A Review of Yee Whye Teh's A Hierarchical Language Model based on the Pitman-Yor Process

Jessica Forde

Columbia University

March 26, 2013

2013 1 / 13

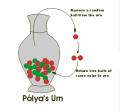
1 Introduction: A Review of Dirichlet Processes

- **2** The Pitman-Yor Process
- **3** The Heierarchical Pitman-Yor Language Model
- Inference

5 Bibliography

Some Intuition: Polya Urns

- Imagine an urn with balls in k colors, where n_i is the number of balls with color i and $\alpha_i = \frac{n_i}{\sum_{i=1}^k n_i}$
- After each draw, the ball drawn is returned with an additional ball of the same color



- Each draw defines a distribution over the set of all unique colors
- As the number of draws approaches infinity, the balls in the urn will be distributed *Dirichlet*(α₁,...,α_K)
- The limit of the color proportions in the urn defined by these draws can be described as a Dirichlet Process (DP)[3]

- Θ has measurable partition $A_1, ..., A_k$ if $\bigcup_{i=1}^k A_i = \Theta$ and $A_1, ..., A_k$ is closed under complementation and countable union
- Given event space, Θ with measurable partitions A₁, ..., A_k, base distribution H (e.g. H ~ N), and scale parameter α, we say G is distributed DP [3][2] if

 $(G(A_1),...,G(A_k)) \sim Dirichlet(\alpha H(A_1),...,\alpha H(A_k))$

- For all $i \in [1, K]$, $E[G(A_i)] = H(A_i)$ and $Var[G(A_i)] = \frac{H(A_i)(1-H(A_i))}{\alpha+1}$
- From an NLP perspective,
 - if Θ is the set of all words, G is a distribution over words where α indicates the similarity between H and G [5]
 - if θ_i ∈ Θ is a word token and x_i is an observed string, a typical mixture model set up states that θ_i ~ G and x_i|θ_i ~ F(θ_i)

• Another useful metaphor for a DP marginalizes out G itself [2][3]

$$p(\theta_1,...,\theta_n) = \int (\prod_{i=1}^n p(\theta_i|G)) p(G) \partial G$$

- We now have an urn, G, which is initially empty, and a paintbox H
- To initialize, we first draw color from H and put a ball with that color in G, $\theta_1 \sim H$
- For ball θ_{n+1} , we draw a new color $\theta_{n+1} \sim H$ with probability $\frac{\alpha}{n+\alpha}$ to color the ball, or we draw $\theta_{n+1} \sim G$ like in the Polya Urn setup and return two balls with that same color with probability $\frac{n}{n+\alpha}$

Ferguson [3] proved that DP's are the infinite sum of discrete distributions; Let δ_{θ_i} be an indicator function, called an atom, equalling 1 if θ_i ∈ A_i and let π_i be the probability mass of δ_{θ_i}

$$G = \sum_{i=1}^{\infty} \pi_i \delta_{\theta_i}$$

 Because we are working with cojugate distributions, we can describe our intuition from the Blackwell MacQueen urn scheme in the following ways

•
$$G \sim DP(\alpha, H)$$

• $\theta_{1:n}|G \sim G$

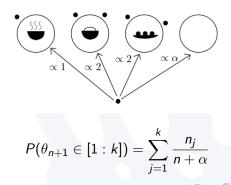
•
$$\theta_i | \theta_{1:n \setminus i}, G \sim G$$

•
$$G|\theta_{1:n} \sim DP(\alpha + n, \frac{\alpha H + \sum_{i=1}^{n} \delta_{\theta_i}}{\alpha + n})$$

•
$$\theta_i \sim H$$

•
$$\theta_{n+1}|\theta_{1:n} \sim \frac{aH + \sum_{i=1}^{n} \delta_{\theta}}{\alpha + n}$$

- We can observe that draws from a Blackwell MacQueen urn define a random partition
- Imagine now there are k colors drawn from H in the urn after n draws
- This distribution over the partition from [1:n] into these k clusters is a Chinese Restaurant Process[1], $\theta_{n+1}|\theta_{1:n} \sim CRP(H)$



- In a typical CRP setup, the probability of adding a additional component to a mixture model given *n* observations is $\frac{\alpha}{\alpha+n}$
- Pitman-Yor (PY) Processes add a rate parameter *d* to control the addition of components
- Instead, the probability of an additional table at given k components is $\frac{\alpha+dk}{n+\alpha}$
- The number of unique words in an NLP set up is therefore O(αn^d) instead of O(α log n)
- Goldwater et al. [4] observe that PYs are better suited to linguistic other DPs because they mimic the power law distributions seen in natural languages
 - if t(c) is the expected number of PY components with c observations, $t(c+1) = (1 + \frac{d}{\alpha+c})t(c) + \frac{\alpha}{\alpha+c}$

• Recall that *n*-gram models use the conditional distribution of a word given its n - 1 predecessors to approximate a sentence

•
$$P(sentence) \approx \prod_{i=1}^{T} P(word_i | word_{i-n+1}^{i-1})$$

- Teh [7] places a prior on this model based on the Hierarchical Pitman-Yor (HPY)
 - Given the context $\mathbf{u} = \{u_1, ..., u_m\}, m \le n-1$:

$$G_{\mathbf{u}} \sim PY(d_{|\mathbf{u}|}, \theta_{|\mathbf{u}|}, G_{\pi(\mathbf{u})})$$

- $G_{\pi(\mathbf{u})}$ is the base distribution of the observed word given the suffix $\pi(\mathbf{u}) = \{u_1, ..., u_{m-1}\}$
- G_{π(u)} is drawn recursively until we reach G_∅ ~ PY(d₀.θ₀, G₀), the probability of the current word given the empty set
- This prior takes the structure of a suffix tree of depth n

Inference in the HPY Model via HCRP

- For inference, this model is reframed in the context of a Hierarchical Chinese Restaurant Process (HCRP) [6]
- Teh [7] uses Gibbs sampling to approximate the posterior over the seating arrangements and the model parameters
- Like in the Blackwell MacQueen example, G_u is marginalized out and instead replaced with S_u , which corresponds to a seating arrangement
- The probability of a word given the context and the data is approximately

$$P(w|u, D) \approx \sum_{i=1}^{l} p(w|\mathbf{u}, S^{(i)}, \Theta^{(i)})$$

- Sampling takes O(nT) time and requires O(M) space
- Teh [7] notes that interpolated Kneser-Ney (IKN) smoothing approximates this model by assuming each cluster has a unique token
- HPY outperforms IKN on the APNews corpus

- Let **u** be a restaurant with c_{uwk} customers sitting at table k and eating dish w and t_{uw} be the number of tables serving w
- To draw a new word given context u
 - If $\mathbf{u} == 0$, return $w \in W$ with probability $G_0(w)$
 - else sit customer at table k with probability $\propto c_{{f u}wk} d_{|{f u}|}$
 - or sit customer at a new table serving dish w with probability $\propto \theta_{|\mathbf{u}|} + t_{|\mathbf{u}|}d_{|\mathbf{u}|}$
- The probability of the next word after context $\mathbf{u} = 0$ is $G_0(w)$ else it is

$$P_{\mathbf{u}}^{HPY}(w|S_{\mathbf{u}}) = \frac{c_{\mathbf{u}w.} - d_{|\mathbf{u}|}t_{|\mathbf{u}w|}}{\theta_{|\mathbf{u}|} + c_{\mathbf{u}}} + \frac{\theta_{|\mathbf{u}|} + d_{|\mathbf{u}|}t_{|\mathbf{u}|}}{\theta_{|\mathbf{u}|} + c_{\mathbf{u}}}P_{\pi(\mathbf{u})}^{HPY}(w|S_{\mathbf{u}})$$

• Note that this equation is similar to IKN by setting $t_{|uw|} = 1$

References I

- D. Aldous. Exchangeability and related topics. In *Ecole d'Ete de* Probabilities de Saint-Flour XIII 1983, pages 1–198. Springer, 1985.
- [2] D. Blackwell and J. B. Macqueen. Ferguson distributions via Pólya urn schemes. *The Annals of Statistics*, 1:353–355, 1973.
- [3] T. S. Ferguson. A bayesian analysis of some nonparametric problems. *The Annals of Statistics*, 1:209–230, 1973.
- [4] S. Goldwater, T. L. Griffiths, and M. Johnson. Interpolating between types and tokens by estimating power-law generators. In *Advances in Neural Information Processing Systems 18*, pages 459–466, Cambridge, MA, 2006. MIT Press.
- [5] N. Sharif-razavian and A. Zollmann. An overview of nonparametric bayesian models and applications to natural language processing. *Science*, pages 71-93, 2008. URL http://www.dcs.shef.ac.uk/ intranet/teaching/projects/archive/msc2001/pdf/m0sk.pdf.

References II

- [6] Y. W. Teh. A Bayesian interpretation of interpolated Kneser-Ney. Technical Report TRA2/06, School of Computing, National University of Singapore, 2006.
- Y. W. Teh. A hierarchical Bayesian language model based on Pitman-Yor processes. In Proceedings of the 21st International Conference on Computational Linguistics and 44th Annual Meeting of the Association for Computational Linguistics, pages 985–992, 2006. URL http://www.aclweb.org/anthology/P/P06/P06-1124.