
Bayesian Inference for PCFGs via Markov chain
Monte Carlo

Kevin Morenski

March 4, 2013

Outline
Introduction

Authors’ Contributions

Background
Context-Free Grammars

Definition
Examples
Thinking of CFGs
Formal Definition

Probabilistic Context Free Grammars
Ways to Learn PCFG Rule Probabilities

The Expectation-Maximization Algorithm

Bayesian Inference for PCFGs via MCMC

Bayesian Inference for PCFGs

Dirichlet Priors

Markov chain Monte Carlo

A Gibbs Sampler for P(t, θ|w, α)

Kevin Morenski | Columbia University — Department of Computer Science 3/35

Bayesian Inference for PCFGs via MCMC

Introduction

Kevin Morenski | Columbia University — Department of Computer Science 4/35

Bayesian Inference for PCFGs via MCMC

Authors’ Contributions

• A component-wise Gibbs sampler that: (i) draws parse trees conditioned
on the current parameter values, and then (ii) samples the parameters
conditioned on the current set of parse trees.

• A component-wise Hastings sampler that “collapses” the probalistic model
and integrates over the rule probabilities of the PCFG, thereby facilitating
a more rapid convergence.

Both algorithms use an efficient dynamic programming technique to sample parse
trees[1].

Kevin Morenski | Columbia University — Department of Computer Science 5/35

Bayesian Inference for PCFGs via MCMC

Background

Kevin Morenski | Columbia University — Department of Computer Science 6/35

Bayesian Inference for PCFGs via MCMC

Context-Free Grammars

Sentence

VP

NP

bookthe

Verb

took

NP

manthe

Figure 1: The first context-free grammar parse tree[2].

Kevin Morenski | Columbia University — Department of Computer Science 7/35

Bayesian Inference for PCFGs via MCMC

Definition

A context-free grammar consists of: (i) a set of linguistic rules that regulate the
syntactically-valid groupings and orderings of a language’s symbols, and (ii) a
lexicon of words and symbols.

Kevin Morenski | Columbia University — Department of Computer Science 8/35

Bayesian Inference for PCFGs via MCMC

S → NP VP V → bought
NP → Det N V → stole
VP → V NP P → from
VP → V PP P → to
PP → P NP P → with

Det → a N → man
Det → the N → friend
V → took N → store

Table 1: The rules, which map non-terminal symbols to other non-
terminal symbols (or combinations thereof), and the lexicon,
which maps non-terminal symbols to terminal symbols (i.e.,
words in the language).

Kevin Morenski | Columbia University — Department of Computer Science 9/35

Bayesian Inference for PCFGs via MCMC

Examples

S

VP

NP

bookthe

V

took

NP

N

man

Det

the

Kevin Morenski | Columbia University — Department of Computer Science 10/35

Bayesian Inference for PCFGs via MCMC

S

VP

PP

NP

N

store

Det

the

P

from

V

stole

NP

N

man

Det

the

Figure 2: Syntactically and semantically valid.

Kevin Morenski | Columbia University — Department of Computer Science 11/35

Bayesian Inference for PCFGs via MCMC

S

VP

PP

NP

N

store

Det

the

P

with

V

bought

NP

N

man

Det

the

Figure 3: Syntactically, but not semantically, valid.

Kevin Morenski | Columbia University — Department of Computer Science 12/35

Bayesian Inference for PCFGs via MCMC

Thinking of CFGs

A CFG can be thought of in two ways[3]:

1. as a device for generating sentences (viz., reading the “→” as “rewrite
the symbol on the left with the string of symbols on the right”)

2. as a device for assigning structure to a given sentence

Parse trees represent derivations of the string of words generated by a CFG. The
formal language defined by a CFG is the set of strings that are derivable from the
designated start symbol, which each grammar must have.

Kevin Morenski | Columbia University — Department of Computer Science 13/35

Bayesian Inference for PCFGs via MCMC

Formal Definition

N a set of non-terminal symbols (or variables)
Σ a set of terminal symbols (disjoint from N)
R a set of rules or productions, each of them in the form

A→ β, where A is a non-terminal and β is a string of
symbols from the infinite set of strings (Σ ∪N).

S a designated start symbol

Table 2: The four parameters that define a context-free grammar, G.

Kevin Morenski | Columbia University — Department of Computer Science 14/35

Bayesian Inference for PCFGs via MCMC

Probabilistic Context Free Grammars
A Probabilistic Context Free Grammar is a probalistic augmentation of context-
free grammars, wherein each rule is associated with a probability[3]. The difference
between a PCFG and CFG is that each rule R from Table 2 is augmented with
a conditional probability: A→ β[p], where p expresses the probability that the
given non-terminal A will be expanded to the sequence β. That is to say, p is
the conditional probability of a given expansion β given the left-hand-side (LHS)
non-terminal A.

Thus, if we consider all possible expansions of a non-terminal, the sum of their
probabilities must be 1:

∑
β P (A→ β) = 1

Kevin Morenski | Columbia University — Department of Computer Science 15/35

Bayesian Inference for PCFGs via MCMC

Ways to Learn PCFG Rule Probabilities
The simplest way is to use a treebank (a corpus of sentences that have already
been parsed and labeled). Maximum likelihood estimation can be used to compute
the probability of each expansion of a non-terminal by counting the occurrences
of that expansion and normalizing:

P (α→ β|α) = Count(α→β)∑
γ

Count(α→γ)
= Count(α→β)

Count(α→γ)

Since most sentences are ambiguous, which is to say have multiple syntactically-
valid parses, we need to keep a separate count for each parse of a sentence and
weight each of these partial counts with the probability of the parse in which it
appears.

Kevin Morenski | Columbia University — Department of Computer Science 16/35

Bayesian Inference for PCFGs via MCMC

However, to get the parse probabilities necessary to weight the rules, we need
to have a probabilistic parser. Intuitively, we can resolve this by incrementally
improving our estimates in the following manner:

1. Begin with a parser with uniformly-distributed parse probabilities

2. Parse the sentence

3. Compute a probability for each parse

4. Use these probabilities to weight the counts

5. Re-estimate the rule probabilities

6. Repeat until the probabilities converge to those calculated via MLE or until
the change in probabilities is less than or equal to some small value, ε.

Kevin Morenski | Columbia University — Department of Computer Science 17/35

Bayesian Inference for PCFGs via MCMC

The standard approach for computing this solution is called the inside-outside
algortihm, which is a generalization of the forward-backward algorithm. Like
the forward-backward algorithm, the inside-outside algorithm is a special case of
the expectation-maximization algorithm[3].

Kevin Morenski | Columbia University — Department of Computer Science 18/35

Bayesian Inference for PCFGs via MCMC

The Expectation-Maximization Algorithm
EM iterates between taking an expectation and then maximizing in order estimate
the MLE, θ̂.

Suppose we have data Y whose density f(y; θ) leads to a log-likelihood that’s
difficult to maximize. But suppose we can find another random variable, Z, such
that f(y; θ) =

∫
f(y, z; θ)dz and such that the likelihood based on f(y, z; θ) is

easy to maximize. In other words, the model of interest is the marginal of a
model with a simpler likelihood. In this case, we call Y the observed data and Z
the hidden (or latent or missing) data.

Conceptually, EM works by filling in the missing data, maximizing the log-
likelihood, and iterating.

Kevin Morenski | Columbia University — Department of Computer Science 19/35

Bayesian Inference for PCFGs via MCMC

The EM Algorithm:

1. Pick a starting value θ0

2. For j = 1, 2, 3, . . ., repeat the next steps until convergence:

3. (The E-step): Calculate

J(θ|θj) = Eθj
(

log f(Y n,Zn;θ)
f(Y n,Zn;θj)

∣∣∣Y n = yn
)

The expectation is over the missing data Zn treating θi and the observed
data Y n as fixed.

4. Find θj+1 to maximize J(θ|θj).

Kevin Morenski | Columbia University — Department of Computer Science 20/35

Bayesian Inference for PCFGs via MCMC

How does the EM algorithm always increase the likelihood? In other words, how
do we prove that L(θj+1) ≥ L(θj)?

Note that

J(θj+1|θ) = Eθj
(

log f(Y n, Zn; θj+1)
f(Y n, Zn; θj)

∣∣∣∣Y n = yn
)

= log f(yn; θj+1)
f(yn; θj) + Eθj

(
log f(Zn|Y n; θj+1)

f(Zn|Y n; θj)

∣∣∣∣Y n = yn
)

Kevin Morenski | Columbia University — Department of Computer Science 21/35

Bayesian Inference for PCFGs via MCMC

This leads to the conclusion that

L(θj+1)
L(θj) = log f(yn; θj+1)

f(yn; θj)

= J(θj+1|θj)− Eθj
(

log f(Zn|Y n; θj+1)
f(Zn|Y n; θj)

∣∣∣∣Y n = yn
)

= J(θj+1|θj) +K(fj , jj+1)

where:

fj = f(yn; θj)
fj+1 = f(yn; θj+1)

Kevin Morenski | Columbia University — Department of Computer Science 22/35

Bayesian Inference for PCFGs via MCMC

and K(f, g) =
∫

log(f(x)/g(x))f(x)dx is the Kullback-Leibler divergence. Now,
θj+1 was chosen to maximize J(θ|θj), and therefore J(θj+1|θj) ≥ J(θj |θj) = 0.
By the properties of KL divergence, K(fj , fj + 1) ≥ 0. Therefore, L(θj+1) ≥
L(θj) as claimed[4].

Kevin Morenski | Columbia University — Department of Computer Science 23/35

Bayesian Inference for PCFGs via MCMC

Bayesian Inference for PCFGs
The goal is to infer the rule probabilities θ that best describe the corpus of strings
w = (w1, . . . , wn), where each wi is a string of terminals generated by a known
CFG, G. We can apply Bayes’ theorem to obtain:

P(θ|w) ∝ PG(w|θ)P(θ)

P(w|θ) =
n∏
i=1

PG(wi|θ)

Using t to denote a sequence of parse trees for w, we can compute the joint
posterior distribution over t and θ and marginalize over t, with P(θ|w) =∑

t P(t, θ|w). The joint posterior distribution on t is given by:

Kevin Morenski | Columbia University — Department of Computer Science 24/35

Bayesian Inference for PCFGs via MCMC

P(t, θ|w) ∝ P(w|t)P(t|θ)P(θ)

=
(

n∏
i=1

P(wi|ti)P(ti|θ)
)

P(θ)

with P(wi|ti) = 1 if y(ti) = wi and 0 otherwise.

Kevin Morenski | Columbia University — Department of Computer Science 25/35

Bayesian Inference for PCFGs via MCMC

Dirichlet Priors

Because we need a prior on θ before we can compute the posterior distribution,
we take P(θ) to be a product of Dirichlet distributions, with one distribution for
each non-terminal A ∈ N .

The prior is parameterized by a positive real-valued vector α indexed by rules R
such that each rule probability θA→β has a corresponding Dirichlet parameter
αA→β .

Kevin Morenski | Columbia University — Department of Computer Science 26/35

Bayesian Inference for PCFGs via MCMC

The Dirichlet prior P(θ|α) is:

PD(θ|α) =
∏
A∈N

PD(θA|αA), where

PD(θA|αA) = 1
C(αA)

∏
r∈RA

θαr−1
r and

C(αA) =
∏
r∈RA Γ(αr)

Γ(
∑
r∈RA αr)

where Γ is the generalized factorial function and C(α) is the normalization
constant that does not depend on θA.

Kevin Morenski | Columbia University — Department of Computer Science 27/35

Bayesian Inference for PCFGs via MCMC

Because Dirichlet priors are conjugate to the distribution over trees defined by a
PCFG, the posterior distribution θ on a given set of parse trees, P(θ|t, α), is also
a Dirichlet distribution. Thus,

PG(θ|t, α) ∝ PG(t|θ)PD(θ|α)

∝

(∏
r∈R

θfrt
r

)(∏
r∈R

θαr−1
r

)
=
∏
r∈R

θfr(t)+αr−1
r

which is a Dirichlet distribution with parameters f(t) + α, where f(t) is the
vector of rule counts in t indexed by r ∈ R.

Kevin Morenski | Columbia University — Department of Computer Science 28/35

Bayesian Inference for PCFGs via MCMC

This allows us to write:

PG(θ|t, α) = PD(θ|f(t) + α)

which makes it clear that the production counts combine with the parameters of
the prior.

Kevin Morenski | Columbia University — Department of Computer Science 29/35

Bayesian Inference for PCFGs via MCMC

Markov chain Monte Carlo

Computing even a single choice of t and θ is intractable, because evaluating
the normalizing constant requires a summation over all possible parses for the
entire corpus and all sets of rule probabilities. Thus, sampling algorithms are an
appropriate response.

Kevin Morenski | Columbia University — Department of Computer Science 30/35

Bayesian Inference for PCFGs via MCMC

MCMC algorithms construct a Markov chain that samples states s ∈ S. The
approach is to begin in an initial state s0, sample s1 from P(s′|s1), then sample
s2 from P(s′|s1), and so on, with the probability that the Markov chain is in a
particular state P(si) converging to π(si) as i→∞. Here, P(s′|s) are transition
probabilities guaranteed to converge to the desired distribution π(s), i.e., the
posterior distribution:

Eπ[θ] ≈ 1
l

∑l
i=1 θi

Kevin Morenski | Columbia University — Department of Computer Science 31/35

Bayesian Inference for PCFGs via MCMC

A Gibbs Sampler for P(t, θ|w, α)
Sampling each component of a Markov chain’s state conditioned on the current
value of all other variables is the basic method of computing transition probabilities
using the Gibbs sampler. Here, this means alternating between sampling from
two distributions:

P(t|θ,w, α) =
n∏
i=1

P(ti|wi, θ), and

P(θ|t,w, α) = PD(θ|f(t) + α)

=
∏
A∈N

PD(θA|fA(t + αA))

Kevin Morenski | Columbia University — Department of Computer Science 32/35

Bayesian Inference for PCFGs via MCMC

This is reminiscent of the EM algorithm, with the E-step replaced by sampling t
and the M-step replaced by sampling θ.

Kevin Morenski | Columbia University — Department of Computer Science 33/35

References
[1] Bayesian Inference for PCFGs via Markov chain Monte Carlo. Association for

Computational Linguistics, 2007.

[2] N. Chomsky. Three models for the description of language. IRE Transactions
on Information Theory, pages 113–124, 1956.

[3] D. Jurafsky and J. H. Martin. Speech and Language Processing: An introduc-
tion to Natural Language Processing, Computational Linguistics, and Speech
Recognition. Pearson Education, Inc., 2009.

[4] L. Wasserman. All of Statistics. Springer, 2004.

Questions?

