languages with sentence length ≤ 10. AG (Verb) denotes use of
adaptor grammar with adaptation of verbial nonterminals, and AG (Noun) denotes use of adaptor grammars with
adaptation of nominal nonterminals. Viterbi denotes Viterbi decoding and MBR denotes maximum Bayes risk
decoding. LN-I denotes the use of the logistic normal prior (with model I). EM is the baseline for using the EM
algorithm, while Dirichlet EM is the baseline for using empirical Bayes with variational EM for the Dirichlet prior.
The languages reported in this table are: Portuguese (Pt), Turkish (Tr), Bulgarian (Bg), Japanese (Jp), Greek (El),
Swedish (Sv), Spanish (Es), Slovene (Sl), Dutch (Nl) and Danish (Da). Results in bold are best results in each
column.
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8.5 SLN with Nouns, Verbs, and Adjectives

We now turn to experiments where the partition structure for the logistic normal

prior permits covariance of parameters across multinomials, making use of the

expressive power of the shared logistic normal distribution. We use a few simple

heuristics to decide which partition structure S to apply. Our heuristics mainly

rely on the centrality of content words: nouns, verbs, and adjectives. For example,

in the English treebank, the most common attachment errors (with the LN prior)

occur with a parent that is a noun (25.9%) or a verb (16.9%). The fact that the most

common errors occur with these attachments is a result of nouns and verbs being

the most common parents in the majority of the data sets that we experimented

with.

Following this observation, we compare four different settings in our exper-

iments (all SLN settings include one normal expert for each multinomial on its

own, which is equivalent to the regular LN setting):

• TIEV: We add normal experts that tie all probabilities which correspond to a

verbial parent (any verbial parent, using the coarse tags of Cohen et al., 2008).

Let V be the set of part-of-speech tags that belong to the verb category. For

each direction D (left or right), the set of multinomials of the form θc(· | v,D),

for v ∈ V , all share a normal expert. For each direction D and each boolean

value B of the predicate firsty(·), the set of multinomials θs(· | v,D , B) for

v ∈ V share a normal expert.

• TIEN: This is the same as TIEV, only for nominal parents.
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• TIEV&N: Tie both verbs and nouns (in separate partitions). This is equivalent

to taking the union of the partition structures for the above two settings.

• TIEA: This is the same as TIEV, only for adjectivial parents.
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English Portuguese Turkish
≤ 10 ≤ 20 all ≤ 10 ≤ 20 all ≤ 10 ≤ 20 all

MLE 46.1 39.9 35.9 44.3 35.4 29.3 35.6 32.4 31.4
Dirichlet-I 46.1 40.6 36.9 43.8 34.1 28.0 38.6 36.7 35.9
Σ(0)

k = I 59.1 45.9 40.5 45.6 45.9 46.5 55.3 47.2 44.0
families 59.4 45.9 40.5 45.9 44.0 44.4 55.5 47.6 44.4

Tr
ai

ne
d

w
ith

En
gl

is
h TIEV 60.2 46.2 40.0 45.4 43.7 44.5 † 56.5 48.7 45.5

TIEN 60.2 46.7 40.9 45.7 44.3 45.0 51.1 43.7 41.2
TIEV&N 61.3 47.4 41.4 46.3 44.6 45.1 55.9 48.2 45.2
TIEA 59.9 45.8 39.6 45.4 43.8 44.6 49.8 43.2 40.8

Po
rtu

gu
es

e TIEV 62.1 48.1 42.2 45.2 42.3 42.3 56.7 † 48.6 45.1
TIEN 60.7 46.9 40.9 45.7 42.8 42.9 33.2 29.8 28.7
TIEV&N 61.4 47.8 42.0 46.3 44.6 45.1 56.7 49.2 46.0
TIEA 62.1 47.8 41.8 45.2 42.7 42.7 31.5 28.4 27.5

Tu
rk

is
h TIEV 62.5 48.3 42.4 45.4 43.2 43.7 55.2 47.3 44.0

TIEN 61.0 47.2 41.2 45.9 43.9 44.4 45.1 39.8 37.8
TIEV&N † 62.3 48.3 † 42.3 46.7 44.3 44.6 55.7 48.7 45.5
TIEA † 62.3 48.0 42.1 45.1 43.2 43.7 38.6 34.0 32.5

Table 8.3: Attachment accuracy of different monolingual tying models and bilingual tying models with varying
levels of difficulty imposed through a length filter (Sections 8.5 and 8.6). Monolingual results (Section 8.5) are
described when the languages in both the column and the row are identical (blocks on the diagonal). Results for
MLE and Dirichlet-I are identical to Figure 8.3. Results for Σ(0)

k = I and families are identical to Table 8.1 and
Figure 8.3. Each block contains the results obtained from tying one language with the other, specifying performance
for the column language. Results in bold denote the best results in a column, and † marks figures that are not
significantly worse (binomial sign test, p < 0.05).
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Since learning a model with parameter tying can be computationally intensive,

we first run the inference algorithm without parameter tying, and then add param-

eter tying to the rest of the inference algorithm’s execution until convergence.

For the covariance matrices, we follow the setting described in Section 8.4.

For each treebank, we divide the tags into twelve disjoint tag families. The co-

variance matrices for all dependency distributions were initialized with 1 on the

diagonal, 0.5 between tags which belong to the same family, and 0 otherwise.

Results with MBR decoding are given in the blocks on the diagonal of Ta-

ble 8.3, where the languages in the columns and rows are identical. For English,

there are small improvements when adding the expressive power of SLN. The best

results are achieved when tying both nouns and verbs together. Portuguese shows

small benefits on shorter sentences, and when compared to the families-initialized

in the LN-I model, but not in the stronger identity-initialized LN-I model. For

Turkish, tying across multinomials hurts performance.

8.6 Bilingual Experiments

Leveraging linguistic information from one language for the task of disambiguat-

ing another language has received considerable attention (Dagan, 1991; Yarowsky

et al., 2001; Hwa et al., 2005; Smith and Smith, 2004; Snyder and Barzilay, 2008;

Burkett and Klein, 2008). Usually such a setting requires a parallel corpus or other

annotated data which ties between those two languages. One notable exception is

Haghighi et al. (2008), where bilingual lexicons were learned from non-parallel
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monolingual corpora.

Our bilingual experiments use the data for English, Portuguese, and Turkish

(two at a time), which are not parallel corpora, to train parsers for two languages

at a time, jointly. Sharing information between two models is accomplished by

softly tying grammar weights in the two hidden grammars.

For each pair of languages, we first merge the models for these two languages

by taking a union of the multinomial families from each and the corresponding

prior parameters. We then add a normal expert which ties together between the

parts of speech in the respective partition structures for both grammars. Parts

of speech are matched through the coarse tag set. For example, with TIEV, let

V = V Eng ∪ V Por be the set of part-of-speech tags which belong to the verb

category for either the English or Portuguese treebank (to take an example). We

then tie parameters for all part-of-speech tags in V . We tested this joint model for

each of TIEV, TIEN, TIEV&N, and TIEA. After running the inference algorithm

which learns the two models jointly, we use unseen data to test each learned model

separately.

We repeat the generative story specifically for the bilingual setting, using the

example of TIEV. For each language, there are normal experts for all part-of-

speech tags, for the basic DMV. In addition, there are normal experts, for each

language, which combine all part-of-speech tags together that belong to the verb

category. Finally, there are normal experts, for the two languages, that combine all

part-of-speech tags together that belong to the verb category in either language.

For each sentence in the corpus, the following two steps are conducted just as
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before (model I): the normal experts are sampled from the SLN distribution and

combined into multinomials to parameterize the DMV; a grammar derivation is

sampled from the resulting DMV.

Table 8.3 presents the results for these experiments (in the blocks which are

not on the diagonal). English grammar induction shows moderate gains when tied

with Portuguese and strong gains when combined with Turkish. Cohen and Smith

(2009) reported qualitatively similar results when English was tied with Chinese.

For Portuguese, there is not much gain based on tying it with other languages,

though doing so does improve the performance of the other two languages. In

general, the table shows that with the proper selection of a pair of languages and

multinomials for tying, we can usually get improvement over the LN baselines

and the technique does not hurt performance (cf. Turkish grammar induction with

SLN, on its own). We note that selection of multinomials for tying encodes prior

knowledge about the languages. This knowledge simply requires being able to

map fine-grained, treebank-specific part-of-speech tags to coarse categories. In

addition, bilingual learning with SLN does not require bitext parsing at any point,

which is an expensive operation. The runtime of the variational E-step for a sen-

tence x is still cubic in the length of x, just as in EM, thus as a result, the runtime

of the variational E-step in the multilingual case is the same as it would be if we

added an equivalent amount of data in the monolingual case.
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8.7 Error Analysis

We now include some error analysis of the results we get for the English treebank

using the logistic normal distribution and adaptor grammars. We choose to focus

on English for the logistic normal distribution and Spanish for adaptor grammars.

These two languages have high performance with respect to each method that we

use.

8.7.1 Confusion Matrices
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N
oun

Conjunction

Foreign

Verb

A
djective

N
um

ber

Pronoun

Interjection

Particle

A
dverb

Preposition

Proper
Noun 3190 114 1 2577 52 186 396 3 1381 13 2041 205
Conjunction 1 0 0 4 0 0 0 0 0 0 0 0
Foreign 0 0 3 2 0 0 1 0 1 0 1 0
Verb 2769 179 5 3693 124 138 774 3 888 88 604 108
Adjective 260 19 0 281 15 9 39 0 87 7 40 1
Number 62 1 0 51 4 35 26 0 30 0 37 0
Pronoun 149 3 0 128 11 12 76 0 10 7 18 24
Interjection 0 0 0 0 0 0 0 1 0 0 0 0
Particle 223 8 0 438 5 14 18 0 58 2 111 13
Adverb 158 11 3 284 29 11 40 1 11 5 19 2
Preposition 545 121 3 3152 62 91 240 0 265 20 949 70
Proper 387 63 2 532 26 41 91 3 122 11 428 579

Table 8.4: A confusion matrix that shows the kinds of errors we get when using the logistic normal prior. Each
cell in the table corresponds to a count of the number of times that the part-of-speech tag heading the column was
predicted as an incorrect parent, rather than the part-of-speech tag heading the row. Across the diagonals, counts
are given for errors in prediction of a parent where it has the same part-of-speech, but it is predicted for the wrong
position in the sentence. Note that we reduced the original tagset in the Penn treebank to a coarse part-of-speech
tagset for this table.
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N
oun

Conjunction

Foreign

Verb

A
djective

N
um

ber

Pronoun

Interjection

Particle

A
dverb

Preposition

Proper

Noun 0.6 / 1454 0 / 0 1 / 1 0.4 / 1554 1.0 / 51 0.9 / 13 0.9 / 33 1 / 1 1.0 / 444 1 / 116 1.0 / 3488 0.9 / 146
Conjunction 0.4 / 206 0 / 0 0 / 0 0.9 / 445 0.5 / 32 1 / 19 0.3 / 2 0 / 0 1 / 10 1 / 19 1 / 47 1.0 / 235
Foreign 1 / 2 0 / 0 0.5 / 3 0.8 / 3 1 / 2 0 / 0 0 / 0 0 / 0 0 / 0 1 / 3 0.5 / 1 1 / 1
Verb 0.6 / 1016 1 / 1 0.5 / 2 0.7 / 2791 0.6 / 106 0.3 / 44 0.7 / 383 0 / 0 0.7 / 33 0.4 / 52 0.8 / 720 0.4 / 147
Adjective 0.4 / 1202 0 / 0 0 / 0 0.5 / 277 1.0 / 80 1 / 20 0.7 / 8 0 / 0 0.9 / 31 0.9 / 18 0.8 / 97 1.0 / 88
Number 0.6 / 570 1 / 1 0 / 0 0.7 / 153 1 / 25 0.6 / 59 0 / 0 0 / 0 0.7 / 42 1 / 91 0.6 / 203 1 / 135
Pronoun 0.5 / 373 1 / 3 0 / 0 0.1 / 129 1 / 13 1 / 6 1 / 6 0 / 0 0.9 / 29 0.9 / 8 1 / 75 1 / 95
Interjection 1 / 1 0 / 0 0 / 0 0.3 / 1 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0 1 / 1 0 / 0 0 / 0
Particle 0.4 / 2056 0 / 0 1 / 1 0.7 / 971 1.0 / 77 1.0 / 32 0 / 0 0 / 0 1 / 168 1.0 / 42 0.4 / 38 1.0 / 416
Adverb 0.9 / 228 0 / 0 0 / 0 0.4 / 568 0.6 / 157 0.8 / 10 0.2 / 2 0 / 0 0.9 / 16 1.0 / 112 1.0 / 160 1 / 14
Preposition 0.9 / 2118 0 / 0 0 / 0 0.8 / 2120 1.0 / 200 0.7 / 34 1 / 1 0 / 0 1 / 42 1 / 104 1.0 / 143 1 / 152
Proper 0.9 / 933 0 / 0 1 / 1 0.4 / 361 1 / 15 1 / 9 1 / 3 0 / 0 0.1 / 75 1 / 8 0.6 / 546 0.3 / 856

Table 8.5: A confusion matrix that shows which dependencies we most often get wrong when using the logistic
normal prior. In each cell in the table, with x/y, we have that y corresponds to the total count of links of the form
c → r in the parsed data, where r is the part-of-speech tag heading the row and c is the part-of-speech tag heading
the column. We also have that x corresponds to the fraction of times that we wrongly predicted the link c → r, out
of the total number of times it appeared. Note that we reduced the original tagset in the Penn treebank to a coarse
part-of-speech tagset for this table.
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Table 8.4 and Table 8.5 give confusion matrices for various errors when using

the logistic normal distribution for English. Most of the errors, as can be seen from

Table 8.4 occur as a result of confusion between several nouns in the sentence (or

several verbs). This means that the parser was able to correctly predict that the

parent should be a noun (or a verb), but chose the wrong noun (or verb) in the

sentence as the parent. Another type of confusion happens between verbs, nouns

and prepositions. It seems that verbs are often predicted as parents when a noun

or a preposition should instead be the parent. Interestingly enough, it is also often

the case that prepositions are incorrectly predicted as parents, where nouns are

the correct parents, but this confusion does not happen as much with verbs and

prepositions.

The large confusion numbers that occur with prepositions may partially be

explained by the head rules that we chose to use (Yamada and Matsumoto rules;

see earlier note). It could be that our parser learns a different annotation scheme

than that used by these rules. The choice of these head rules for prepositions

has been under debate in the computational linguistics community. It is not clear

whether a preposition word should head a prepositional phrase (as in the Yamada

and Mastumoto rules), or whether other words in the phrase (such as the noun)

should act as the heads. It is important to note, however, that the high count of

confusion between nouns, verbs and prepositions could also occur because of their

high frequency in the English treebank.

When inspecting Table 8.5, we see that the logistic normal prior tends to iden-

tify verb noun relationships moderately well. However, it also tends to attach other
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part-of-speech tags to the verb (and to nouns). It also seems that the PP-attachment

problem is quite hard for the unsupervised learner. For noun → preposition depen-

dencies, the unsupervised learner errs in 90% of the cases. For verb → preposition

dependencies, the unsupervised learner errs in 0.8% of the cases.

Table 8.6 and Table 8.7 give an analoguous analysis for using adaptor gram-

mars with Spanish.
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N
oun

Conjunction

Verb

A
djective

Punctuation

N
um

ber

Pronoun

Interjection

A
dverb

Particle

. Preposition

U
nknow

n
Noun 162 26 194 64 0 2 4 0 126 22 0 0 0
Conjunction 10 4 26 10 0 0 1 0 4 2 0 0 0
Verb 214 70 414 93 0 1 20 0 99 71 0 0 0
Adjective 139 11 87 26 0 0 0 0 55 10 0 0 0
Punctuation 0 0 0 0 0 0 0 0 0 0 0 0 0
Number 2 2 10 3 0 0 0 0 4 1 0 0 0
Pronoun 13 3 28 7 0 0 1 0 11 3 0 0 0
Interjection 0 0 0 0 0 0 0 0 0 0 0 0 0
Adverb 91 17 161 17 0 1 0 0 112 64 0 0 0
Particle 8 0 10 2 0 0 0 0 9 0 0 0 0
. 0 0 0 0 0 0 0 0 0 0 0 0 0
Preposition 0 0 0 0 0 0 0 0 0 0 0 0 0
Unknown 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 8.6: A confusion matrix that shows the kinds of errors we get when using adaptor grammars for Spanish.
Each cell in the table corresponds to a count of the number of times that the part-of-speech tag heading the column
was predicted as an incorrect parent, rather than the part-of-speech tag heading the row. Across the diagonals,
counts are given for errors in prediction of a parent where it has the same part-of-speech, but it is predicted for
the wrong position in the sentence. Note that we reduced the original tagset in the Spanish treebank to a coarse
part-of-speech tagset for this table.
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N
oun

Conjunction

Verb

A
djective

Punctuation

N
um

ber

Pronoun

Interjection

A
dverb

Particle

. Preposition

U
nknow

n

Noun 1.0 / 119 0.9 / 18 0.5 / 190 1.0 / 91 0 / 0 0 / 0 0.8 / 5 0 / 0 0.2 / 154 1 / 1 0 / 0 0 / 0 0 / 0
Conjunction 0.8 / 62 1 / 10 0.8 / 169 0.9 / 18 0 / 0 1 / 1 0.9 / 6 0 / 0 1.0 / 26 1 / 2 0 / 0 0 / 0 0 / 0
Verb 0.7 / 120 1.0 / 20 0.8 / 236 0.5 / 30 0 / 0 0.4 / 4 0.9 / 14 0 / 0 0.9 / 96 1 / 1 0 / 0 0 / 0 0 / 0
Adjective 0.7 / 148 1 / 1 0.8 / 54 1 / 42 0 / 0 1 / 1 1 / 6 0 / 0 1.0 / 69 0 / 0 0 / 0 0 / 0 0 / 0
Punctuation 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0
Number 0.6 / 4 0 / 0 0.8 / 9 0.8 / 3 0 / 0 1 / 1 0 / 0 0 / 0 0.5 / 12 0 / 0 0 / 0 0 / 0 0 / 0
Pronoun 0.8 / 5 1 / 1 0.4 / 83 1 / 1 0 / 0 0 / 0 1 / 2 0 / 0 0.6 / 25 0.5 / 1 0 / 0 0 / 0 0 / 0
Interjection 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0
Adverb 0.3 / 117 1 / 6 0.5 / 228 0.9 / 82 0 / 0 1 / 5 0.9 / 17 0 / 0 0.9 / 69 1 / 2 0 / 0 0 / 0 0 / 0
Particle 0.0 / 25 1 / 1 0.9 / 13 0.8 / 61 0 / 0 1 / 10 0.9 / 16 0 / 0 0.7 / 11 0.8 / 22 0 / 0 0 / 0 0 / 0
. 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0
Preposition 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0
Unknown 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0 1 / 1 0 / 0 0 / 0 0 / 0 0 / 0

Table 8.7: A confusion matrix that shows which dependencies we most often get wrong when using adaptor
grammars. In each cell in the table, with x/y, we have that y corresponds to the total count of links of the form
c → r in the parsed data, where r is the part-of-speech tag heading the row and c is the part-of-speech tag heading
the column. We also have that x corresponds to the fraction of times that we wrongly predicted the link c → r,
out of the total number of times it appeared. Note that we reduced the original tagset in the Spanish treebank to a
coarse part-of-speech tagset for this table.
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8.7.2 Dependency Properties

When inspecting Figure 8.4, we note that a tendency exists for the logistic normal

parser to output trees which are more shallow than the trees that appear in the

treebank – their depth tends to be of smaller degree. One might expect that in the

case of having more shallow trees the dependency lengths would in general be of a

higher degree (because, for example, a single parent would have to be the parent of

children farther away from its position in the sentence), but surprisingly enough,

this does not happen. When inspecting Figure 8.4, we see that the distribution of

the lengths of dependency links for parsed data and gold-standard data is actually

similar.

8.7.3 Probability Values Set During Learning

Both estimation methods for the logistic normal prior family and adaptor gram-

mars eventually yield a point estimate for a given grammar. These point estimates

for the grammar can be used to extract information about the most salient fea-

tures that the models learn – in other words, the dependency affinities between

part-of-speech tags.

In this section, we consider such affinities for two languages: English and

Spanish. While with English, the logistic normal considerably outperforms adap-

tor grammars, the situation is the opposite for Spanish (Table 8.2). Figure 8.5 and

Figure 8.6 describe the affinity matrices (right and left dependencies) for these

languages as compared with the matrices from a maximum likelihood estimate
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obtained from annotated data. More specifically, the figures describe heatmaps

that illustrate the difference between two quantities: the probability of emitting a

certain part-of-speech tag as the child of another part-of-speech tag according to

the learned models, and the probability of emitting a certain part-of-speech tag as

the child of another part-of-speech tag according to annotated data ML estimate.

Interestingly enough, at first glance, the heatmaps for both adaptor grammars

and for the logistic normal seem very similar, despite the great differences in per-

formance. In both cases, most of the learned dependency probabilities (i.e. values

for the attachment parameters) are close to the probabilities learned with anno-

tated data, with some outliers that have a higher difference. However, when we

consider, for example, the matrices for the English treebank, we see that the lo-

gistic normal tends to give higher probabilities than the supervised MLE solution

more often than adaptor grammars tend to. This is especially true for dependen-

cies with a left direction. The situation is even more clear for Spanish, for which

Adaptor grammars tend to perform much better than the logistic normal prior.

Adaptor grammars tend to give higher probabilities than the supervised MLE so-

lution more often than the logistic normal does. For the right direction, for exam-

ple, it seems like most of the probabilities that the adaptor grammar solution gives

are higher than the supervised MLE solution, while the opposite happens for the

logistic normal.

We hypothesize that in order to obtain a better parser, it is preferable to give

higher rather than a lower probability to salient dependencies. This perhaps may

complement the view that sparsity can help grammar induction (Chapter 7): when
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the solutions are sparse, more probability mass may be allocated to the salient

dependencies.

8.8 Summary

In this chapter, we have presented the main empirical results for dependency gram-

mar induction while using the estimation techniques that we present in this dis-

sertation. Our results indicate that the logistic normal prior and adaptor gram-

mars did better on average than several baselines, including EM and variational

EM with a Dirichlet prior. We have also described an empirical setting in which

the shared logistic normal distribution was used for bilingual learning from non-

parallel corpora. Finally, we have also compared and contrasted the behavior of

adaptor grammars and logistic normal priors for English and Spanish.

It is important to note that there has been a large body of work on dependency

grammar induction since the mid 2000s, and most notably, since 2009. This work

is mentioned in Chapter 7. In many cases, as reported by Schwartz et al. (2011),

the use of different datasets and different head rules precludes a direct compari-

son of our performance to previous work. If we disregard these differences for a

moment and directly compare numbers, our results are state-of-the-art for certain

languages or very close to state-of-the-art, while for other languages they are not.

It is important to note that our methods in certain cases are orthogonal to the meth-

ods presented in the abovementioned work. For example, Headden et al. (2009)

presented a different model than the DMV model, which was partially lexical-
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ized. In principle, we could use our estimation methods to estimate the grammar

presented in Headden et al., but we leave this for future work. We also note that

adaptor grammars are not limited to use with a selection of a Dirichlet distribution

as a prior for the grammar rules. Our variational inference algorithm, for example,

can be extended with some effort to use with the logistic normal prior rather than

the Dirichlet.
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Figure 8.4: Distribution of lengths and depths of dependency links in gold stan-
dard data (red) and when using the shared logistic normal distribution or adaptor
grammars (blue). Top left: Length distribution plot for the LN model for En-
glish. Top right: Depth distribution plot for the LN model for English. Bottom
left: Length distribution plot for the AG model for Spanish. Bottom right: Depth
distribution plot for the LN model for Spanish.
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Figure 8.5: Dependency affinity heatmaps for the English data for the logistic nor-
mal distribution and adaptor grammars as compared to the supervised maximum
likelihood solution. Each square in the heatmap denotes a dependency where the
part-of-speech tag heading the row is the parent and the part-of-speech tag head-
ing the column is the child. Intensity refers to the difference between the prob-
ability given by an LN or AG solution and the probability given by a supervised
MLE solution. Top-left: differences between right dependencies using the logis-
tic normal prior. Top-right: differences between right dependencies using adaptor
grammars. Bottom-left: differences between left dependencies using the logistic
normal prior. Bottom-right: differences between left dependencies using adaptor
grammars.
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Figure 8.6: Dependency affinity heatmaps for the Spanish data for the logistic
normal distribution and adaptor grammars as compared to the supervised maxi-
mum likelihood solution. Each square in the heatmap denotes a dependency where
the part-of-speech tag heading the row is the parent and the part-of-speech tag
heading the column is the child. Intensity refers to the difference between the
probability given by an LN or AG solution and the probability given by a super-
vised MLE solution. Top-left: differences between right dependencies using the
logistic normal prior. Top-right: differences between right dependencies using
adaptor grammars. Bottom-left: differences between left dependencies using the
logistic normal prior. Bottom-right: differences between left dependencies using
adaptor grammars.

235



Chapter 9

Summary and Future Work

In this dissertation we have presented a study of the computational properties

of estimating probabilistic grammars in the unsupervised setting. We showed

that probabilistic grammars are learnable under the maximum likelihood criterion,

though inference is hard. We showed how to estimate grammars in the Bayesian

setting, achieving high performance despite the computational challenges.

Our application was grammar induction. To the best of our knowledge, we are

the first to use a Bayesian framework for grammar induction with (or without) a

non-conjugate prior.

9.1 Future Directions

We conclude with a few possible future directions and open problems.
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9.1.1 Learning-Theoretic Analysis of Probabilistic Grammars

We describe two open problems from Chapter 4.

Sample Complexity Bounds with Semi-supervised Learning Our bounds fo-

cus on the supervised case and the unsupervised case. There is a trivial extension

to the semi-supervised case. Consider the objective function to be the sum of the

likelihood for the labeled data together with the marginalized likelihood of the

unlabeled data (this sum could be a weighted sum). Then, use the sample com-

plexity bounds for each summand, to derive a sample complexity bound on this

sum.

It would be more interesting to extend our results to frameworks such as the

one described by Balcan and Blum (2010). In that case, our discussion of sam-

ple complexity would attempt to see identify how unannotated data can reduce

the space of candidate probabilistic grammars to a smaller set, after which we

can use the annotated data to estimate the final grammar. This reduction of the

space is accomplished through a notion of compatibility, a type of fitness that

the learner believes the estimated grammar should have given the distribution that

generates the data. The key challenge in the case of probabilistic grammars would

be to properly define this compatibility notion such that it fits the log-loss. If this

is achieved, then similar machinery to that described in this paper (with proper

approximations) can be followed to derive semi-supervised sample complexity

bounds for probabilistic grammars.
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Sharper Bounds for the Pseudo-dimension of Probabilistic Grammars The

pseudo-dimension of a probabilistic grammar with the log-loss is bounded by the

number of parameters in the grammar, because the logarithm of a distribution gen-

erated by a probabilistic grammar is a linear function. However, typically the set

of counts for the feature vectors of a probabilistic grammar resides in a subspace

of a dimension which is smaller than the full dimension specified by the number

of parameters. The reason for this is that there are usually relationships (which

are often linear) between the elements in the feature counts. For example, with

hidden Markov models, the total feature count for emissions should equal the total

feature count for transitions. With PCFGs, the total number of times that nonter-

minal rules fire equals the total number of times that features with that nonerminal

in the righthand side fired, again reducing the pseudo-dimension. An open prob-

lem that remains is characterization of the exact value pseudo-dimension for a

given grammar, determined by consideration of various properties of that gram-

mar. We conjecture, however, that a lower bound on the pseudo-dimension would

be rather close to the full dimension of the grammar (the number of parameters).

It is interesting to note that there has been some work to identify the VC di-

mension and pseudo-dimension for certain type of grammars. Bane et al. (2010),

for example, calculated the VC dimension for constraint-based grammars. Ishigami

and Tani (1993) and Ishigami and Tani (1997) computed the VC dimension for fi-

nite state automata with various properties.
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9.1.2 Partition Structure and Covariance Matrices

The partition structure in Chapter 5 is fixed. It originates in prior knowledge

about the part-of-speech tags and how they reduce to coarser part-of-speech tags.

One possible future direction is to learn this partition structure automatically. The

partition structure is considered a hyperparameter for the shared logistic normal

distribution, and just like we estimate these parameters, it might be possible to

“estimate” the partition structure as well.

Another interesting direction to explore is working in a complete Bayesian

setting, and not empirical Bayes. It seems like the estimation of the mean values

and covariance matrices for the shared logistic normal distribution is crucial to get

good performance. Perhaps instead of estimating these mean values and covari-

ance matrices, it is possible to place an additional prior (hyperprior) over these

hyperparameters. More specifically, we can use the inverse-Wishart distribution

as a prior for the covariance matrices, as it is conjugate to the normal distribution

with respect to the covariance parameters.

9.1.3 Extensions to the Nonparametric Setting

There are other approaches to use nonparametric modeling with grammars, other

than adaptor grammars. For example, Liang et al. (2007) and Finkel et al. (2007)

used a Dirichlet process to split the states in a grammar into more fine-grained set

of states. These approaches are orthogonal to the use of Dirichlet process with

adaptor grammars. It would be interesting to combine both of these approaches,
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to yield a state-split adaptor grammar. The variational inference framework that

we give in this paper is sufficiently flexible to contain both of these approaches in

a unified framework.

Another work related to adaptor grammars is that of fragment grammars.

Fragment grammars (O’Donnell et al., 2009) are also nonparametric models which

are similar to adaptor grammars. The main distinction is that with fragment gram-

mars the model “grows” a tree not necessarily up to the leaves, like is the case

with adaptor grammars. Fragment grammars are currently used with a sampler

which is similar to the sampler devised by Johnson et al. (2006). Our variational

inference framework again can be extended to handle fragment grammars as well.

Last, we leave for future work a connection in this dissertation that could be

further exploited: using logistic normal priors as a prior for the base context-free

grammar in an adaptor grammar. Our variational inference frameworks with the

logistic normal prior and adaptor grammars permits a modular extension to this

setting.

9.1.4 Connecting Better Between the Estimation Techniques

and the Theoretical Analysis

In the first part of this thesis, we presented a theoretical analysis of the estima-

tion problem of probabilistic grammars, both from a learning-theoretic perspec-

tive and from a computational complexity perspective. This analysis is set up for

maximum likelihood estimation.
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In the second part of this thesis, we presented two empirical Bayes estimation

techniques. Empirical Bayes has a strong connection to maximum likelihood es-

timation, but still, it could be fruitful to explore further how the learning-theoretic

framework we presented can be extended to this setting. As far as the computa-

tional complexity analysis, we believe that the results about the hardness of max-

imizing the MLE objective function should extend (with efforts) to the empirical

Bayes setting we presented in this thesis.

Still, we note that the empirical Bayes techniques that we presented in this the-

sis focus on identifying a point estimate for probabilistic grammars. This implies

that the learning-theoretic framework we presented extends trivially when eventu-

ally evaluating the regular log likelihood from the point estimate of the grammar,

instead of the full likelihood which includes the Bayesian prior.

9.1.5 New Models and New Applications

Probabilistic grammars is a wide family of statistical models. Probabilistic gram-

mars other than the dependency model with valence have been devised for de-

pendency grammar induction, such as the one in Headden et al. (2009). It would

be interesting to apply the estimation techniques to such models and see whether

performance gains emerge both from better modeling as well as from better es-

timation. Testing the usefulness of the estimation methods we presented in this

thesis with lexicalized data is interesting as well. Unsupervised part-of-speech

tagging can be used to tag raw text, after which we can use our estimation meth-

ods. Similar approach has been taken in Cohen et al. (2011a).
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More generally, probabilistic grammars can be useful outside of natural lan-

guage processing. They have applications in computer vision (Lin et al., 2009),

computational biology (Sakakibara et al., 1994) and more recently, in human ac-

tivity analysis (Guerra and Aloimonos, 2005). It could be very fruitful to apply

the tools which were developed in this dissertation to these fields.
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Appendix A

Proofs for Chapter 4

We include in this appendix proofs for several results in the paper.

Utility Lemma 4.2 Let ai ∈ [0, 1], i ∈ {1, . . . , N} such that
�

i ai = 1. Define

b1 = a1, c1 = 1 − a1, bi =
�

ai
ai−1

��
bi−1

ci−1

�
and ci = 1 − bi for i ≥ 2. Then

ai =

�
i−1�

j=1

cj

�
bi.

Proof Proof by induction on i ∈ {1, . . . , N}. Clearly, the statement holds for

i = 1. Assume it holds for arbitrary i < N . Then:

ai+1 =

�
ai
ai

�
ai+1 =

��
i−1�

j=1

cj

�
bi

�
ai+1

ai
=

��
i−1�

j=1

cj

�
bi

�
cibi+1

bi

=

�
i�

j=1

cj

�
bi+1

and this completes the proof. �

269



Lemma 4.6 Denote by Z�,n the set
�

f∈F{y | Cn(f)(y)− f(y) ≥ �}. Denote by

A�,n the event “one of yi ∈ D is in Z�,n.” Then if Fn properly approximates F

then:

E [Ep̃n [gn]− Ep̃n [f
∗
n]] (A.0)

≤
��E

�
Ep̃n [Cn(f

∗
n)] | A�,n

��� p(A�,n) +
��E

�
Ep̃n [f

∗
n] | A�,n

��� p(A�,n) + �tail(n)

where the expectations are taken with respect to the dataset D.

Proof Consider the following:

E[Ep̃n [gn]− Ep̃n [f
∗
n]]

= E[Ep̃n [gn]]− Ep̃n [Cn(f
∗
n]) + Ep̃n [Cn(f

∗
n)]− Ep̃n [f

∗
n]]

= E[Ep̃n [gn]− Ep̃n [Cn(f
∗
n)]] + E[Ep̃n [Cn(f

∗
n)]− Ep̃n [f

∗
n]]

Note first that E[Ep̃n [gn] − Ep̃n [Cn(f ∗
n)]] ≤ 0, by the definition of gn as the

minimizer of the empirical risk. We next bound E[Ep̃n [Cn(f ∗
n)] − Ep̃n [f

∗
n]]. We

know from the requirement of proper approximation that we have:

E[Ep̃n [Cn(f
∗
n)]− Ep̃n [f

∗
n]]

= E[Ep̃n [Cn(f
∗
n)]− Ep̃n [f

∗
n] | A�,n]p(A�,n)+

E[Ep̃n [Cn(f
∗
n)]− Ep̃n [f

∗
n] | ¬A�,n](1− p(A�,n))

≤ |E[Ep̃n [Cn(f
∗
n)] | A�,n]|p(A�,n) + |E[Ep̃n [f

∗
n] | A�,n]|p(A�,n) + �tail(n)
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and that equals the right side of Equation A. �

Proposition 4.4 Let p ∈ P(α, L, r, q, B,G) and let Fm as defined above. There

exists a constant β = β(L, q, s,N) > 0 such that Fm has the boundedness prop-

erty with Km = sN log3 m and �bound(m) = m−β logm.

Proof Let f ∈ Fm. Let Z(m) = {y | |y| ≤ log2 m}. Then, for all y ∈ Z(m) we

have |f(y)| = −
�

i,k ψk,i(y) log θk,i ≤
�

i,k ψk,i(y)(s logm) ≤ sN log3 m =

Km, where the first inequality follows from f ∈ Fm (θk,i ≥ m−s) and the second

from |y| ≤ log2 m. In addition, from the requirements on p we have:

E
�
|f |× I {|f | ≥ Km}

�
≤

�
sN log3 m

�
×




�

k>log2 m

LΛ(k)rkk



 ≤
�
κ log3 m

�
×

�
qlog

2 m
�

for κ =
sNL

(1− q)2
. Finally, for β(L, q, s,N) � log κ + 1 + log 1

q = β > 0 and if

m > 1 then
�
κ log3 m

� �
qlog

2 m
�
≤ m−β logm. �

Utility Lemma A.1 (From (Dasgupta, 1997).) Let a ∈ [0, 1] and let b = a if

a ∈ [γ, 1− γ], b = γ if a ≤ γ and b = 1− γ if a ≥ 1− γ. Then for any � ≤ 1/2

such that γ ≤ �/(1 + �) we have log a/b ≤ �.

Proposition 4.5 Let p ∈ P(α, L, r, q, B,G) and let Fm as defined above. There

exists an M such that for any m > M we have:

p

�
�

f∈F

{y | Cm(f)(y)− f(y) ≥ �tail(m)}
�

≤ �tail(m)
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for �tail(m) =
N log2 m

ms − 1
and Cm(f) = T (f,m−s).

Proof Let Z(m) be the set of derivations of size bigger than log2 m. Let f ∈ F.

Define f � = T (f,m−s). For any y /∈ Z(m) we have that:

f �(y)− f(y) = −
K�

k=1

�
ψk,1(y) log θk,1 + ψk,2(y) log θk,2 − ψk,1(y) log θ

�
k,1 − ψk,1(y) log θ

�
k,2

�

≤
K�

k=1

log2 m
�
max{0, log(θ�k,1/θk,1)}+max{0, log(θ�k,2/θk,2)}

�

(A.1)

Without loss of generality, assume �tail(n)/N log2 m ≤ 1/2. Let γ =
�tail(m)/N log2 m

1 + �tail(m)/N log2 m
=

1/ms. From Utility Lemma A.1 we have that log(θ�k,i/θk,i) ≤ �tail(m)/N logm.

Plug this into Equation A.1 (N = 2K) to get that for all y /∈ Z(m) we have

f �(y)−f(y) ≤ �tail(m). It remains to show that the measure p(Z(m)) ≤ �tail(m).

Note that
�

y∈Z(m) p(y) ≤
�

k>log2 m LΛ(k)rk ≤ L
�

k>log2 m qk = Lqlog
2 m/(1−

q) < �tail(m) for m > M where M is a fixed constant chosen appropriately. �

Proposition A.2 There exists a β�(L, q, s,N) > 0 such that F�
m has the bounded-

ness property with Km = sN log3 m and �bound(m) = m−β� logm.

Proof From the requirement of p, we know that for any x we have a y such that

s(y) = x and |y| ≤ α|x|. Therefore, if we let X(m) = {x | |x| ≤ log2 m/α},

then we have for any f ∈ F�
m and x ∈ X(m) that f(x) ≤ sN log3 m = Km

(similarly to the proof of Proposition 4.1). Denote by f1(x,y) the function in Fm

such that f(x) = − log
�

y exp(−f1(x,y)).
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In addition, from the requirements on p and the definition of Km we have:

E
�
|f |× I {|f | ≥ Km}

�
=

�

x

p(x)f(x)I {f ≥ Km}

=
�

x:|x|>log2 m/α

p(x)f(x)

≤
�

x:|x|>log2 m/α

p(x)f1(x,y(x))

where y(x) is some derivation for x. We have:

�

x:|x|>log2 m/α

p(x)f1(x,y(x)) ≤
�

x:|x|≥log2 m/α

�

y∈Dx(G)

p(x,y)f1(x,y(x))

≤ sN logm
�

x:|x|>log2 m/α

�

z

p(x,y)|y(x)|

≤ sN logm
�

k>log2 m

Λ(k)rkk

≤ sN logm
�

k>log2 m

qkk ≤ κ× (logm)× (qlog
2m)

for some constant κ > 0. Finally, for some β�(L, q, s,N) = β� > 0 and some

constant M , if m > M then κ logm
�
qlog

2 m
�
≤ m−β� logm. �

Utility Lemma 4.11 For ai, bi ≥ 0, if − log
�

i ai + log
�

i bi ≥ � then there

exists an i such that − log ai + log bi ≥ �.

Proof Assume − log ai + log bi < � for all i. Then, bi/ai < e�, therefore
�

i bi/
�

i ai < e�, therefore − log
�

i ai + log
�

i bi < � which is a contradiction

to − log
�

i ai + log
�

i bi ≥ �. �
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The next lemma is the main concentarion of measure result that we use. Its

proof requires some simple modification to the proof given for Theorem 24 in

(Pollard, 1984, pages 30–31).

Lemma 4.8 Let Fn be a permissible class of functions such that for every f ∈ Fn

we have E[|f |× I {|f | ≤ Kn}] ≤ �bound(n). Let Ftruncated,n = {f × I {f ≤ Kn} |

f ∈ Fm}, i.e., the set of functions from Fn after being truncated by Kn. Then for

� > 0 we have,

p

�
sup
f∈Fn

|Ep̃n [f ]− Ep[f ]| > 2�

�
≤ 8N(�/8,Ftruncated,n) exp

�
− 1

128
n�2/K2

n

�
+ �bound(n)/�

provided n ≥ K2
n/4�

2 and �bound(n) < �.

Proof First note that

sup
f∈Fn

|Ep̃n [f ]− Ep[f ]| ≤ sup
f∈Fn

|Ep̃n [fI {|f | ≤ Kn}]− Ep[fI {|f | ≤ Kn}]|

+ sup
f∈Fn

Ep̃n [|f |(|f | ≤ Kn)] + sup
f∈Fn

Ep[|f |(|f | ≤ Kn)]

We have supf∈Fn
Ep[|f |(|f | ≤ Kn)] ≤ �bound(n) < � and also, from Markov

inequality, we have:

P ( sup
f∈Fn

Ep̃n [|f |(|f | ≤ Kn)] > �) ≤ �bound(n)/�

At this point, we can follow the proof of Theorem 24 in Pollard (1984), and
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its extension in pages 30–31 to get Lemma 5.1, using the shifted set of functions

Ftruncated,n. �
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Appendix B

Minimizing Log-Loss for

Probabilistic Grammars

Central to our algorithms for minimizing the log-loss from Chapter 4 (both in the

supervised case and the unsupervised case) is a convex optimization problem of

the form:

min
θ

K�

k=1

ck,1 log θk,1 + ck,2 log θk,2

s.t.∀k ∈ {1, . . . , K} :

θk,1 + θk,2 = 1

γ ≤ θk,1 ≤ 1− γ

γ ≤ θk,2 ≤ 1− γ

for constants ck,i which depend on p̃n or some other intermediate distribution in
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the case of the expectation-maximization algorithm and γ which is a margin deter-

mined by the number of samples. This minimization problem can be decomposed

into several optimization problems, one for each k, each having the following

form:

max
β

c1β1 + c2β2 (B.1)

s.t. exp(β1) + exp(β2) = 1 (B.2)

γ ≤ β1 ≤ 1− γ (B.3)

γ ≤ β2 ≤ 1− γ (B.4)

where ci ≥ 0 and 1/2 > γ ≥ 0. Ignore for a moment the constraints γ ≤

βi ≤ 1 − γ. In that case, this can be thought of as a regular maximum likelihood

estimation problem, so βi = ci/(c1+c2). We give a derivation of this result in this

simple case for completion. We use Lagranian multipliers to solve this problem.

Let F (β1, β2) = c1β1 + c2β2. Define the Lagrangian:

g(λ) = inf
β

L(λ,β)

= inf
β

c1β1 + c2β2 + λ(exp(β1) + exp(β2)− 1)
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Taking the derivative of the term we minimize in the Lagrangian, we have:

∂L

∂βi
= ci + λ exp(βi)

Setting the derivatives to 0 for minimization, we have:

g(λ) = c1 log(−c1/λ) + c2 log(−c2/λ) + λ(−c1/λ− c2/λ− 1) (B.5)

g(λ) is the objective function of the dual problem of Equation B.1–Equation B.2.

We would like to minimize Equation B.5 with respect to λ. The derivative of g(λ)

is:

∂g

∂λ
= −c1/λ− c2/λ− 1

hence when equating the derivative of g(λ) to 0, we get λ = −(c1 + c2), and

therefore the solution is β∗
i = log (ci/(c1 + c2)). We need to verify that the solu-

tion to the dual problem indeed gets the optimal value for the primal. Since the

primal problem is convex, it is sufficient to verify that the Karush-Kuhn-Tucker
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conditions hold (Boyd and Vandenberghe, 2004). Indeed, we have:

∂F

∂βi
(β∗) + λ

∂h

∂βi
(β∗) = ci − (c1 + c2)×

ci
c1 + c2

= 0

where h(β) � exp(β)+ exp(β)− 1 stands for the equality constraint. The rest of

the KKT conditions trivially hold, therefore β∗ is the optimal solution for Equa-

tions B.1-B.2.

Note that if 1−γ < ci/(c1+c2) < γ, then this is the solution even when again

adding the constraints in Equation B.3 and Equation B.4. When c1/(c1+ c2) < γ,

then the solution is β∗
1 = γ and β∗

2 = 1 − γ. Similarly, when c2/(c1 + c2) < γ

then the solution is β∗
2 = γ and β∗

1 = 1 − γ. We describe why this is true for the

first case. The second case follows very similarly. Assume c1/(c1 + c2) < γ. We

want to show that for any choice of β ∈ [0, 1] such that β > γ we have:

c1 log γ + c2 log(1− γ) ≥ c1 log β + c2 log(1− β)

Divide both sides of the inequality by c1+ c2 and we get that we need to show

that

c1
c1 + c2

log(γ/β) +
c2

c1 + c2
log

�
1− γ

1− β

�
≥ 0

Since we have β > γ, and we also have c1/(c1 + c2) < γ, it is sufficient to
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show that

γ log(γ/β) + (1− γ) log

�
1− γ

1− β

�
≥ 0 (B.6)

Equation B.6 is precisely the definition of the KL-divergence between the dis-

tribution of a coin with probability γ of heads and the distribution of a coin with

probability β of heads, and therefore the right side in Equation B.6 is positive, and

we get what we need.
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Appendix C

Counterexample to Tsybakov Noise

(Proofs)

We turn now to give proofs for the Tsybakov noise result in Chapter 4.

Lemma C.1 A = AG(θ) is positive semi-definite for any probabilistic grammar

�G,θ�.

Proof Let dk,i be a collection of constants. Define the random variable:

R(y) =
�

i,k

dk,i
E[ψk,i]

ψk,i(y)
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We have that:

E[R2] =
�

i,i�

�

k,k�

A(k,i),(k�,i�)dk,idk�,i�

which is always larger or equal to 0. Therefore, A is positive semi-definite. �

Lemma C.2 Let 0 < µ < 1/2, c1, c2 ≥ 0. Let κ, C > 0. Also, assume that

c1 ≤ c2. For any � > 0, define:

a = µ

�
exp

�
C�1/κ + �/2

c1

��
= α1µ

b = µ

�
exp

�
−C�1/κ + �/2

c2

��
= α2µ

t(�) = c1

�
1− µ

1− a

�
+ c2

�
1− µ

1− b

�
− (c1 + c2) exp(�/2)

Then, for small enough �, we have t(�) ≤ 0.

Proof We have that t(�) ≤ 0 if:

ac2 + bc1 ≥ −(c1 + c2)(1− a)(1− b)

1− µ
exp(�/2) + c1 + c2

= (c1 + c2)

�
1− (1− a)(1− b)

(1− µ) exp(−�/2)

�
(C.1)

First, show that:

(1− a)(1− b)

(1− µ) exp(−�/2)
≥ 1− µ (C.2)

281



which happens if (after substituting a = α1µ, b = α2µ):

µ ≤ (α1 + α2 − 2)/(1− α1α2)

Note we have α1α2 > 1 because c1 ≤ c2. In addition, we have α1 + α2 − 2 ≥ 0

for small enough � (can be shown by taking the derivative, with respect to � of

α1+α2−2, which is always positive for small enough �, and in addition, noticing

that the value of α1 + α2 − 2 is 0 when � = 0.) Therefore, Equation C.2 is true.

Substituting Equation C.2 in Equation C.1, we have that t(�) ≤ 0 if:

ac2 + bc1 ≥ (c1 + c2)µ

which is equivalent to:

c2α1 + c1α2 ≥ c1 + c2 (C.3)

Taking again the derivative of the left side of Equation C.3, we have that it is an

increasing function of � (if c1 ≤ c2), and in addition at � = 0 it obtains the value

c1 + c2. Therefore, Equation C.3 holds, and therefore t(�) ≤ 0 for small enough

�. �

Theorem 4.17 Let G be a grammar with K ≥ 2 and degree 2. Assume that p

is �G,θ∗� for some θ∗, such that θ∗1,1 = θ∗2,1 = µ and that c1 ≤ c2. If AG(θ
∗)

is positive definite, then p does not satisfy the Tsybakov noise condition for any

(C,κ), where C > 0 and κ ≥ 1.
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Proof Define λ to be the eigenvalue of AG(θ) with the smallest value (λ is posi-

tive). Also, define v(θ) to be a vector indexed by k, i such that

vk,i(θ) = E[ψk,i] log
θ∗k,i
θk,i

.

Simple algebra shows that for any h ∈ H(G) (and the fact that p ∈ H(G)), we

have:

Ep(h) = dKL(p�h) =
K�

k=1

�
Ep[ψk,1] log

θ∗k,1
θk,1

+ Ep[ψk,1] log

�
1− θ∗k,1
1− θk,1

��

For a C > 0 and κ ≥ 1, define α = C�1/κ. Let � < α. First, we construct an h

such that dKL(p�h) < � + �/2 but dist(p, h) > C�1/k as � → 0. The construction

follows. Parametrize h by θ such that θ is identical to θ∗ except for k = 1, 2, in

which case we have:

θ1,1 = θ∗1,1

�
exp

�
α + �/2

c1

��
= µ

�
exp

�
α + �/2

c1

��
(C.4)

θ2,1 = θ∗2,1

�
exp

�
−α + �/2

c2

��
= µ

�
exp

�
−α + �/2

c2

��
(C.5)
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Note that µ ≤ θ1,1 ≤ 1/2 and θ2,1 < µ. Then, we have that:

dKL(p�h) =
K�

k=1

�
Ep[ψk,1] log

θ∗k,1
θk,1

+ Ep[ψk,1] log

�
1− θ∗k,1
1− θk,1

��

= �+ c1 log
1− θ∗k,1
1− θ1,1

+ c2 log
1− θ∗k,2
1− θ2,1

= �+ c1 log
1− µ

1− θ1,1
+ c2 log

1− µ

1− θ2,1

We also have:

c1 log
1− µ

1− θ1,1
+ c2 log

1− µ

1− θ2,1
≤ 0 (C.6)

if

c1 ×
1− µ

1− θ1,1
+ c2 ×

1− µ

1− θ2,1
≤ c1 + c2 (C.7)

(this can be shown by dividing Equation C.6 by c1 + c2 and then using the con-

cavity of the logarithm function.) From Lemma C.2, we have that Equation C.7

holds. Therefore,

dKL(p�h) ≤ 2�

Now, consider the following, which can be shown through algebraic manipulation:

dist(p, h) = E
��

log
p

h

�2
�
=

�

k,k�

�

i,i�

E[ψk,i × ψk�,i� ]

�
log

θ∗k,i
θk,i

��
log

θ∗k�,i�

θk�,i�

�
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Then, additional algebraic simplification shows that:

E
��

log
p

h

�2
�
= v(θ)Av(θ)�

A fact from linear algebra states that:

v(θ)Av(θ)� ≥ λ||v(θ)||22

where λ is the smallest eigenvalue in A. From the construction of θ and Equa-

tion C.4–C.5, we have that ||v(θ)||22 > α2. Therefore,

E
��

log
p

h

�2
�
≥ λα2

stwhich means dist(p, h) ≥
√
λC�1/κ. Therefore, p does not satisfy the Tsybakov

noise condition with parameters (D,κ) for any D > 0. �
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Appendix D

Details of Treebanks Used

We detail in Table D.1 information about datasets used in this dissertation.
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Language Tag set Training Development Test Source Baselines
size tokens sent. tokens sent. tokens sent. A-R A-L

Bulgarian 54 40,609 5,890 15,737 1,283 5,032 398 Simov et al. (2002) 18.1 38.6
Chinese 34 27,357 4,775 5,824 350 7,007 348 Xue et al. (2004) 32.9 9.7
Czech 47 67,756 10,674 32,647 2,535 33,147 2,535 Hajič et al. (2000) 24.4 28.3
Danish 25 11,794 1,747 8,455 519 8,257 519 Kromann et al. (2003) 13.2 47.9
Dutch 12 38,565 5,650 19,549 1,335 14,327 1,335 Van der Beek et al. (2002) 28.8 25.8
English 34 55,340 7,179 35,021 1,700 49,363 2,416 Marcus et al. (1993) 30.2 20.4
Greek 38 3,123 476 5,814 270 5,673 270 Prokopidis et al. (2005) 31.7 19.5
Japanese 80 39,121 10,330 14,666 1,700 13,648 1,700 Kawata and Bartels (2000) 67.3 13.8
Portuguese 22 15,976 2,477 14,558 907 5,009 288 Afonso et al. (2002) 25.9 31.1
Slovene 29 4,539 659 2,729 153 2,211 153 Džeroski et al. (2006) 24.4 26.6
Spanish 47 3,849 538 7,013 330 6,597 330 Civit and Martı́ (2004) 24.8 30.0
Swedish 41 29,468 4,060 14,994 1,100 19,573 1,097 Nivre et al. (2006) 24.2 30.9
Turkish 31 18,873 3,416 7,812 500 6,288 623 Atalay et al. (2003); Oflazer et al. (2003) 61.4 3.9

Table D.1: Information about the treebanks used in this dissertation. “Tag set size” stands for the size of the
part-of-speech tag set. Train, development and test columns show the number of tokens and number of sentences in
each data set. The training set consists of sentences of length ten or less, as described in the text. The development
set and the test set do not have any length restriction. The development set includes unannotated set of sentences
from the respective language. A-R (A-L) stands for Attach-Right (Attach-Left), which are attachment accuracy
baselines on the test set for all sentences. See text for details.
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